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Incompatible quantum measurements admitting a local-hidden-variable model
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The observation of quantum nonlocality, i.e., quantum correlations violating a Bell inequality, implies the
use of incompatible local quantum measurements. Here we consider the converse question. That is, can any set
of incompatible measurements be used in order to demonstrate Bell inequality violation? Our main result is to
construct a local hidden variable model for an incompatible set of qubit measurements. Specifically, we show that
if Alice uses this set of measurements, then for any possible shared entangled state and any possible dichotomic
measurements performed by Bob, the resulting statistics are local. This represents significant progress towards
proving that measurement incompatibility does not imply Bell nonlocality in general.
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I. INTRODUCTION

A key aspect of quantum theory is that certain observables
cannot be jointly measured, in strong contrast with classical
physics. This leads to many prominent quantum features, such
as the uncertainty principle and information gain vs distur-
bance tradeoff, and plays a central role in quantum information
processing [1]. The incompatibility of quantum observables is
usually captured via the notion of commutativity: incompatible
observables do not commute. However, quantum theory allows
for more general measurements, so-called positive-operator
valued measures (POVM), the incompatibility of which cannot
be properly captured using commutativity [2]. Here a natural
concept is that of joint measurability [3]. A set of POVMs
is said to be jointly measurable if each one of them can
be derived from coarse graining of one common POVM.
Conversely, if such a joint POVM does not exist, the set is
considered incompatible. The concept of joint measurability
thus arguably provides a natural separation between classical
and nonclassical sets of measurements.

A longstanding question is to understand the relation
between the incompatibility of quantum measurements and
quantum nonlocality [4,5], another key feature of quantum
theory. When performing a set of well-chosen measurements
on a shared entangled state, two distant observers can observe
nonlocal correlations, i.e., which cannot be explained by a local
(i.e., classical) model. The question is then how the nonclas-
sicality of quantum measurements (i.e., their incompatibility)
relates to the nonclassicality of quantum correlations detected
via violation of a Bell inequality. While the observation of
nonlocality implies the use of incompatible measurements (for
both observers), the converse is not known. Specifically, the
question is the following. For any possible set of incompatible
measurements performed by one observer, can we always find
a shared entangled state and a set of measurements for the
second observer such that the resulting statistics will lead to
Bell inequality violation?

In the case of projective measurements, the answer is
positive, as proven many years ago [6]. For the case of POVMs,
however, the question is much more difficult. In the simplest
case of two dichotomic POVMs, Wolf et al. [7] proved that
incompatibility is equivalent to violation of the Clauser-Horne-
Shimony-Holt [8] inequality, confirming previous evidence
[9,10]. However, their proof cannot be extended to the general

case, as the joint measurability problem cannot be reduced
to a pair of POVMs only [2]. For instance, it is possible to
have a set of three POVMs which is incompatible, although
any pair (among the three) is jointly measurable [11,12].
Recently, a strong connection between joint measurability
and Einstein-Podolsky-Rosen (EPR) steering [13], a form of
quantum nonlocality strictly weaker than Bell nonlocality [14],
has been demonstrated [15–17], leading to interesting results
in both areas [18]. More generally, the connection between
measurement uncertainty and nonlocality in no-signaling
theories has been discussed [19–21].

In the present work we show that a set of incompatible
quantum measurements can admit a local-hidden-variable
(LHV) model. Specifically, we consider a bipartite Bell test
in which Alice performs a given nonjointly measurable set
of qubit POVMs. We then show that the statistics of such
an experiment, considering an arbitrary shared entangled
state and any possible dichotomic measurements performed
by Bob, can be exactly reproduced using only classical
shared resources. In other words, this set of incompatible
measurements, despite having some nonclassical feature, can
never lead to nonlocal correlations (considering dichotomic
measurements for Bob). A parallel can be drawn to the study,
initiated by Werner [22], of quantum states which are entangled
(hence nonclassical) but nevertheless admit a LHV model;

FIG. 1. The problem of classically simulating quantum corre-
lations has two facets. (a) Constructing a LHV model for a given
entangled quantum state ρ, considering arbitrary local measurements
for Alice and Bob. (b) Constructing a LHV model for a given set of
incompatible measurements M (performed by Alice), considering
arbitrary entangled states and arbitrary local measurements Bob.
While question (a) has been extensively studied, much less is known
about question (b), which is the focus of this work.
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see, e.g., [23–28] and [29] for a recent review. In contrast,
we show that a set of nonclassical measurements admits a
LHV model (see Fig. 1). Finally, we discuss the perspective
of extending our result to the most general Bell test, which
would thus demonstrate that incompatibility does not imply
Bell nonlocality in general.

II. PRELIMINARIES

We start by introducing concepts and notations. Consider
a set of N POVMs, given by operators Ma|x satisfying∑

a Ma|x = 1, Ma|x � 0 for x ∈ {1, . . . ,N}. This set is said to
be jointly measurable if there exists one common POVM, M�a ,
with outcomes �a = [ax=1,ax=2, . . . ,ax=N ], where ax gives the
outcome of measurement x, that is,

M�a � 0,
∑

�a
M�a = 1,

∑
�a\ax

M�a = Ma|x , (1)

where �a \ ax stands for the elements of �a except for ax .
Hence, all POVM elements Ma|x are recovered as marginals
of the joint observable M�a . Notably, joint measurability of
a set of POVMs does not imply that they commute [30].
Moreover, partial joint measurability does not imply full
joint measurability in general [2], contrary to commutation.
More generally, any partial compatibility configuration can be
realized in quantum theory [31].

The focus of this work is to connect the incompatibility
of a set of measurements to quantum nonlocality. We thus
consider a Bell scenario featuring two observers, Alice and
Bob, sharing an entangled state ρ. Alice and Bob perform local
measurements, represented by operators Ma|x and Mb|y . Here
x and y denote the choice of measurement settings, while a and
b denote the outcomes. The resulting probability distribution is
thus given by p(ab|xy) = tr(ρMa|x ⊗ Mb|y). This distribution
is local (in the sense of Bell) if it admits a decomposition of
the form

p(ab|xy) =
∫

dλq(λ)pA(a|x,λ)pB(b|y,λ). (2)

Here the local model consists of a classical (hidden) variable
λ, distributed according to density q(λ), and Alice’s and
Bob’s local response functions represented by the probability
distributions pA(a|x,λ) and pB(b|y,λ). On the contrary, if a
decomposition of the form (2) cannot be found, the distribution
p(ab|xy) is termed nonlocal and violates (at least) one Bell
inequality [4,5].

It is straightforward to show that if the set of Alice’s mea-
surements, MA = {Ma|x}, is jointly measurable, the resulting
distribution p(ab|xy) is local, for any possible entangled
state ρ and arbitrary measurements of Bob; see, e.g., [16].
Indeed, if the set MA is compatible, then Alice can recover all
statistics from one joint observable. Clearly, no Bell inequality
violation can be obtained if Alice always performs the same
measurement.

The main goal of this work is to discuss the converse prob-
lem. Specifically, given that the set MA is incompatible, what
can we say about the locality of the distribution p(ab|xy)?
Previous work [7] demonstrated a striking connection in the
simplest case, when MA consists of two dichotomic POVMs.
Any set MA that is not jointly measurable can be used to

demonstrate nonlocality. Whether this connection holds for
more general sets of POVMs has been an open question
since then. Here we show that for certain incompatible sets
of POVMs, the resulting distribution p(ab|xy) is always
local, considering arbitrary entangled states ρ and arbitrary
dichotomic measurements on Bob’s side [32].

III. MAIN RESULT

We consider the continuous set of dichotomic qubit
POVMs, Mη

A = {Mη

±|x̂}, with elements

M
η

±|�x = 1
2 (1 ± η x̂ · �σ ) (3)

with binary outcome a = ±1. Here x̂ is any vector on the
Bloch sphere denoting the measurement direction, and �σ =
(σ1,σ2,σ3) is the vector of Pauli matrices. Note that the setMη

A

features a parameter 0 � η � 1, representing basically the
purity of the POVM elements. For η = 1, all POVM elements
are projectors,

�±|x̂ = 1
2 (1 ± x̂ · �σ ). (4)

The set Mη=1
A is simply the set of all qubit projective

measurements and is thus clearly incompatible. For η = 0,
the set contains only the identity (thus clearly compatible).
In general the set Mη

A contains noisy measurements, with
elements simply given by M

η

±|x̂ = η�±|x̂ + (1 − η)1/2. In
fact, the set Mη

A is jointly measurable if and only if η � 1/2
[15,16].

Below we will show that there is η∗ > 1/2 such that the
set Mη∗

A is local in any Bell test, considering arbitrary states ρ

and arbitrary dichotomic measurements for Bob. Since Mη∗
A

is not jointly measurable, this shows that incompatibility is
not sufficient for Bell inequality violation in this case. Below
we give a full proof of the result, proceeding in several
steps.

The first step consists in exploiting the symmetries of the
problem in order to find the minimal set of states ρ we need
to consider. By linearity of the problem—the probabilities
p(ab|xy) are linear in ρ, and the set of local correlations is
convex, see, e.g., [5]—we can safely focus on pure states.
Indeed, if there was a mixed state ρ leading to Bell inequality
violation using measurements Mη∗

A , there would also be a pure
state doing so.

Next, given that Mη∗
A consists only of qubit measurements,

Alice’s subsystem can be considered to be a qubit. Moreover,
since we are free to choose convenient local reference frames
(i.e., we can apply any local unitaries on Alice and Bob’s
systems), the shared state ρ (of dimension 2 × d) can therefore
be expressed in the Schmidt form [1], i.e., ρ = |φθ 〉〈φθ |
with

|φθ 〉 = cos θ |00〉 + sin θ |11〉 (5)

and θ ∈ [0,π/4].
Now we introduce the measurements on Bob’s side. Since

Bob’s system is of rank 2, we can focus here on dichotomic
qubit measurements. As any such POVM can be viewed
as a projective qubit measurement followed by classical
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postprocessing [33], it is sufficient to discuss projective qubit
measurements �b|ŷ = (1 + b ŷ · �σ )/2, where ŷ is any vector
on the Bloch sphere and b = ±1.

Our goal is thus to show that there exists η∗ > 1/2 such
that the distribution

p(ab|xy) = tr
(|φθ 〉〈φθ |Mη∗

a|x̂ ⊗ �b|ŷ
)

(6)

is local for any measurement directions x̂ and ŷ, and any state
|φθ 〉. In other words we would like to construct a LHV model
for the incompatible set of measurements Mη∗

A . In order to do
so, we start by reformulating the problem by making use of
the following relation:

tr
(|φθ 〉〈φθ |Mη

a|x̂ ⊗ �b|ŷ
) = tr

(
ρ

η

θ �a|x̂ ⊗ �b|ŷ
)

(7)

where

ρ
η

θ = η|φθ 〉〈φθ | + (1 − η)12 ⊗ ρB (8)

and ρB = trA(|φθ 〉〈φθ |). Thus, the problem of constructing a
LHV model for Mη∗

A (considering dichotomic measurements
for Bob) is equivalent to the problem of constructing a
LHV model for the class of states ρ

η∗
θ (for all θ ∈ [0,π/4])

with arbitrary projective measurements for Alice and Bob.
Importantly, it must be shown that ρ

η∗
θ admits a LHV model

for all θ ∈ [0,π/4] and for a fixed η∗ > 1/2 (independent
of θ ).

The locality of the states ρ
η∗
θ must be discussed in two

steps for different ranges of the parameter θ . First consider the
range θ ∈ [0,π/4 − ε] with ε > 0. Recently, we presented a
sufficient condition for a two-qubit state to admit a LHV model
for projective measurements [28]. For states of the form ρ

η

θ , a
LHV model was shown to exist given that

cos2(2θ ) � 2η − 1

(2 − η)η3
. (9)

Hence for any θ , we get a corresponding value of η for which
the state is provably local; see Fig. 2. This clearly guarantees
that for θ ∈ [0,π/4 − ε], with ε > 0 fixed, we can find

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.5

0.6

0.7

0.8

0.9

1

θ

η

FIG. 2. Parameter region for which the state ρ
η

θ admits a LHV
model: first, below the green curve, as given by Eq. (9), and second,
below the blue dashed curve, as found via the SDP (14). The two
curves cross at η∗ � 0.515. It follows that the state ρ

η

θ is local for
η � η∗ and for all θ , i.e., in the shaded region, below the red horizontal
line.

η∗ > 1/2 such that ρ
η∗
θ is local. However, when θ gets closer

to π/4, this approach will not work. Indeed, there is no fixed
value η∗ > 1/2 for which locality can be guaranteed for any
θ ∈ [0,π/4], as can be seen by continuity of Eq. (9) or from
Fig. 2. We thus need to find a different approach for this
regime.

We proceed as follows. First note that for the case θ = π/4,
the state ρ

η

θ is simply a two-qubit Werner state,

ρ
μ

W = μ|φ+〉〈φ+| + (1 − μ)14 , (10)

with |φ+〉 = (|00〉 + |11〉)/√2. Coincidentally, such states
admit a LHV model for μ � μLHV � 0.66, considering
arbitrary projective measurements [24]. The case θ = π/4
is thus covered. Let us next discuss the case of θ in the
neighborhood of π/4. To do so we consider the problem
of decomposing the target state ρ

η

θ as a mixture of states
admitting a LHV model. Specifically, we demand for which
values of θ and η, we can find a convex combination of the
form

ρ
η

θ = αρ
μLHV

W + (1 − α)σ (11)

with 0 � α � 1. Here σ is an unspecified two-qubit state,
which we are free to choose. As long as σ admits a LHV
model, this implies that ρ

η

θ is local. In order to do so, we
simply ensure that

σ = ρ
η

θ − αρ
μLHV

W

1 − α
(12)

is a valid separable state. By setting α = 1
μLHV

η sin(2θ ), we
obtain a diagonal matrix σ (for all η and θ ). It is straightforward
to check that the eigenvalues of σ are positive when

η � μLHV

(1 + μLHV ) cot θ − μLHV

. (13)

By combining condition (9) and the above result, it follows
that the state ρ

η

θ admits a LHV model for any θ and for
η � η∗ � 0.503. Note that a better bound can be obtained
using numerical methods. Consider again the problem of
finding a decomposition of the form (11) with σ a separable
state. For fixed θ , the optimal decomposition can be found via
semidefinite programming (SDP):

max η

s.t. ρ
η

θ = αρ
μLHV

W + σ

σ � 0, σPT � 0,

Tr σ + α = 1, α � 0. (14)

Here σPT denotes the partial transpose [34] of σ . Verifying
that σPT is positive ensures here that σ is separable [35].
The result of this optimization procedure is shown in Fig. 2.
Combining again with condition (9) we get that ρ

η

θ admits a
LHV model for η � η∗ � 0.515 (for any θ ), for all projective
measurements for Alice and Bob.

We therefore conclude that in the range 1/2 < η∗ � 0.515,
the set of measurements Mη∗

A is incompatible and admits
a LHV model. Specifically, Mη∗

A can never lead to Bell
inequality violation, considering arbitrary shared entangled
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states and arbitrary dichotomic measurements performed by
the second observers.

Finally, it is worth mentioning that this result can be
straightforwardly extended to the case of a set containing only
a finite number of incompatible measurements. For instance,
we have checked that a set of 12 well-chosen POVMs in Mη

A

(chosen rather uniformly on the Bloch sphere) is incompatible
for η > 0.512 via standard SDP techniques [7]. However, this
set clearly admits a LHV model for η � 0.515.

It would be interesting to see if the result also holds in
the simplest case of a set of only three POVMs. Consider,
for instance, the three Pauli operators: σx , σy , and σz. Adding
noise as in Eq. (3), the resulting POVMs are pairwise jointly
measurable, but still not fully jointly measurable, in the range
1/

√
3 < η � 1/

√
2 [11,12]. Could such a set of three POVMs

admit a LHV model?

IV. DISCUSSION

We discussed the relation between measurement incom-
patibility and Bell nonlocality. Specifically, we showed that a
given set of incompatible qubit measurements can never lead
to Bell inequality violation, as it admits a LHV model. Our

construction covers the case of any possible shared entangled
state and all possible dichotomic measurements performed by
the second observer.

The main open question now is whether our result can be
extended to nondichotomic measurements on Bob’s side. If
possible, this would then prove that measurement incompati-
bility does not imply Bell nonlocality in general [36].

We believe that the prospects for extending our LHV model
for the set of measurements Mη

A to general measurements
on Bob’s side is promising. More precisely, following our
approach, this amounts to show that the states ρ

η

θ of Eq. (8)
(for a fixed η > 1/2 and all θ ) admit a LHV model, considering
arbitrary projective measurements for Alice and arbitrary
POVMs for Bob [37]. We conjecture that this is the case,
which is also supported by the fact that, so far, there is no
example of an entangled state admitting a LHV model for
projective measurements but not for POVMs.
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