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Method for constructing shortcuts to adiabaticity by a substitute of counterdiabatic driving terms
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We propose an efficient method to construct shortcuts to adiabaticity through designing a substitute Hamiltonian
to try to avoid the defect in which the speed-up protocols’ Hamiltonian may involve terms which are difficult to
realize in practice. We show that as long as the counterdiabatic coupling terms—even only some of them—have
been nullified by the additional Hamiltonian, the corresponding shortcuts to the adiabatic process could be
constructed and the adiabatic process would be sped up. As an application example, we apply this method to
the popular Landau-Zener model for the realization of fast population inversion. The results show that in both
Hermitian and non-Hermitian systems, we can design different additional Hamiltonians to replace the traditional
counterdiabatic driving Hamiltonian to speed up the process. This method provides many choices for designing
additional terms of the Hamiltonian such that one can choose a realizable model in practice.
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I. INTRODUCTION

Since Demirplack and Rice [1] and Berry [2] proposed that
the addition of a suitable “counterdiabatic” (CD) term HCD to
an original time-dependent Hamiltonian H0(t) can suppress
transitions between different time-dependent instantaneous
eigenbases of H0(t), an emergent field named “shortcuts to
adiabaticity” (STA) [3,4] which aims at designing nonadia-
batic protocols to speed up the quantum adiabatic process
has been brought to our attention and has attracted much
interest [4–14]. To find shortcuts to adiabatic dynamics, several
formal solutions which are in fact strongly related or even
potentially equivalent to each other have been proposed; for
instance, “counterdiabatic driving” [3,5,6] (also known as
“transitionless quantum driving”) and invariant-based inverse
engineering [6,7]. After years of development, the theory
of shortcuts to adiabatic dynamics has gradually become
consummate, and STA has been applied in a wide range
of fields including “fast cold atom,” “fast ion transport,”
“fast expansions,” “fast wave-packet splitting,” “fast quantum
information processing,” and so on [4,7–24].

Nevertheless, a problem has always haunted accelerating
adiabatic protocols: the structure or the values of the shortcut-
driving Hamiltonian might not exist in practice. It is well
known that if the Hamiltonian is hard or even impossible
to realize in practice, the protocols will be useless. In view
of that, several ingenious methods that aim at amending
the problematic terms of the shortcut-driving Hamiltonian to
satisfy the experimental requirements have been proposed in
recent years [25–31]. For example, Ibáñez et al. [29] examined
the limitations and capabilities of superadiabatic iterations
to produce a sequence of STA in 2013. They calculated the
additional term by an iteration method until the additional
term was realizable in practice, hence the problem could be
avoided. Later, in 2014, Martı́nez-Garaot et al. [26] used the
dynamical symmetry of the Hamiltonian to find, by means
of Lie transforms, alternative Hamiltonians that achieved the
same goals as the speed-up protocols did, without directly
using the CD Hamiltonian. These ideas [29–31] inspire us that
finding some substitute Hamiltonians for the shortcut-driving
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Hamiltonian could be an efficient way to overcome the
problem that the speed-up protocols’ Hamiltonian may involve
terms which are difficult to realize in practice. Therefore, in
this paper, by using reverse thinking, we have come up with
an idea to design an additional Hamiltonian which can also
nullify the nonadiabatic coupling term to achieve the same
goals as the shortcut-driving Hamiltonian does. Different from
the previous works in which the additional term is calculated
from the original Hamiltonian, we aim at finding different
ways to nullify the nonadiabatic coupling and ensure the
shortcut-driving Hamiltonian can be realized in practice.

II. THE SUBSTITUTE OF COUNTERDIABATIC
DRIVING TERMS

The starting point is a time-dependent Hamiltonian H0(t)
with N eigenstates {|φn(t)〉},

H0(t)|φn(t)〉 = En(t)|φn(t)〉. (1)

The instantaneous eigenstates satisfy

〈φn(t)|φm(t)〉 = δnm, (2)

and the closure relation∑
n

|φn(t)〉〈φn(t)| = I. (3)

The dynamics of a system governed by Hamiltonian H0(t)
is described by the Schrödinger equation

i�∂t |ψ(t)〉 = H0(t)|ψ(t)〉. (4)

In general, |ψ(t)〉 is a column vector, and we can express it as
|ψ(t)〉 = ∑

n an(t)|μn〉 = [a1(t),a2(t), . . . ,an(t)]t , where the
superscript t denotes the transpose, {an(t)} are the probability
amplitudes of all the bare (diabatic) states of the system, and
{|μn〉} are the basis vectors satisfying∑

n

|μn〉〈μn| = 1, 〈μm|μn〉 = δmn, |μm〉〈μn| = σmn, (5)

where σmn is a matrix in which the matrix elements are all zero,
except the mth line and the nth column are 1. To study adiabatic
passage, we can transform the system into another picture
whose bare states are the adiabatic basis (the instantaneous
eigenstates of H0) with the rotation matrix R(t) which will be
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introduced in the following. In this picture, the dynamics of
the system is also described by Schrödinger equation

i�∂t |ψe(t)〉 = He
0 (t)|ψe(t)〉, (6)

where the superscript e denotes the system is in the “eigen
picture,” and |ψe(t)〉 = [c1(t),c2(t), . . . ,cn(t)]t .

To transform the quantum system from the Schrödinger
picture to the eigen picture, the transformation equation is
expressed as |ψe(t)〉 = R†|ψ(t)〉, or in the form of a matrix,⎛

⎜⎝
c1

c2
...

⎞
⎟⎠ =

⎛
⎜⎝

S11 S12 · · ·
S21 S22 · · ·

...
...

...

⎞
⎟⎠

⎛
⎜⎝

a1

a2
...

⎞
⎟⎠, (7)

where Smn = 〈φm|μn〉 and

R†(t) =

⎛
⎜⎝

S11 S12 · · ·
S21 S22 · · ·

...
...

...

⎞
⎟⎠. (8)

We can also express the rotation matrix R†(t) as

R† =
∑
m,n

σmn〈φm|μn〉

=
∑
m,n

|μm〉〈μn|〈φm|μn〉 =
∑
m

|μm〉〈φm|. (9)

Adding this relationship to Eqs. (4) and (6), we obtain

He
0 (t) = R†H0R − i�R†Ṙ, (10)

where the overdot means time derivative and

R†H0R =
∑

n

σnnEn (11)

is the diagonalization matrix for Hamiltonian H0(t), and

i�R†Ṙ = i�
∑

n

σnn〈φn(t)|φ̇n(t)〉

+ i�
∑
n�=m

σnm〈φn(t)|φ̇m(t)〉. (12)

As can be seen, the integral of the first term in Eq. (12)
is just the adiabatic phase, and the second term is the
nonadiabatic coupling. If |�〈φn(t)|φ̇m(t)〉| � |En − Em|, then
the transitions in the instantaneous eigenbasis are suppressed
and the evolution is adiabatic. That is what is called the
adiabatic condition, which limits the speed. To construct
shortcuts to speed up the dynamics, a convenient way is
by adding a Hamiltonian He

1 = i�R†Ṙ to counteract the
nonadiabatic coupling. Returning to the Schrödinger picture,

H1 = RHe
1 R† = i�ṘR† = i�

∑
n

|φ̇n(t)〉〈φn(t)|. (13)

That is, we calculate the CD term through a different way from
Berry’s transitionless tracking algorithm. In general, shortcuts
can be constructed just by directly adding a CD term in the
original Hamiltonian H0(t). However, as we mentioned above,
such a CD term always makes trouble in practice. In this paper,
we try to use reverse thinking to find other ways to nullify the
nonadiabatic coupling. In order to obtain a general result, we
further assume that the instantaneous eigenstate is |φn(t)〉 =
[φn1,φn2,φn3, . . .]t , where the time-dependent φnm denotes the
mth element of the column vector |φn(t)〉. Then, we assume

that there exists a Hamiltonian Hadd = ∑
k,l σklAkl . It should

be noted that, to make sure adding a Hamiltonian is practicable
in practice, it is better to choose the coefficients Akl to satisfy
the condition A∗

nm = Amn (n �= m) [3,7,22,26,29,31,32]. By
adding this Hamiltonian into Eq. (10), we obtain

He = He
0 + R†HaddR, (14)

in which

R†HaddR =
∑

n,m,k,l

σnmφ∗
nkφmlAkl. (15)

The term R†HaddR does not necessarily equal i�R†Ṙ. So
long as R†HaddR can nullify the nonadiabatic coupling
term i�

∑
n�=m σnm〈φn(t)|φ̇m(t)〉, the shortcuts would be

constructed. In other words, the shortcuts will be constructed
as long as

∑
k,l φ

∗
nkφmlAkl = i�〈φn|φ̇m〉 (n �= m). In fact,

the shortcuts are still constructible even when only some
of the terms in the matrix i�

∑
n�=m σnm〈φn(t)|φ̇m(t)〉 can

be nullified. For example, if the terms σn1〈φn|φ̇1〉 are
nullified, the transition |φ1(t)〉 → |φn�=1(t)〉 will be suppressed
though the transition |φn�=1(t)〉 → |φ1(t)〉 is allowed. In this
way, the most important thing is to make sure the initial state
is perfectly in the eigenstate |φ1(t)〉.

III. EXAMPLES OF TWO-LEVEL SYSTEMS

In the following, we take the two-level system as an example
to display the feasibility of the idea proposed above. We
assume a two-level Hermitian system has a ground level
|1〉 = [1,0]t and an excited level |2〉 = [0,1]t ; its Hamiltonian
in the interaction picture is given as

H0(t) = �

2

( −�(t) �(t)e−iϕ(t)

�(t)eiϕ(t) �(t)

)
, (16)

where �(t) is the Rabi frequency, assumed real, and �(t)
is the detuning. The instantaneous eigenvectors for this sys-
tem are |φ1〉 = cos θe−iϕ|1〉 − sin θ |2〉 and |φ2〉 = sin θ |1〉 +
cos θeiϕ |2〉, where θ = 1

2 arctan �
�

. The corresponding eigen-
values are E1 = �

2

√
�2 + �2 and E2 = −�

2

√
�2 + �2. Then,

the R matrix can be given as

R(θ ) =
(

cos θe−iϕ sin θ

− sin θ cos θeiϕ

)
,

(17)

R†(θ ) =
(

cos θeiϕ − sin θ

sin θ cos θe−iϕ

)
,

and

i�R†Ṙ = �

(
ϕ̇ cos2 θ (iθ̇+ ϕ̇

2 sin 2θ )eiϕ

(−iθ̇+ ϕ̇

2 sin 2θ )e−iϕ −ϕ̇ cos2 θ

)
, (18)

where

θ̇ = �̇� − ��̇

2(�2 + �2)
. (19)

According to the transitionless tracking algorithm, the addi-
tional Hamiltonian (the CD Hamiltonian) is

HCD = i�
∑

n

|φ̇n〉〈φn|

= �

(
ϕ̇ cos2 θ (iθ̇ − ϕ̇

2 sin 2θ )e−iϕ

(−iθ̇ − ϕ̇

2 sin 2θ )eiϕ −ϕ̇ cos2 θ

)
, (20)
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which has been well known and might cause trouble in
practice (especially in multilevel and multiqubit systems). In
order to tackle the problem, it might be wise to find another
Hamiltonian which can also nullify the nonadiabatic coupling
term and play the same role as the CD Hamiltonian. We start
by assuming an additional Hamiltonian Hadd which is given
with unknown parameters (we have not made any hypothesis
to the Hamiltonian here):

Hadd =
(

A11 A12

A21 A22

)
. (21)

Note that, although there are many choices for the coefficients
Amn, the premise should be that Hadd is realizable in practice.

So when the coefficients are deduced, we should go back
and check whether the additional Hamiltonian is realizable or
not. For example, in a two-level atomic system, it is better to
set A12 = A∗

21, and the boundary conditions (the phases are
considered as 0 for convenience)

ReA12 = const or ReA12(τ ) = ReA12(tf ) = 0 (22)

and

ImA12 = const or ImA12(τ ) = ImA12(tf ) = 0, (23)

where τ is the initial time and tf is the final time.
Then, according to Eq. (15), we obtain

R†HaddR = σ11

[
A11 cos2 θ+A22 sin2 θ−(A12e

iϕ+A21e
−iϕ)

sin 2θ

2

]
+ σ12

[
(A11−A22)eiϕ sin 2θ

2
+A12e

2iϕ cos2 θ−A21 sin2 θ

]

+σ21

[
(A11−A22)e−iϕ sin 2θ

2
−A12 sin2 θ+A21e

−2iϕ cos2 θ

]
+ σ22

[
A11 sin2 θ+A22 cos2 θ+(A12e

iϕ+A21e
−iϕ)

sin 2θ

2

]
.

(24)

It is obvious that, as long as

(A11 − A22)eiϕ sin 2θ

2
+ A12e

2iϕ cos2 θ − A21 sin2 θ = �

(
iθ̇ + ϕ̇

2
sin 2θ

)
eiϕ, (25)

or

(A11 − A22)e−iϕ sin 2θ

2
− A12 sin2 θ + A21e

−2iϕ cos2 θ = �

(
− iθ̇ + ϕ̇

2
sin 2θ

)
e−iϕ, (26)

the transition |φ2(t)〉 → |φ1(t)〉 or |φ1(t)〉 → |φ2(t)〉 is suppressed, and the shortcut is constructed. Equations (25) and (26) are the
key points to realize the accelerating adiabatic protocol. They determine the condition to be satisfied to nullify the counterdiabatic
coupling terms. According to Eqs. (25) and (26), we can pick out the corresponding parameters to design Hadd. A simple choice
is to set

A11 = −A22 = �η,

A12 = A∗
21 = �(α + iβ)e−iϕ, (27)

where α,β,η are real, to ensure Hadd is Hermitian. Adding {Anm} into Eqs. (25) and (26), we obtain β = θ̇ and α cot(2θ ) + η =
ϕ̇/2. Then, we have

He = He
0 + R†HaddR = �

(
E1/� + χ (t) 0

0 E2/� − χ (t)

)
, (28)

where χ (t) = η cos 2θ − α sin 2θ − ϕ̇ cos2 θ . Hence, if the system’s initial state is |ψ(τ )〉 = [a1(τ ),a2(τ )]t , then

c1(τ ) = a1(τ ) cos θ (τ )eiϕ(τ ) − a2(τ ) sin θ (τ ),
c2(τ ) = a1(τ ) sin θ (τ ) + a2(τ ) cos θ (τ )e−iϕ(τ ). (29)

By using the Schrödinger equation (6), we obtain

i�∂t

(
c1(t)
c2(t)

)
= He

(
c1(t)
c2(t)

)
⇒

(
c1(t) = c1(τ )e−i

∫ t

τ
E1(t ′)/�+χ(t ′)dt ′

c2(t) = c2(τ )e−i
∫ t

τ
E2(t ′)/�−χ(t ′)dt ′

)
. (30)

That means the probability amplitudes c1(t) and c2(t) at time t remain the same as that at time τ with only phase difference.
Returning to the interaction picture, the final state is

|ψ(t)〉 =
(

c1(τ ) cos θe−i
∫ t

τ
E1(t ′)/�+χ(t ′)dt ′e−iϕ(t) + c2(τ ) sin θe−i

∫ t

τ
E2(t ′)/�−χ(t ′)dt ′

c2(τ ) cos θe−i
∫ t

τ
E2(t ′)/�−χ(t ′)dt ′eiϕ(t) − c1(τ ) sin θe−i

∫ t

τ
E1(t ′)/�+χ(t ′)dt ′

)
. (31)

It is worth noting that when α = −ϕ̇/2 sin 2θ, Hadd = Hcd . In other words, the CD Hamiltonian calculated by the transitionless
tracking algorithm is one of the cases of the present method.

052109-3



CHEN, XIA, WU, HUANG, AND SONG PHYSICAL REVIEW A 93, 052109 (2016)

−1
0

1

0
5

10
0

0.5

1

Time
α

0

(a)

P
2

−1
0

1

0
2.5

5
0

0.5

1

Time
α

0

(b)

P
2

−1
0

1

0
2.5

5
0

0.5

1

Time
α

0

(c)
P

2

FIG. 1. The time-dependent P2 versus α0 (units of �0) when {ϕ = 0, ζ = 3�0, tf = 1/�0}: (a) α = α0 is constant; (b) α = α0θ̇ is time
dependent; (c) α = α0θ̇ is time dependent and β = 0. The evolution time in the figure is in units of 1/�0.

The idea can also be extended to the non-Hermitian systems. Assuming Hadd is a non-Hermitian Hamiltonian, for example,
the parameters are set as

A11 = −A22 = �(η + iγ ),
A12 = A∗

21 = �(α + iβ)e−iϕ, (32)

where α, β, η, and γ are all real. The choice of A11 and A22 here is just a relatively suitable example; we can also choose
them as {A11 = �(η + iγ ), A22 = �(η − iγ )}, {A11 = 2�(η + iγ ), A22 = 0}, or others as long as Im(A11 − A22) �= 0. Then, by
solving Eq. (25), we obtain β + γ sin 2θ = θ̇ and α cot 2θ + η = ϕ̇

2 ; whereas by solving Eq. (26), the result is quite different:
β − γ sin 2θ = θ̇ and α cot 2θ + η = ϕ̇

2 . That means, if the additional Hamiltonian is non-Hermitian, we cannot ideally offset
all the nondiagonal terms in Eq. (18). Only one of the two transition directions between the instantaneous eigenbases |φ1〉 and
|φ2〉 can be forbidden. That is to say, for the non-Hermitian system, the initial state of the system should be ideally in one of
the eigenstates, i.e., |ψ(τ )〉 = cos θ (τ )e−iϕ(τ )|1〉 − sin θ (τ )|2〉, hence c1 = 1 and c2 = 0. Then, the evolution of the system is
described as

i�

(
c1(t)
c2(t)

)
= He

(
c1(t)
c2(t)

)
⇒

(
c1(t) = exp

[
−i

∫ t

τ
E1/� + (η + iγ ) cos 2θ − α sin 2θ − ϕ̇ cos2 θdt ′

]
c2(t) = 0

)
. (33)

We find that there is a real part in the exponential term which may cause the decay. So, it would be better if we can make∫ t

τ
γ cos 2θ = 0. A simple way is by imposing γ cos 2θ to be an odd function of time and assuming tf = −τ (tf is the total

evolution time). The feature of this method in the non-Hermitian model is that the STA is sensitive to the initial condition of the
system. The initial state should be ideally generated in the eigenstate which will not transfer to others. It should be noted here
that, the imaginary part of diagonal terms usually denotes the decay of the system. In most cases, γ ’s form is decided by the
system so that we cannot design it as desired. However, this would not affect the feasibility of the present method, because in this
paper, γ would not be limited to some fixed form. It can be any arbitrary function so long as the corresponding β is realizable; for
instance, if γ = const, then β = θ̇ ± γ sin 2θ . This merit may be helpful in non-Hermitian systems which have been attracting
increasing interest and have been discussed in recent years [33,34]; for example, the PT -symmetric system [35,36].

Different adiabatic passage schemes correspond to �(t) and �(t) for the system evolution from one bare state to the other.
The simplest one is the Landau-Zener scheme with constant �(t) and linear-in-time �(t):

�(t) = �0, �(t) = ζ 2t. (34)

In this case, θ̇ = −�0ζ
2/[2(�2

0 + ζ 4t2)]. The additional Hamiltonian Hadd is given as

Hadd = �

(
ϕ̇

2 − α cot 2θ + iγ (α + iθ̇ − iγ sin 2θ )e−iϕ

(α − iθ̇ + iγ sin 2θ )eiϕ α cot 2θ − ϕ̇

2 − iγ

)
. (35)

First, we discuss the situation in which γ = 0 (the system is
Hermitian). In the interest of the effect of α’s on STA, we
set ϕ = 0 in this part. Two kinds of α’s will be discussed by

numerical simulation. (1) α is time independent. Figure 1(a)
shows the time-dependent population of the target state |2〉
(P2) versus α when the initial state is |1〉 and {ϕ = 0, ζ =
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FIG. 2. The time-dependent P2 versus κ (units of �0) when {ϕ =
κt, ζ = 3�0, tf = 1/�0}: (a) based on the original transitionless
tracking algorithm that α = −(κ/2) sin 2θ ; (b) based on the present
method with parameter α = 0; (c) based on H0 without the additional
term. The evolution time in the figure is in units of 1/�0.

3�0, tf = 1/�0}. The result shows that in most of the
cases, the shortcut could be constructed successfully and
the populations could be transferred to the target state in a
very short time. The oscillation is caused by the diagonal
term in Eq. (35). (2) α is time dependent. For convenience,
we choose α = α0θ̇ (α0 is time independent). As shown in
Fig. 1(b), a nearly perfect population transfer from |1〉 to |2〉
is realizable with arbitrary α0. What is more, according to
Eq. (35), it is obvious when α0 is large enough, α0 + i ≈ α0.
This means, if we choose a relatively large α0, we can neglect
the imaginary part of A12 (A21). This would make sense
because a pulse with a form of α0θ̇ would be easier to
realize than the form of iθ̇ in experiment. We plot Fig. 1(c)
which shows the result when β = 0 (the other parameters are
also {ϕ = 0, ζ = 3�0, tf = 1/�0}). From the figure, we find
the population transfer would be ideally achieved as long as
α0 > 2.5.

In the following, we will analyze the effectivity of the
method when ϕ �= 0. In Fig. 2(a), we give P2 versus κ when the
initial state is |1〉 and {α = − ϕ̇

2 sin 2θ, ϕ = κt, ζ = 3�0}. As
shown in the figure, when t = tf , while oscillating, the fidelity
of the target state |2〉 increases with increasing κ , which means
if the adiabatic phase is considered, the effectivity of STA may
be reduced in some situations. For comparison, in Fig. 2(b), we
plot the time evolution of state |2〉 versus κ with {α = 0, ϕ =
κt, ζ = 3�0}. It is obvious that the second set of parameters
behave better in restraining the adverse effect caused by ϕ than
the first set. The oscillation in Figs. 2(a) and 2(b) is caused
by the original Hamiltonian H0 when � is large enough as
shown in Fig. 2(c). In addition, it is not hard to see that using
the second set of parameters to construct shortcuts can save
more energy. According to Eq. (35), the eigenvalue of Hadd

is Ea
± = ±�

√
(ϕ̇/2 − α cot 2θ )2 + α2 + θ̇2. This means the

energy cost for constructing shortcuts is the least when α = 0.
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2 versus time when γ =
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In the following, we will briefly discuss the present
method’s efficiency in the non-Hermitian system. Since the
system is non-Hermitian, the dynamics of the system’s
density operator ρ(t) will be given as d

dt
ρ(t) = 1

i�
[H (t)ρ(t) −

ρ(t)H †(t)], where H (t) = H0(t) + Hadd(t). First of all, we
assume the population for a state |j 〉 is still given as Pj =
|〈j |ρ(t)|j 〉|, and display the populations P1 and P2 versus
time in Fig. 3 with parameters {α = 0, ϕ = 0, ζ = 3�0, γ =
0.5�0}. It should be noted here that, since the Hamiltonian
is non-Hermitian, if the population for a state is still given
by Pj = |〈j |ρ(t)|j 〉|, the norm of the state vector given by
P1 + P2 will not be conserved during the evolution. This
property can be seen in Fig. 3, where the norm is not
conserved during the interaction. To avoid some problems
caused by P1 + P2 �= 1, some definitions of the populations
in the non-Hermitian system have been proposed [37,38].
However, since we are only concerned about the realizable
possibility of a fast population inversion in the non-Hermitian
system, for simplicity, we define the relative populations P ′

j =
Pj/(Pj + Pk) (j �= k) to help with the analysis, and if not
otherwise specified, α = 0, ϕ = 0, and ζ = 3�0 will be used
throughout the discussion in this part. In Fig. 4 we display the
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FIG. 4. (a) The time-dependent relative population P ′
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1 and P ′
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γ = 1/(2 + t2).

time-dependent relative populations for states |1〉 [Fig. 4(a)]
and |2〉 [Fig. 4(b)] versus γ , where γ is assumed to be time
independent. As we can see, a fast population inversion could
still be achieved even with a relatively large γ , i.e., γ = �0. As
is known, in general, γ could also depend on time γ = γ (t) as
an effective decay rate controlled by further interactions (see,
e.g., Ref. [39]). According to the form of γ in Ref. [39], we
plot Fig. 5 to show that the present method can also work very
well when γ is time dependent, which shows the populations
versus time with the parameters mentioned above. Figure 5(b)
shows the relative populations versus time, and γ is chosen as
γ = 1

2+t2 for simplicity in plotting the figures. Moreover, if γ

is controllable, or if γ could satisfy some kind of function, for
example, γ = ±θ̇/ sin 2θ , the scheme can make the population
transfer fast without increasing the coupling [35] because
when γ = ±θ̇/ sin 2θ , the corresponding β = 0. Such an
assumption can be physically realized, for instance, in two
coupled optical waveguides with longitudinally varying gain
and loss regions [35]. In fact, γ = ±θ̇/ sin 2θ is just the result
of Ref. [31] which has been analyzed and discussed in great
detail.

From the analysis above, we find the real part of pulse
ReA12 could be an arbitrary time-dependent function, which
means the real part is obviously realizable. So, to make sure
the pulses we used in the schemes are realizable, we need to
confirm whether the imaginary part of the pulse is realizable
or not. Figure 6 shows ImA12 versus time with different
parameters when ϕ = 0. Shown in the figure, the shapes are
all similar to Gaussian curves, which means the pulses are
not hard to realize in practice. In other words, the schemes
proposed in this paper are feasible in practice.
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FIG. 6. The shapes of the imaginary part of the additional
Hamiltonian’s pulses when ϕ = 0. Blue dotted curve: when γ = 0;
red solid curve: when γ = 0.5�0; green dashed curve: when γ =
1/(2 + t2).

IV. CONCLUSION

In conclusion, we have proposed a different and flexible way
to design the additional Hamiltonian for the original Hamil-
tonian to construct STA. This method may be promising as a
way to avoid the defect (the speed-up protocols’ Hamiltonian
may involve terms which are difficult to realize in practice)
because of the multiple choices of the additional Hamiltonian.
We have applied this method to the Landau-Zener model as
an application example, and the results show that the method
works very well in two-level systems (in both Hermitian and
non-Hermitian). In the Hermitian system, we find a relatively
suitable α (the real part of the off-diagonal terms in the
additional Hamiltonian); we can even speed up the adiabatic
process without the imaginary part of the off-diagonal terms
in the additional Hamiltonian. That is meaningful because
amending the Rabi frequency � by real correction will be much
easier than by imaginary correction. In the non-Hermitian
system, different from Ref. [31] where γ (gain or loss of
population) nullifies the counterdiabatic coupling to speed up
the adiabatic evolution all alone, in this paper, γ cooperates
with β (the correction of the imaginary part of the Rabi
frequency) to achieve the goals. As is known, the decay γ

is usually decided by the system and is uncontrollable, so a
speed-up protocol with a fixed form of γ will be hard to realize
and generalize. However, in our present method, the correction
of Rabi frequency β cooperates with γ to construct shortcuts;
hence, as long as the corresponding β is realizable in practice,
the shortcuts could be constructed with arbitrary γ . Another
highlight of this method is that the phase change at any time
could obviously be calculated, which may have application
prospects in quantum phase gates.
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