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Estimation of the covariance matrix of macroscopic quantum states
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For systems analogous to a linear harmonic oscillator, the simplest way to characterize the state is by
a covariance matrix containing the symmetrically ordered moments of operators analogous to position and
momentum. We show that using Stokes-like detectors without direct access to either position or momentum, the
estimation of the covariance matrix of a macroscopic signal is still possible using interference with a classical
noisy and low-intensity reference. Such a detection technique will allow one to estimate macroscopic quantum
states of electromagnetic radiation without a coherent high-intensity local oscillator. It can be directly applied to
estimate the covariance matrix of macroscopically bright squeezed states of light.
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I. INTRODUCTION

Quantum measurement is the only way to obtain informa-
tion about quantum systems. In the ideal case, the measurement
corresponds to an observable of a quantum system [1]. A
complete set of incompatible observables then allows us to
reconstruct the density matrix of the state [2]. For systems
analogous to a linear harmonic oscillator, basic observables
are analogous to position and momentum [3]. A possible
characterization of the state based on these observables is by
the vector of mean values and the covariance matrix containing
symmetrically ordered second moments of the position and
momentum [4]. The covariance matrix allows us to determine
whether the state has squeezed quantum uncertainty lower than
that of the ground state in any linear combination of position
and momentum [5,6]. This is a direct witness of nonclassicality
of a quantum state (i.e., the state is incompatible with a mixture
of coherent states) [7]. Such nonclassical states have been
generated in quantum optics and exploited in many quantum
information and quantum metrology protocols. Even though
the covariance matrix does not completely characterize the
state in the general case (unlike the density matrix), it provides
sufficient information to completely ensure the security of
quantum key distribution with continuous variables [8–11]
and the high sensitivity of quantum metrology [12–16].

In quantum optics, homodyne detection is a way to directly
access in-phase and out-of-phase quadratures of fluctuating
electric field [17,18], equivalent to position and momentum
observables of light. This homodyne measurement mixes the
measured light with a local oscillator used as a reference. The
local oscillator is a low-noise classical coherent beam with a
large intensity, much larger than the measured optical signal.
This coherently amplifies the measured quantum light, makes
linear detection possible, and also provides a high-quality
phase reference for a phase-sensitive homodyne detector.
However, recent optical experiments with a macroscopically
bright squeezed vacuum [19–22] led to a new interesting
situation. These nonclassical states are so bright that it is
possible to directly measure them by ordinary linear intensity
detectors for macroscopic light without the necessity of any
amplification effect provided by the local oscillator. For the
standard homodyne measurement it would be necessary to
have a local oscillator as a reference that is even much brighter
than the signal [23], which could be impractical.

Instead, to measure these bright states, Stokes-like mea-
surements generalizing the homodyne detection including any
state as reference are considered [24–26]. In this situation the
linearization and the direct detection of quadratures does not
work anymore; tomographic methods should be used instead
to obtain the signal state from the measurement data provided
by a nonlinear detector. Note that there is a well-known
similar scenario in which both the signal and the reference
are weak [27–31]. The difference is, however, crucial: in that
case one can use photon counter detectors, which provide
the exact photon number distribution. But the photon number
resolving detectors are not suitable for macroscopic states
of light; hence in our case with intensity detectors only the
moments of the photon numbers are accessible, which means
that the complete density matrix in Fock state representation
cannot be estimated.

The Stokes operators correspond to the sum and difference
of photon numbers between the signal and the reference
modes coupled on a beam splitter. They have been extensively
used to measure and quantify the degree of polarization,
polarization squeezing, and entanglement [32–46]. The Stokes
operators are nonlinear (quadratic) functions of the position
and momentum operators of these two general modes. The
reference mode in this Stokes-like measurement can simply be
considered as another classical state (represented by a mixture
of coherent states), which classically interferes with the signal
mode. Identifying the state of the signal modes from Stokes
operator measurements is generally challenging due to their
nonlinearity. The Stokes operator measurement approaches
ideal homodyne detection only if a large-amplitude coherent
state is injected to the probe mode [47–49]. On the other hand,
when the independent reference mode has vanishing mean
values in any linear combination of position and momentum,
it is not clear whether any or what kind of information about
the covariance matrix can be estimated.

In this paper, we propose a method that efficiently estimates
the covariance matrix of macroscopic quantum states from the
Stokes operator measurements using only classical, noisy, and
low-intensity reference beams. We identify a nonequilibrium
character of such a reference as a necessary and sufficient
condition for estimating the covariance matrix. The method
can be directly applied to current experiments with bright
squeezed vacuum [19–21]. This measurement strategy sub-
stantially relaxes the requirements for the reference addressing
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any SU(2) quantum measurement expressed in the Schwinger
representation [50]. For example, it can be extended to the spin
squeezing of atomic ensembles [51–55].

The article is organized as follows. In Sec. II we describe
a minimal measurement scheme needed for the estimation of
the covariance matrix. In Sec. III we obtain an estimation
procedure for the general case and investigate its properties.
In Sec. IV we examine the possibilities with nondisplaced
references, while in Sec. V we summarize our results.

II. STOKES-LIKE MEASUREMENTS

Let us consider the simplest case: there is an independent
signal (S) and a reference or ancilla (R) state. But in contrast
to the standard homodyne measurement, the signal is a
macroscopic quantum state, that is, its energy is so high that it
can be directly measured by a macroscopic detector (e.g., with
a PIN diode used in [19–21]). By approaching the macroscopic
regime, the more and more powerful signals would require the
use of extremely strong references, which can be challenging
in practice. Therefore the focus of this work is to examine
a scenario in which the reference has a magnitude of energy
similar to or even lower than that of the signal. Also, instead of
weak coherent states we examine arbitrary states as reference,
that is, ones that can have zero or close to zero mean, or they
may not be necessarily pure.

The measurement setup for the homodyne measurement is
generalized to a Stokes measurement (see Fig. 1). The signal
and the reference interfere at the beam splitter and the detectors
give photocurrents proportional to the photon number averaged
over coherence time and volume.

Without a beam splitter (T = 1), we can access only the
normally ordered moments of photon numbers for the signal
and the reference. Their sum and difference are proportional

to the Stokes operators (S0,S1) = a
†
SaS ± a

†
RaR = x2

S+p2
S−2

4 ±
x2

R+p2
R−2

4 , where ai,a
†
i (i ∈ {R,S}) are the annihilation and

creation operators, and xi , pi are the position and momentum
operators of the signal and the reference modes. These satisfy
the commutation relations [ai,a

†
j ] = δij and [xi,pj ] = 2iδij .

We want to characterize the signal state, and for that purpose
we estimate the mean vector mS and the covariance matrix VS

FIG. 1. Schematic figure of the Stokes-like measurement with an
uncorrelated classical, noisy, and low-intensity reference interfering
with the macroscopically bright signal. T stands for the transmittance
of a beam splitter, ϕ is a phase shift between the signal and the
reference, and I1 and I2 are photocurrents from standard intensity
detectors.

of the signal,

mS = (〈xS〉,〈pS〉), (1)

VS =
( 〈

x2
S

〉 − 〈xS〉2 〈xSpS〉s − 〈xS〉〈pS〉
〈xSpS〉s − 〈xS〉〈pS〉

〈
p2

S

〉 − 〈pS〉2

)
, (2)

where 〈xSpS〉s = (〈xSpS〉 + 〈pSxS〉)/2. Clearly, even all mo-
ments of photon numbers of the signal are insufficient to
estimate these parameters; therefore we have to use an
interference between the signal and the reference.

For a beam splitter with a transmittance of T = 0.5 we
implement the measurement of the Stokes operator

S2 = a
†
SaR + a

†
RaS = 1

2 (xSxR + pSpR). (3)

Note that 〈S2〉, 〈S2
2 〉 are functions of the first and second

moments of the quadrature variables of the signal and the
reference. Hence, by applying the inverse of these functions
to the measurement outcomes it is possible to characterize
the signal state. But even then we cannot access the off-
diagonal elements of the covariance matrix. Thus, we apply
an additional phase shift (ϕ) to the reference to obtain the
sufficiently generalized operators

S2(ϕ) = 1
2

(
xSx

ϕ

R + pSp
ϕ

R

)
, (4)

where x
ϕ

R and p
ϕ

R are the quadrature variables of the reference
after the phase shift. This operator is directly proportional to
the difference of the two photocurrents (I1 − I2) depicted in
Fig. 1. We should also remark that additional values of T

can be described as a combination of the cases with T = 0.5
and T = 1; therefore these would not improve the situation
qualitatively.

III. STATE ESTIMATION IN GENERAL

Let us assume that we have two independent, general
Gaussian states (Fig. 2) for the signal and the reference (using
subscripts ∗S and ∗R , respectively).

If the reference is in a thermal state, then our estimation
will be phase insensitive. Thus, in order to introduce an
asymmetry, we apply a squeezing (parametrized by q,α)
and/or a displacement (parametrized by d,β) to a thermal
state (parametrized by r) to obtain classical states out of
thermal equilibrium, as depicted in Fig. 2. For the sake of
simplicity we investigate the case when the directions of
squeezing and displacement in the reference coincide (if both
are present), and we use this direction as a phase reference
(that is, βR = αR = 0). In the further discussion we assume
that we know the other parameters (bR,cR,dR) of the reference,
i.e., we already performed some a priori calibration.

A. General estimation method

For state reconstruction we will use only the first and second
moments of S2(ϕ) from (4). To obtain sufficient information,
one should perform measurements in three different directions.
For the sake of simplicity we will use unaltered (ϕ = 0),
orthogonal (ϕ = π/2), and diagonal (ϕ = π/4) references.
Note that S2(0) coincides with Stokes operator S2, S2(π/2)
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β

α

FIG. 2. The used parametrization of Gaussian states. One can
get an arbitrary Gaussian state from a thermal state (with a proper
standard deviation r � 1) using a squeezing and displacement. The
shape of the Gaussian state is defined by squeezing: by using a
quadrature squeezing in direction α with a magnitude of q � 1,
we get the ellipse of the covariance matrix. [Note that b = rq and
c = r/q are the square roots of the eigenvalues of the covariance
matrix (b � c) and α defines its eigendirection.] The displacement
of the ellipse is given by its direction β and its magnitude d .
[Note that this corresponds to the mean of the Gaussian state:
〈x〉 = d cos β,〈p〉 = d sin β).]

coincides with Stokes operator S3, but S2(π/4) [that estimates
cov (xS,pS)] is not a standard Stokes operator.

The estimation of the displacement of the signal is straight-
forward. If we leave the reference unaltered (ϕ = 0), we get
the mean of the x quadrature directly:

〈S2(0)〉 = 〈xS〉dR/2 + 〈pS〉0 ⇒ 〈xS〉 = 2〈S2(0)〉
dR

. (5)

Similarly, if we apply a phase shift of ϕ = π/2 to the reference,
we obtain the mean of the p quadrature:

〈S2(π/2)〉 = 〈pS〉dR/2 ⇒ 〈pS〉 = 2〈S2(π/2)〉
dR

. (6)

It is easy to see that the necessary and sufficient criteria for
the feasibility of these estimates is dR �= 0. Also note that for
other directions of the reference (ϕ �= 0,ϕ �= π/2), the value
of 〈S2〉 can be calculated as a linear combination of the above
equations.

The estimation of the variances is a little more complicated.
We have two linear equations for the second moments:〈

S2
2 (0)

〉 = 〈
x2

S

〉(
b2

R + d2
R

)
/4 + 〈

p2
S

〉
c2
R/4 + 1

2 (7)

and 〈
S2

2 (π/2)
〉 = 〈

x2
S

〉
c2
R/4 + 〈

p2
S

〉(
b2

R + d2
R

)
/4 + 1

2 . (8)

We can solve these equations uniquely and obtain the values
of 〈x2

S〉 and 〈p2
S〉. From these second moments one can

easily calculate the variances: Var (xS) = 〈x2
S〉 − 〈xS〉2 and

Var (pS) = 〈p2
S〉 − 〈pS〉2.

Finally, the covariance can be calculated from the sec-
ond moment using a diagonal measurement (ϕ = π/4). We

have 〈
S2

2 (π/4)
〉 = 1

2 + 〈
x2

S

〉(
d2

R + b2
R + c2

R

)
/8

+ 〈
p2

S

〉(
d2

R + b2
R + c2

R

)
/8

+〈xSpS〉s
(
d2

R + b2
R − c2

R

)
/4. (9)

Since we already know 〈x2
S〉 and 〈p2

S〉 we can calculate 〈xSpS〉s
easily, and then we get the covariance by cov (xS,pS) =
〈xSpS〉s − 〈xS〉〈pS〉.

Note that the above method in principle coincides with
one of the standard estimation methods using homodyne
measurement. In that case we have bR = cR = 1 and dR � 1,
so all terms which do not contain dR will be negligible. Thus,
〈S2

2 (ϕ)〉 will define approximately the second moment of the
signal in the direction of the reference (ϕ).

B. Alternative parametrization

To gain a better understanding of the estimation using the
structure of Stokes measurements, we can use the eigende-
composition of the covariance matrix (b, c, and α) instead of
its elements [Var (x),Var (p) and cov (x,p)]. The connection
between the two parametrizations can be described by the
following equations:

Var (x) = b2 cos2(α) + c2 sin2(α), (10)

Var (p) = c2 cos2(α) + b2 cos2(α), (11)

cov (x,p) = (b2 − c2) cos(α) sin(α). (12)

In this case the second moment of S2(ϕ) will have the
following form:〈

S2
2 (ϕ)

〉 = 1
8

(
d2

R + b2
R + c2

R

)(
d2

S + b2
S + c2

S

)
+ 1

8

(
d2

R + b2
R − c2

R

)(
b2

S − c2
S

)
cos(2αS − 2ϕ)

+ 1
8

(
d2

R + b2
R − c2

R

)
d2

S cos(2βS − 2ϕ). (13)

That is, it consists of three parts:
(1) the total energy of the signal,
(2) the asymmetry induced by the shape of the signal, and
(3) the asymmetry induced by the displacement of the

signal.
From the first moments we can calculate the parameters dS

and βS . Using these the last term becomes known and we have〈
S2

2 (ϕ)
〉 = u

(
b2

S + c2
S

) + v
(
b2

S − c2
S

)
cos(2αS − 2ϕ) + w, (14)

where u = 1
8 (d2

R + b2
R + c2

R), v = 1
8 (d2

R + b2
R − c2

R) and w is
a constant depending on the reference, dS and βS .

The total energy is directly accessible from 〈S0〉, or
equivalently, by using two orthogonal references:

〈
S2

2 (0)
〉 = u

(
b2

S + c2
S

) + v
(
b2

S − c2
S

)
cos(2αS) + w, (15)〈

S2
2 (π/2)

〉 = u
(
b2

S + c2
S

) − v
(
b2

S − c2
S

)
cos(2αS) + w. (16)

The estimation of the asymmetry of the ellipse (b2
S − c2

S)
and its direction [cos(2αS)] only appear as a product with
each other. So to access these parameters separately, we need
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an additional equation. For simplicity we will use a diagonal
reference:〈

S2
2 (π/4)

〉 = u
(
b2

S + c2
S

) + v
(
b2

S − c2
S

)
sin(2αS) + w, (17)

but in principle any other angle (0 < ϕ < π/2) is equally
adequate.

From Eqs. (15)–(17) one can already calculate the parame-
ters of the signal. The constant u is always greater than zero, so
the necessary and sufficient criterion for the feasibility of these
estimates is v �= 0. This holds if the reference is not thermal.
Note that 〈S2

2 (ϕ)〉 in Eq. (14) is a linear transformation of a
cosine function, so it has three parameters. Equations (15)–(17)
uniquely characterize this function, that is, including a fourth
angle for reference would not give any additional information.
One of the equations from (15) and (16) is interchangeable
with

〈S0〉 = b2
S + c2

S + d2
S

4
+ b2

R + c2
R + d2

R

4
− 1. (18)

Only the moments 〈S0〉,〈S2(ϕ)〉,〈S2
2 (ϕ)〉 can be described as the

first and second moments of the signal, and based on the above
discussion we can see that there are at most five independent
equations among them for different values of ϕ. A general
Gaussian state has also five parameters, so the proposed state
estimation method is tight in this sense.

C. Properties of the estimation

To quantify the quality of the estimation, we use the mean-
squared error (MSE):

MSEN (θ̂) = 〈(θ̂ − θ )2〉, (19)

where θ is an estimated parameter (it can be dS , bS , cS , αS ,
βS), θ̂ is the estimator of this parameter, and N is the number
of used signal states. If the estimation is feasible, we have
an asymptotic behavior of MSEN (θ̂) ∼ 1/N , multiplied by a
coefficient which depends on the parameters of the signal and
the reference. The signal is inaccessible, so in the following we
will investigate how the MSE depends on the parameters of the
reference. Since our scheme has many parameters which are
the variables in the formula of the MSE, the analytic formula
is quite lengthy and not very informative. So instead of using
that, we simply plot the empirical MSE from 104 numerical
simulations of the estimation process. Let us also note that
our estimator can provide a nonphysical state, but for a large
number of measurement the probability of this event decreases
exponentially, so using restrictions on the estimator would
have a negligible effect on MSE.

To characterize nonequilibrium features of the reference,
we introduce the following nonequilibrium energy ratio
(NER):

� = ntotal − nthermal

nthermal
. (20)

This quantity describes how the energy added to the symmet-
rical reference (to move it away from equilibrium) relates to
the energy of the original, symmetrical state. For a reference
that is only displaced (q = 1) we have �disp = 1

2
d2

r2 , while for a
reference that is only squeezed (d = 0) we have �sq = 1

2 (q −
1/q)2. Note that for a squeezed and displaced state we have

FIG. 3. MSE of the state estimation of a general signal as a
function of the displacement ratio (left figure) and NER (right figure)
of the reference. Cyan (light) lines correspond to the estimation of
parameter b, orange (medium) to parameter c, and purple (dark) to
parameter d . In the left figure we used � = 1. In the right figure
we used both a displaced thermal reference (dashed lines, γ = 1)
and displaced+squeezed thermal reference (dotted lines, γ = 0.5).
The MSE is calculated using N = 105 Gaussian states and signal
parameters: bS = 237,cS = 86,αS = 0.7,dS = 158,βS = 0.2. Note
that the figures look qualitatively the same for different parameters.

� = �disp + �sq, that is, we can define a displacement ratio:
γ = �disp/� (0 � γ � 1), which describes how much of the
nonequilibrium characteristic comes from the displacement.
This way the triplet of (rR,�,γ ) parametrizes the reference
states uniquely.

Our first observation is that the MSE of the estimators
does not depend on rR . The dependence on the displacement
ratio can be seen in the left part of Fig. 3. If we only apply
squeezing to the reference we cannot estimate the signal,
the MSE diverges as γ → 0. However, if there is also an
arbitrary small displacement present in the reference (γ > 0),
then from the asymptotic behavior of the MSE it follows that
the error converges to zero (i.e., our estimations converge to
the real parameters) as the number of used Gaussian states
(N ) converges to infinity. The dependence on γ is not trivial,
usually a purely displaced reference (γ=1) is the best scenario,
but adding some squeezing to the reference can improve the
estimation.

This effect is also visible in the right subfigure of Fig. 3,
where at estimating parameter b and c the squeezed+displaced
(dotted lines) reference outperforms the displaced reference
(dashed lines) for small NER (i.e., when the reference is close
to a thermal state). More importantly, we can also conclude
that the estimation of the signal is possible even for an arbitrary
small deviation of the Gaussian reference from thermal equi-
librium. If NER (�) increases the estimation always becomes
more efficient. The displaced reference always saturates at
the lowest level, providing the best estimation for strongly
asymmetrical references. (This explains the popularity of using
coherent states as a strong local oscillator.) However, this
saturation happens at a relatively low level of asymmetry
(� ∼ 10–100). That is, from the estimation point of view,
there is no principal need to use the standard strong coherent
reference (e.g., � ∼ 105). The macroscopic signal in itself
provides enough energy for the detectors, so even with a
weak reference with a little asymmetry a precise estimation
is achievable. Note that we plot only bS , cS , and dS to avoid
too many lines in the graphs, the estimation of αS shows strong
similarities with the estimation of bS and cS , and the estimation
of βS is similar to dS .
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FIG. 4. Estimates of signal parameters as a function of the number
of measurements. In the left figure the cyan (light) lines correspond
to the estimates of parameter b, orange (medium) to parameter c,
and purple (dark) to parameter d . In the right figure the red (dark)
lines correspond to the estimates of parameter α and green (light) to
parameter β. We used both displaced thermal reference (dashed lines,
γ = 1) and displaced+squeezed thermal reference (dotted lines, γ =
0.5) and compared the estimates with the real values of the parameter
(solid lines). The estimates are calculated using � = 10 and signal
parameters: bS = 237,cS = 86,αS = 0.7,dS = 158,βS = 0.2.

D. Robustness of the estimation

From the previous section we know that the obtained
estimators are always asymptotically unbiased if the reference
is precisely known. In the following we will investigate
how this changes when the reference is not an ideal, known
Gaussian state.

The first possibility is that the reference is not fixed but
rather fluctuates around a value. In this case the reference
will be the superposition of the possible states, which, in
general, will not produce a Gaussian state. However, this is not
generally a problem because the used estimators do not rely
on the Gaussianity of the states. We use the first and second
moments of the reference, and if we have precise estimates
of those our method always produces asymptotically unbiased
estimates, even in this non-Gaussian scenario.

That is, we only get an imprecise estimation of the signal
state if the moments of the reference are imprecise. A bias in
the reference direction (i.e., αR = βR = ε �= 0) simply results
in the same bias in the estimation of the signal direction, i.e., in
αS and βS , and would not influence the nonangle parameters
(bS,cS,dS). The opposite statement is also true, that is, the
bias in nonangle parameters will result in an error only in the
nonangle parameters of the signal states. However, in contrast
to the angle parameters, this relation is not straightforward due
to the nonlinearity of the nonangle parameter estimators.

The most common example for this bias appears when we
have a finite number of measurements. In this case even if
the expected values of the moments are known, for an actual
realization the moments will be different. This will result in
a biased estimation of the signal state, but we can see from
Fig. 4 that for about 104 − 105 measurements the difference
vanishes. By this natural example, we clearly demonstrate
that the problem of reference parameter accuracy becomes
negligible even for a relatively low number of measurements.

IV. STATE ESTIMATION WITH SQUEEZED THERMAL
REFERENCE

We have seen that state tomography is feasible in general
only in the case of a displaced reference (dR > 0), so in

FIG. 5. Different variants of the signal state with the same
second moments; therefore they are indistinguishable by using only
a squeezed reference.

the following we will investigate the case of a nondisplaced
reference (dR = 0).

A. Possibilities in the general case

A nondisplaced squeezed reference has zero mean in
quadratures (i.e., 〈xϕ

R〉 = 〈pϕ

R〉 = 0), and therefore the mean
of operator S2 will be zero:

〈S2(ϕ)〉 = 1/2〈xS〉〈xϕ

R〉 + 1/2〈pS〉〈pϕ

R〉 = 0. (21)

So one can use only 〈S0〉 and 〈S2
2 (ϕ)〉 for state estimation,

which results in three independent equations. That is, with a
squeezed reference the estimation of the signal is not possible
in general. Since 〈S0〉 and 〈S2

2 (ϕ)〉 are functions of the second
moments, one cannot distinguish, for example, a thermal state
from a displaced squeezed state with the same second moments
(see Fig. 5).

By assuming that the state is Gaussian we can use also
〈S2

0 〉 for estimation, and with its help we can discriminate, for
example, the two cases shown in Fig. 5. Nevertheless, even
in that case the estimation is not unique. For example, let
us consider a displaced thermal state as a signal: bS = cS =
2, 〈xS〉 = 3, and 〈pS〉 = 0. The values of 〈S2

2 (ϕ)〉 and 〈S2
0〉

will be the same for bS ≈ 1.512, cS ≈ 2.391, 〈xS〉 ≈ 2.945,
〈pS〉 ≈ 0.571, and αS ≈ 4.023. That is, even using 〈S2

0 〉 there
are states which are indistinguishable. However, one can see
that the values of b2

S + c2
S and d2

S = 〈xS〉2 + 〈pS〉2 are the same
for all the possibilities. By these measurements we can at
least discriminate the energy coming from the displacement
and from the internal variance of the signal. But we cannot
determine the internal asymmetry (ratio of bS and cS) of the
source (actually it could be anything within the given energy
constraint).

B. State estimation in special cases

We showed that the general state estimation is not feasible
for a nondisplaced reference; however, state tomography is
viable in some special cases.

If we know that the signal is only squeezed (i.e., dS = 0),
even using an only squeezed reference does not present any
difficulties, since we do not need to estimate the first moments.
And as it is mentioned in the previous section, the estimation of
the second moments is feasible if the reference is not thermal.
There is not much difference compared to a general signal (left
subfigure of Fig. 6), because knowing the displacement is not
a substantial advantage (since estimating the second moments
is generally more difficult than estimating the first moments).
But since we do not need to estimate the displacement, we
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FIG. 6. MSE of the state estimation of a nondisplaced squeezed
signal (left figure) and a symmetrical displaced signal (right figure) as
a function of the NER of the reference. Cyan (light) lines correspond
to the estimation of parameter b, orange (medium) to parameter c, and
purple (dark) to parameter d . We used a displaced thermal reference
(dashed lines, γ = 1), displaced+squeezed thermal reference (dotted
lines, γ = 0.5), and classical squeezed thermal reference (solid lines,
γ = 0). The MSE is calculated using N = 105 Gaussian states. For
the squeezed state we have bS = 237,cS = 86,αS = 0.7,dS = 0, and
for the displaced state we have bS = cS = 86,dS = 158,βS = 0.2.

can perform an estimation with a purely squeezed (γ = 0)
reference, too. This will be the best option in the case of a
small asymmetry of the reference, while the worst in the case
of a large asymmetry.

If we know that the signal is only displaced (i.e., bS = cS =
rS), Eq. (13) reduces to〈

S2
2 (ϕ)

〉 = 1
8

(
b2

R + c2
R

)(
d2

S + 2r2
S

)
+ 1

8

(
b2

R − c2
R

)
d2

S cos(2βS − 2ϕ), (22)

which has the same structure as Eq. (14) with b2
S + c2

S ↔
d2

S + 2r2
S , b2

S − c2
S ↔ d2

S , and αS ↔ βS , and therefore it can
be solved similarly. Once again, the estimation is feasible if
bR �= cR . Knowing that the covariance matrix is a multiple
of the identity largely improves its estimation (right subfigure
of Fig. 6). Interestingly, in this case we can even estimate
the displacement with a squeezed reference. The efficiency of
the estimators is worse compared to the displaced reference.
The reason is simple: for the displaced reference one can
obtain the displacement of the signal directly from the first
moments, while for the squeezed reference we can only obtain
it indirectly from the second moments.

If the reference is symmetrical (bR = cR = rR and dR =
0) all estimates diverge, that is, with a thermal reference we
cannot estimate the parameters even in these special cases. In
this case 〈S2

2 (ϕ)〉 will be equivalent for any ϕ with 〈S0〉, so we
can only access the energy of the signal:

〈S0〉 = b2
S + c2

S + d2
S

4
+ r2

R

2
− 1. (23)

However, if we know that the signal is Gaussian, we can
use higher moments as well. The perfect candidate for that
is S2

0 , which is still the second moment of the measurement
results; hence it converges relatively quickly to its mean. And
its mean consists of fourth moments of quadratures (beside the
second moments), which in the Gaussian case can be described
as functions of second moments. This gives us an additional
equation, and with that we can solve some special cases of
estimation problems.

If the signal is a squeezed, nondisplaced Gaussian state,
then〈
S2

0

〉 = 3b4
S + 2b2

Sc
2
S + 3c4

S

16
+ (

b2
S + c2

S

)(
r2
R − 2

)
/4 + f (rR).

(24)

Combining this with Eq. (23) (using also dS = 0) one can
calculate the values of bS and cS .

We have for a displaced, symmetrical Gaussian signal

〈
S2

0

〉 = d4
S + 8d2

Sr2
S + 8r4

S

16
+ (

d2
S + 2r2

S

)(
r2
R − 2

)
/4 + f (rR),

(25)

and once again combining with Eq. (23) (using bS = cS = rS),
the values of rS and dS can be calculated.

Note that we determined in the above cases the magnitude
of squeezing and the magnitude of displacement, but not
their direction. That is not surprising since the reference is
symmetrical, so the measurement outcomes show the same
statistics for any angle. Note that even if the states are not
Gaussian, by using a multicopy interference Gaussification
process, they can get arbitrarily close to Gaussian [56].

V. CONCLUSION AND DISCUSSION

We investigated the case of measuring a macroscopic signal.
In this case the standard homodyne measurement would need
an extremely strong local oscillator, but in principle a classical,
noisy, and low-intensity reference is sufficient. It was not
known what are the minimal conditions for a successful
estimation of the covariance matrix in this situation. Our work
shows that if there is at least a small displacement from the
thermal equilibrium in the reference, a full tomography of
the signal is always possible. The quality of the estimation
highly depends on the properties of the reference state, mainly
on its nonequilibrium energy ratio (NER): one can obtain
a better estimation if the reference is further away from
thermal equilibrium. The efficiency saturates at a low level
of asymmetry, so there is no fundamental need to use strong
local oscillators, even if such are available. If the reference
is really close to a thermal state, then we can still reasonably
estimate the signal; we should only use more Gaussian states
for estimation. There are also differences in behavior for
different types of nonequilibrium nature of the reference. The
displaced reference in most cases gives the best or close-to-best
performance, but some additional squeezing of the reference
can even improve that.

The current paper investigates only the existence and
main characteristics of such a scheme, so a possible future
direction is to improve these results with more elaborate
techniques. The proposed detection technique allows one to
detect macroscopic quantum states of light without a coherent
local oscillator, which can lead to interesting applications
in quantum communication and metrology. One such direct
application is continuous-variable quantum key distribution
with macroscopic squeezed states of radiation [19–22], where
the estimation of the covariance matrix is necessary to obtain a
secure key rate [10]. Another possible application is to estimate
the spin squeezing of atomic ensembles [53–55] by using
similar techniques.
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[42] M. Stobinska, F. Töppel, P. Sekatski, and M. V. Chekhova, Phys.
Rev. A 86, 022323 (2012).

[43] P. de la Hoz, A. B. Klimov, G. Björk, Y.-H. Kim, C. Müller, Ch.
Marquardt, G. Leuchs, and L. L. Sánchez-Soto, Phys. Rev. A
88, 063803 (2013).

[44] Ch. Kothe, L. S. Madsen, U. L. Andersen, and G. Björk, Phys.
Rev. A 87, 043814 (2013).

[45] G. Björk, H. de Guise, A. B. Klimov, P. de la Hoz, and L. L.
Sánchez-Soto, Phys. Rev. A 90, 013830 (2014).

[46] G. Björk, A. B. Klimov, P. de la Hoz, M. Grassl, G. Leuchs, and
L. L. Sánchez-Soto, Phys. Rev. A 92, 031801(R) (2015).

[47] Ch. Marquardt, J. Heersink, R. Dong, M. V. Chekhova, A. B.
Klimov, L. L. Sánchez-Soto, U. L. Andersen, and G. Leuchs,
Phys. Rev. Lett. 99, 220401 (2007).

[48] A. B. Klimov, G. Björk, J. Söderholm, L. S. Madsen, M.
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