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Experimental investigation of the stronger uncertainty relations for all incompatible observables
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The Heisenberg-Robertson uncertainty relation quantitatively expresses the impossibility of jointly sharp
preparation of incompatible observables. However, it does not capture the concept of incompatible observables
because it can be trivial even for two incompatible observables. We experimentally demonstrate that the new
stronger uncertainty relations proposed by Maccone and Pati [Phys. Rev. Lett. 113, 260401 (2014)] relating
to the sum of variances are valid in a state-dependent manner and that the lower bound is guaranteed to be
nontrivial when two observables are incompatible on the state of the system being measured. The behavior we
find agrees with the predictions of quantum theory and obeys the new uncertainty relations even for the special
states which trivialize the Heisenberg-Robertson relation. We realize a direct measurement model and perform
an experimental investigation of the strengthened relations.
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I. INTRODUCTION

The famous uncertainty relation introduced by Werner
Heisenberg is a basic feature of quantum theory enshrined
in all textbooks [1,2]. The uncertainty principle dramatically
illustrates the difference between classical and quantum
mechanics. The principle bounds the uncertainties about the
outcomes of two incompatible measurements, such as position
and momentum on a particle. The more precisely the position
of a particle is determined, the less precisely its momentum can
be known, and vice versa. This lack of knowledge, so-called
uncertainty, was quantified by Heisenberg using the standard
deviation. If the measurement on a given particle is chosen
from a set of two possible observables A and B, the resulting
bound on the uncertainty can be expressed in terms of the
commutator,

�A2�B2 �
∣∣ 1

2 〈[A,B]〉∣∣2
, (1)

which is the so-called Heisenberg-Robertson uncertainty
relation [3].

Uncertainty relations are useful for a wide range of
applications in quantum technologies including quantum
cryptography, quantum entanglement, quantum computation,
and general physics. In detail, they are useful for formulating
quantum mechanics [4,5] (e.g., to justify the complex structure
of the Hilbert space or as a fundamental building block
for quantum mechanics and quantum gravity), for studying
measurement-induced disturbance [6–9], for entanglement
detection [10–12], for security analysis of quantum cryptog-
raphy [13,14], and so on. Uncertainty relations were tested
experimentally with neutronic [15–17] and photonic qubits
[18–23].

However, the Heisenberg-Robertson relation (1) does not
fully capture the notion of incompatible observables since
it is expressed in terms of the product of the variances of
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measurements of the observables. It means the product is
zero when either of the two variances is zero even if the
other variance is nonzero. This is the flaw in the Heisenberg-
Robertson relation.

To overcome this limitation, Maccone and Pati [24] have
proposed two new uncertainty relations that employ the sum of
the variances of measurements of general observables. Since
the variance is a positive quantity, the sum will always be
nonzero unless both variances are zero and this case only
happens if the observables are “compatible,” meaning they
have a definite value.

We report an experimental test of the new uncertainty
relations for a single-photon measurement and demonstrate
that they are valid for states of a spin-1 particle [25].
Compared to the previous experiments which have come
close to the original uncertainty limit [26–30] but did not
overcome the inherent flaw, our experimental results fully
capture the notion of incompatible observables in contrast
to the Heisenberg-Robertson inequality, thus making the
uncertainty relations much stronger. The results also explain
so-called complementarity—an extreme form of uncertainty
(here variance is used as a measure of uncertainty); i.e.,
one of the two properties of a system is perfectly known,
and the other is completely uncertain, which is a situation
that the Heisenberg-Robertson inequality fails to explain.
Furthermore, in our experiment, every term can be obtained
directly by the outcomes of the projective measurements. Our
test realizes a direct measurement model which releases the
requirement of quantum state tomography [18,19].

II. THEORETICAL FRAMEWORK

Consider two observables A and B which are incompatible
on the state |ψ〉. The new stronger uncertainty relations
proposed by Maccone and Pati relating to the sum of variances
are theoretically proven to be universally valid [24]. The first
inequality [24] is

�A2 + �B2 � ±i〈[A,B]〉 + |〈ψ |A ± iB|ψ⊥〉|2, (2)
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where the sign should be chosen so that ±i〈[A,B]〉 (a real
quantity) is positive. The inequality is valid for an arbitrary
state |ψ⊥〉 orthogonal to |ψ〉. If the state |ψ〉 is not a joint
eigenstate of A and B, the lower bound of the inequality
is nontrivial (nonzero) for almost any choice of |ψ⊥〉. The
uncertainty inequality in (2) is tight; i.e., it becomes an equality
by maximizing over |ψ⊥〉. For example, if |ψ〉 is one of the
eigenstates of the observable A, the optimal choice of |ψ⊥〉 is
|ψ⊥〉B = (B − 〈B〉)|ψ〉/�B, or |ψ⊥〉A = (A − 〈A〉)|ψ〉/�A

for the case that |ψ〉 is one of the eigenstates of the observable
B. If |ψ〉 is not an eigenstate of either, the optimal choice is
|ψ⊥〉 ∝ (A ± iB − 〈A ± iB〉)|ψ〉.

The second inequality with nontrivial bound [24] is

�A2 + �B2 � 1
2 |A+B〈ψ⊥|A + B|ψ〉|2, (3)

where |ψ⊥〉A+B ∝ (A + B − 〈A + B〉)|ψ〉 is orthogonal to
|ψ〉. The lower bound of Eq. (3) is nonzero unless |ψ〉 is an
eigenstate of A + B. The inequality (3) becomes an equality
if the state |ψ〉 is an eigenstate of A − B.

We show an example by choosing two components of the
angular momentum for a spin-1 particle as two incompatible
observables

A = Jx =
⎛
⎝0 1 0

1 0 1
0 1 0

⎞
⎠

and

B = Jy =
⎛
⎝ 0 i 0

−i 0 i

0 −i 0

⎞
⎠,

and a family of states being measured [24],

|ψφ〉 = sin φ|+〉 + cos φ|−〉 = (sin φ,0, cos φ)T, (4)

where |±〉 are the eigenstates of

Jz =
⎛
⎝1 0 0

0 0 0
0 0 −1

⎞
⎠

corresponding to the eigenvalues ±1, and φ ∈ [0,π ] is the
coefficient. None of |ψφ〉 is a joint eigenstate of Jx and
Jy , nor are they an eigenstate of Jx + Jy . The uncertainty
relations in inequalities (2) and (3) are valid for the states.
However, for the special cases with φ = π/4 and φ = 3π/4,
the Heisenberg-Robertson relation can be trivial because one
of the measurement variances is zero.

Now we focus on the feasibility of implementation of the
measurements. The variances �Jx(y) = 〈J 2

x(y)〉 − 〈Jx(y)〉2 can
be calculated by the measured expectation values of Jx(y)

and J 2
x(y). The first term on the right-hand side (RHS) of

inequality (2) can be calculated by the measured expectation
value of Jz = i[Jx,Jy]/2. The second term can be rewritten as

|〈ψφ|Jx ± iJy |ψ⊥
φ 〉|2 = 〈ψφ|C±|ψφ〉, where

C± := (Jx ± iJy)|ψ⊥
φ 〉〈ψ⊥

φ |(Jx ∓ iJy) (5)

are Hermitian operators. The second term on the RHS of
inequality (2) can be calculated by the expectation values of the
operators C±. Inequality (2) can be rewritten as �J 2

x + �J 2
y �

|〈Jz〉| + 〈C±〉.

Similarly, inequality (3) can be rewritten as �J 2
x + �J 2

y �
〈D〉, where the observable of the measurement is

D := 1
2 (Jx + Jy)|ψ⊥

φ 〉Jx+Jy
〈ψ⊥

φ |(Jx + Jy). (6)

The observables C± and D are dependent on the choices of the
states |ψ⊥

φ 〉 and |ψ⊥
φ 〉

Jx+Jy
, respectively. Although the second

inequality is tight also, for the family of states in Eq. (4)
which are not the eigenstates of Jx ± Jy , the inequality will
not become an equality for any choice of |ψ⊥

φ 〉
Jx+Jy

.

III. EXPERIMENTAL IMPLEMENTATION

We report the experimental test of the new uncertainty
relations for a single-photon measurement. The experimental
setup shown in Fig. 1 involves preparing the specific state
(state preparation stage) and projective measurement on the
system of interest (measurement stage). In the preparation
stage, polarization-degenerate photon pairs at a wavelength of
801.6 nm are produced in a type I spontaneous parametric
down-conversion (SPDC) source using a 0.5-mm-thick β-
barium borate (BBO) nonlinear crystal, pumped by a cw diode
laser with 90 mW of power [31–34]. The pump is filtered
out with the help of an interference filter which restricts the
photon bandwidth to 3 nm. With the detection of a trigger
photon, the signal photon is heralded in the measurement setup.
Experimentally this trigger-signal photon pair is registered by a
coincidence count at two single-photon avalanche photodiodes
(APDs) with 7-ns time window. Total coincidence counts are
about 1×104 over a collection time of 6 s.

A qutrit is represented by three modes of the heralded
single photons shown in Fig. 1(a), and the basis states |0〉,
|1〉, and |2〉 are encoded by the horizontal polarization of the
photon in the upper mode, the horizontal polarization of the

FIG. 1. (a) Representation of a qutrit. Here H and V denote
the horizontal and vertical polarizations of the single photons,
respectively. The subscripts u and d represent the upper and lower
spatial modes of the single photons, respectively. (b) Experimental
setup. The herald single photons are created via type I spontaneous
parametric down-conversion in a BBO crystal and are injected into
the optical network. The polarizing beam splitter (PBS), half-wave
plate (HWP, H1), and beam displacer (BDi) are used to generate a
qutrit state |ψφ〉. The HWPs (H2–H7) and three BDs are used to
realize the projective measurements of observables Jx(y), J 2

x(y), and
C±. To realize that of D, H4 and H5 are replaced by the QWPs (Q4
and Q5) at 45◦.
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photon in the lower mode, and the vertical polarization in
the lower mode, respectively. The heralded single photons
pass through a polarizing beam splitter (PBS) and a half-wave
plate (HWP, H1) with a certain setting angle and then are
split by a birefringent calcite beam displacer (BD) into two
parallel spatial modes—upper and lower modes [35,36]. The
optical axis of the BD is cut so that vertically polarized
light is directly transmitted and horizontal light undergoes
a 3-mm lateral displacement into a neighboring mode. Thus
the photons are prepared in the state |ψφ〉 in Eq. (4). We
choose φ = jπ/12 (j = 1, . . . ,12), i.e., a total of 12 states,
for testing the uncertainty relation proposed in Ref. [24]. The
setting angle θ1(φ) of H1 used for generating the state |ψφ〉
satisfies θ1(φ) = π/4 − φ/2.

For the left-hand side (LHS) of inequalities (2) and (3),
the upper bound is �J 2

x + �J 2
y = 1, which is constant for

all 12 states being measured. For half of the states with φ =
π/12,π/6,π/4,5π/6,11π/12,π , because of i〈[Jx,Jy]〉 � 0,
the RHS of inequality (2) can be rewritten as 2|〈Jz〉| + 〈C−〉,
whereas for the remaining six states being measured, it is
2|〈Jz〉| + 〈C+〉.

In the measurement stage, cascaded interferometers which
consist of BDs and wave plates (WPs) are used to implement
an operation U = ∑

i |i〉〈mi |, where |mi〉 (i = 0,1,2) is the
eigenstate of the observable M = ∑

i mi |mi〉〈mi | according
to the eigenvalue mi . The BDiv is used to map the basis states
of the qutrit to three spatial modes and to accomplish the
projective measurement {|m0〉〈m0|,|m1〉〈m1|,|m2〉〈m2|} of the
observable M on a qutrit state |ψφ〉 along with APDs. The
outcomes give the measured probability pmi

= |〈ψφ|mi〉|2,
which equals the probability pi = Tr(|ψφ〉〈ψφ|U †|i〉〈i|U ) of
the photons being measured in the state |i〉. The expected value
of the observable M can be calculated by the measured prob-
abilities and the eigenvalues as 〈M〉 = ∑

i mipmi
. Similarly

one can calculate the variance �M of M with the outcomes
of the projective measurements on the state |ψφ〉.

To test the inequalities, we need to measure the observables
Jx(y), J 2

x(y), Jz, and C± in Eq. (5) and D in Eq. (6)
(see Appendix B). The unitary operation which performs a
projective measurement is SU(3), which can be realized in
three substeps. Each of the substeps applies a rotation on two
of the basis states {|0〉,|1〉,|2〉} and keeps the remaining one
unchanged. Each of the substeps can be realized by two HWPs
and a BD. One of the HWPs is used to rotate the qutrit, the other
is used to compensate for the optical delay, and the BD is used
to split the photons with different polarizations into different
modes. The setting angles of H3, H4, and H7 (or H6) can be
calculated by the parameters of the projective measurement,
the setting angles of H2 and H5 are chosen to be 45◦, and that
of H6 is 0◦ (or that of H7 is −45◦) to compensate for the optical
delay. The photons are detected by APDs, in coincidence
with the trigger photons. The probabilities pi (i = 0,1,2) are
obtained by normalizing photon counts in the ith spatial mode
to total photon counts.

To test the first inequality (2), for the 12 states |ψφ〉 we
choose, the optimization of |ψ⊥

φ 〉 (namely, the choice that
maximizes the lower bound and saturates the inequality) is
independent of φ and takes the form

|ψ⊥
φ 〉opt = (0,1,0)T. (7)

Then for each φ, we randomly choose three states

|ψ⊥
φ 〉1 =

√
3

2

(
cos φ,

√
3

3
, − sin φ

)T

,

|ψ⊥
φ 〉2 =

√
2

2
(cos φ,1, − sin φ)T, (8)

|ψ⊥
φ 〉3 = 1

2
(cos φ,

√
3, − sin φ)T,

which are orthogonal to |ψφ〉 to test inequality (2). For the
optimal choice of the orthogonal state |ψ⊥

φ 〉opt, as well as
the three others |ψ⊥

φ 〉
1,2,3

, the projective measurement of
observable C± can be realized by tuning the setting angles
of the HWPs (H2–H7) (see Appendix A).

Similarly, to test the second inequality (3), the measurement
of the observable D in Eq. (6) can be implemented by the
setup in Fig. 1(b) by replacing the HWPs (H4 and H5) by
the quarter-wave plates (QWPs, Q4 and Q5, respectively) and
setting angles 45◦ for all 12 states |ψφ〉.

In Fig. 2, we show the direct demonstration of the two
new uncertainty relations in inequalities (2) and (3). The LHS
of inequalities (2) and (3), i.e., the sum of the uncertainties
�J 2

x + �J 2
y , is constant for the family of states in Eq. (4)

as �J 2
x + �J 2

y = 1. The experimental results of the LHS
of the inequalities are calculated from the measured data of
observables Jx(y) and J 2

x(y) and fit the theoretical predictions
well. The experimental results of the RHS of inequality
(2) with the optimal choice of the state |ψ⊥

φ 〉
opt

and the

states |ψ⊥
φ 〉

1,2,3
which are chosen randomly are shown with

different symbols. It is clear that the bound (2) is always

φ

FIG. 2. Experimental results. The solid black line corresponds
to the LHS of inequalities (2) and (3), i.e., �J 2

x + �J 2
y = 1. The

black squares represent the sum of the measured uncertainties of �J 2
x

and �J 2
y with the 12 states |ψφ〉. The green circles, olive hexagons,

magenta diamonds, and purple pentagons represent the experimental
results of the RHS of inequality (2) with the optimal state |ψ⊥

φ 〉
opt

and three randomly chosen states |ψ⊥
φ 〉

1,2,3
for each of the 12 values

of φ. The red dotted line corresponds to the bound of inequality (3)
and red stars represent the measured 〈D〉 for the 12 states |ψ⊥

φ 〉
Jx+Jy

.

The blue dot-dashed curves and triangles represent the theoretical
predictions and experimental results of the product of the uncertainties
and the expectation value of the commutator (Heisenberg-Robertson
relation). Error bars indicate the statistical uncertainty.
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satisfied and outperforms the Heisenberg-Robertson relation
for arbitrary states |ψ⊥

φ 〉 orthogonal to |ψφ〉. All data of the
RHS are above the lower curves, which are the product of
the uncertainties and the expectation value of the commutator.
Thus the new uncertainty relation in inequality (2) is more
strengthened compared to the Heisenberg-Robertson relation.
For the optimal choice |ψ⊥

φ 〉
opt

, which is independent of
φ, the experimental results fit the upper bound well. Thus
the inequality becomes an equality, which shows the new
uncertainty inequality (2) is tight.

For inequality (3), due to the orthogonal state

|ψ⊥
φ 〉Jx+Jy

= (0,1,0)T, (9)

which is independent of φ, the theoretical prediction of the
RHS is constant as 〈D〉 = 0.5, which fits our data well and
satisfies the uncertainty inequality.

Our experimental results show that for the state |ψφ〉 that
is an eigenstate of one of the two observables (in our case,
φ = π/4 and φ = 3π/4) which trivializes the Heisenberg-
Robertson relation, the lower bound of the new uncertainty
inequalities is always nontrivial unless |ψφ〉 is a joint eigenstate
of the two observables.

As in previous experiments [18,19], both sides of inequali-
ties (2) and (3) can be calculated from the density matrices of
|ψφ〉, which are characterized by quantum state tomography. In
our experiment, every term of the inequalities can be obtained
directly by the outcomes of the projective measurements,
and the experimental results are in good agreement with
theoretical predictions. Our test realizes a direct measurement
model which much simplifies the experimental realization and
releases the requirement of quantum state tomography. It is
much more “user friendly” compared to those that require
reconstruction of the state being measured by carrying out a set
of measurements through tomographic means and calculating
the expected values of the measurement of observables.

Furthermore, our technique can be used to realize arbitrary
SU(3) unitary operation and arbitrary projective measurements
of a qutrit. An arbitrary SU(3) unitary operation on a qutrit
can be decomposed into three matrices which can be realized
by a transformation on two modes of the qutrit, keeping
the third mode unaffected [37,38]. Conveniently, two-mode
transformations can then be implemented using WPs acting
on the two polarization modes propagating in the same spatial
mode. Thus we are able to apply transformations to any pair
of modes.

IV. CONCLUSION

We have demonstrated a method for experimentally testing
the new uncertainty relations. This has allowed us to test
the two uncertainty inequalities. Our experimental results
clearly illustrate the new uncertainty relations between two
components of the angular momentum. Our demonstration is

evidence for the validity of the new relations proposed to be
universally valid. Our work conclusively shows that the new
uncertainty relations are stronger and general compared to the
Heisenberg-Robertson uncertainty relation. The experimental
results confirm that, even for the special states which trivialize
the Heisenberg-Robertson relation, the uncertainties of the
two observables obey the new relations and shed light on the
fundamental limitations of quantum measurement. A correct
understanding and experimental confirmation of a fundamen-
tal limitation of measurements will not only foster insight
into foundational problems but also advance the precision
measurement technology in quantum information processing,
for instance on the debate over the standard quantum limit for
monitoring free-mass position [39–41].
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APPENDIX A: VERIFY THE NEW UNCERTAINTY
RELATIONS WITH A THREE-LEVEL SYSTEM

The photonic states |ψφ〉 can be generated in a type I SPDC
process. For different φ, one can vary the setting angle of the
HWP (H1). The angles of the HWPs for state preparation are
listed in Table I. The density matrix of the initial state |ψφ〉 is
characterized by the quantum state tomography process with
nine measurement settings and the average fidelity for the 12
states is more than 0.988.

In the measurement stage, cascaded interferometers which
consist of BDs and WPs are used to implement projective
measurements of the observables Jx(y), Jz, J 2

x(y), C±, and
D. The angles of the HWPs (H2–H7) for state preparation
are listed in Table II. For some observables, we replace the
HWPs (H4 and H5) by QWPs (Q4 and Q5) with setting angles
45◦. The polarization analysis measurement setup containing
QWPs, HWPs, and BDs can be used to perform measurements
of the corresponding observable on photons.

The technique of direct state transformations with optical
elements we use here can realize arbitrary SU(3) unitary
operation and arbitrary projective measurements of a qutrit.
An arbitrary SU(3) unitary operation on a qutrit can be
decomposed into three matrices which can be realized by a
transformation on two modes of the qutrit, keeping the third
mode unaffected. Conveniently, two-mode transformations
can then be implemented using WPs acting on the two
polarization modes propagating in the same spatial mode.
Thus we are able to apply transformations to any pair of
modes.

Now we show an example of how to realize the mea-
surement of observable Jx via WPs and BDs and the state

TABLE I. The setting angles of the HWP (H1) for the state preparation stage.

φ (rad) π

12
π

6
π

4
π

3
5π

12
π

2
7π

12
2π

3
3π

4
5π

6
11π

12 π

H1 37.50◦ 30.00◦ 22.50◦ 15.00◦ 7.50◦ 0.00◦ −7.50◦ −15.00◦ −22.50◦ −30.00◦ −37.50◦ −45.00◦
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TABLE II. The setting angles of the HWPs (or QWP) for the projective measurement stage. Here “−” denotes the corresponding WP is
removed from the optical circuit.

Observable H2 H3 H4 Q4 H5 Q5 H6 H7

Jx 45.00◦ −17.63◦ 75.00◦ − 45.00◦ − 0.00◦ −62.63◦

J 2
x 45.00◦ 90.00◦ 0.00◦ − 45.00◦ − 0.00◦ 22.50◦

Jy 45.00◦ 17.63◦ −15.00◦ − 45.00◦ − 0.00◦ −62.63◦

J 2
y 45.00◦ 90.00◦ 90.00◦ − 45.00◦ − 0.00◦ 22.50◦

Jz 45.00◦ 0.00◦ 45.00◦ − 45.00◦ − 0.00◦ −45.00◦

C±(|ψ⊥
φ 〉

opt
) 45.00◦ 0.00◦ 45.00◦ − 45.00◦ − 0.00◦ −45.00◦

C±(|ψ⊥
π/12〉1

) 45.00◦ 0.00◦ 45.00◦ − 45.00◦ − −32.93◦ −45.00◦

C±(|ψ⊥
π/12〉2

) 45.00◦ 0.00◦ 45.00◦ − 45.00◦ − −37.74◦ −45.00◦

C±(|ψ⊥
π/12〉3

) 45.00◦ 0.00◦ 45.00◦ − 45.00◦ − −40.75◦ −45.00◦

C±(|ψ⊥
π/6〉1

) 45.00◦ 0.00◦ 45.00◦ − 45.00◦ − −24.55◦ −45.00◦

C±(|ψ⊥
π/6〉2

) 45.00◦ 0.00◦ 45.00◦ − 45.00◦ − −31.72◦ −45.00◦

C±(|ψ⊥
π/6〉3

) 45.00◦ 0.00◦ 45.00◦ − 45.00◦ − −36.95◦ −45.00◦

C±(|ψ⊥
π/4〉1

) 45.00◦ 0.00◦ 45.00◦ − 45.00◦ − −19.62◦ −45.00◦

C±(|ψ⊥
π/4〉2

) 45.00◦ 0.00◦ 45.00◦ − 45.00◦ − −27.37◦ −45.00◦

C±(|ψ⊥
π/4〉3

) 45.00◦ 0.00◦ 45.00◦ − 45.00◦ − −33.90◦ −45.00◦

C±(|ψ⊥
π/3〉1

) 45.00◦ 0.00◦ 45.00◦ − 45.00◦ − 0.00◦ −69.55◦

C±(|ψ⊥
π/3〉2

) 45.00◦ 0.00◦ 45.00◦ − 45.00◦ − 0.00◦ −76.72◦

C±(|ψ⊥
π/3〉3

) 45.00◦ 0.00◦ 45.00◦ − 45.00◦ − 0.00◦ −81.95◦

C±(|ψ⊥
5π/12〉1

) 45.00◦ 0.00◦ 45.00◦ − 45.00◦ − 0.00◦ −77.92◦

C±(|ψ⊥
5π/12〉2

) 45.00◦ 0.00◦ 45.00◦ − 45.00◦ − 0.00◦ −82.74◦

C±(|ψ⊥
5π/12〉3

) 45.00◦ 0.00◦ 45.00◦ − 45.00◦ − 0.00◦ −85.75◦

C±(|ψ⊥
π/2〉1

) 45.00◦ 0.00◦ 45.00◦ − 45.00◦ − 0.00◦ −45.00◦

C±(|ψ⊥
π/2〉2

) 45.00◦ 0.00◦ 45.00◦ − 45.00◦ − 0.00◦ −45.00◦

C±(|ψ⊥
π/2〉3

) 45.00◦ 0.00◦ 45.00◦ − 45.00◦ − 0.00◦ −45.00◦

C±(|ψ⊥
7π/12〉1

) 45.00◦ 0.00◦ 45.00◦ − 45.00◦ − 0.00◦ −77.92◦

C±(|ψ⊥
7π/12〉2

) 45.00◦ 0.00◦ 45.00◦ − 45.00◦ − 0.00◦ −82.74◦

C±(|ψ⊥
7π/12〉3

) 45.00◦ 0.00◦ 45.00◦ − 45.00◦ − 0.00◦ −85.75◦

C±(|ψ⊥
2π/3〉1

) 45.00◦ 0.00◦ 45.00◦ − 45.00◦ − 0.00◦ −69.55◦

C±(|ψ⊥
2π/3〉2

) 45.00◦ 0.00◦ 45.00◦ − 45.00◦ − 0.00◦ −76.72◦

C±(|ψ⊥
2π/3〉3

) 45.00◦ 0.00◦ 45.00◦ − 45.00◦ − 0.00◦ −81.95◦

C±(|ψ⊥
3π/4〉1

) 45.00◦ 0.00◦ 45.00◦ − 45.00◦ − 0.00◦ −64.62◦

C±(|ψ⊥
3π/4〉2

) 45.00◦ 0.00◦ 45.00◦ − 45.00◦ − 0.00◦ −72.37◦

C±(|ψ⊥
3π/4〉3

) 45.00◦ 0.00◦ 45.00◦ − 45.00◦ − 0.00◦ −78.90◦

C±(|ψ⊥
5π/6〉1

) 45.00◦ 0.00◦ 45.00◦ − 45.00◦ − −24.55◦ −45.00◦

C±(|ψ⊥
5π/6〉2

) 45.00◦ 0.00◦ 45.00◦ − 45.00◦ − −31.72◦ −45.00◦

C±(|ψ⊥
5π/6〉3

) 45.00◦ 0.00◦ 45.00◦ − 45.00◦ − 36.95◦ −45.00◦

C±(|ψ⊥
11π/12〉1

) 45.00◦ 0.00◦ 45.00◦ − 45.00◦ − −32.93◦ −45.00◦

C±(|ψ⊥
11π/12〉2

) 45.00◦ 0.00◦ 45.00◦ − 45.00◦ − −37.74◦ −45.00◦

C±(|ψ⊥
11π/12〉3

) 45.00◦ 0.00◦ 45.00◦ − 45.00◦ − −40.75◦ −45.00◦

C±(|ψ⊥
π 〉1) 45.00◦ 0.00◦ 45.00◦ − 45.00◦ − −45.00◦ −45.00◦

C±(|ψ⊥
π 〉2) 45.00◦ 0.00◦ 45.00◦ − 45.00◦ − −45.00◦ −45.00◦

C±(|ψ⊥
π 〉3) 45.00◦ 0.00◦ 45.00◦ − 45.00◦ − −45.00◦ −45.00◦

D(|ψ⊥
φ 〉

Jx+Jy
) 45.00◦ 45.00◦ − 45.00◦ − 45.00◦ 0.00◦ −90.00◦

transformations of these optical elements. The measurement
of observable Jx can be realized via six HWPs and three BDs.
The unitary operation which performs the measurement on the
qutrit can be written as

U =

⎛
⎜⎜⎝

1
2 − 1√

2
1
2

− 1√
2

0 1√
2

1
2

1√
2

1
2

⎞
⎟⎟⎠ = U3U2U1, (A1)

where we have

U1 =

⎛
⎜⎜⎝

1 0 0

0
√

2
3 − 1√

3

0 − 1√
3

−
√

2
3

⎞
⎟⎟⎠, U2 =

⎛
⎜⎝

1
2 −

√
3

2 0
√

3
2

1
2 0

0 0 1

⎞
⎟⎠,

U3 =

⎛
⎜⎜⎝

1 0 0

0 −
√

2
3 − 1√

3

0 1√
3

−
√

2
3

⎞
⎟⎟⎠. (A2)
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The three unitary operations Ui (i = 1,2,3) can be imple-
mented by a single-qubit rotation on two of the three modes,
keeping the other one unchanged.

The HWP (H3) at −17.63◦ is applied on the lower mode
and implements a rotation⎛

⎜⎝
√

2
3 − 1√

3

− 1√
3

−
√

2
3

⎞
⎟⎠

on the polarizations of photons in this mode, while it
keeps the polarizations of the photons in the upper mode
unchanged. Thus U1 is realized. The HWP (H2) at 45◦
changes the polarizations of the photons in the upper mode
from horizontal to vertical and after BDii the vertically
polarized photons go straight and are still in the upper
mode, whereas the horizontally polarized photons in the lower
mode go up into the upper mode. Then we can realize a
rotation (

−
√

3
2

1
2

1
2

√
3

2

)

on the polarizations of photons in the upper mode via H4
at 75◦ and keep the polarizations of photons in the lower
mode unchanged. Thus U2 is realized. Similarly, we use H5
and BDiii to move the photons with different polarization
into the lower mode and use H7 at −62.63◦ to realize a
rotation ⎛

⎜⎝− 1√
3

−
√

2
3

−
√

2
3

1√
3

⎞
⎟⎠

and keep the polarization of photons in the upper mode
unchanged. The HWP (H6) at zero is used as an optical
compensator. Thus U3 is realized.

The basis states of the qutrit, |0〉, |1〉, and |2〉, are encoded by
the horizontal polarization of the photon in the upper mode,
|Hu〉, the horizontal polarization of the photon in the lower
mode, |Hd〉, and the vertical polarization in the lower mode,
|Vd〉, respectively. The initial state

|φ〉 = sin φ|Hu〉 + cos φ|Vd〉 (A3)

becomes

sin φ|Hu〉 − 1√
3

cos φ|Hd〉 −
√

2

3
cos φ|Vd〉 (A4)

after H3 is applied on the polarizations of photons in the lower
mode. After H2 is applied, it becomes

sin φ|Vu〉 − 1√
3

cos φ|Hd〉 −
√

2

3
cos φ|Vd〉. (A5)

Going through the following BD (BDii), the state is

− 1√
3

cos φ|Hu〉 + sin φ|Vu〉 −
√

2

3
cos φ|Vd〉. (A6)

The HWP (H4) is applied on the polarizations of photons in
the upper mode and the state becomes

1

2
(cos φ + sin φ)|Hu〉 +

(
− 1

2
√

3
cos φ +

√
3

2
sin φ

)
|Vu〉

−
√

2

3
cos φ|Vd〉. (A7)

After H5 is applied on the photons in the lower mode, |Vd〉 is
rotated to |Hd〉. Going through the following BDiii , the state
is

1

2
(cos φ + sin φ)|Hu〉 −

√
2

3
cos φ|Hd〉

+
(

− 1

2
√

3
cos φ +

√
3

2
sin φ

)
|Vd〉. (A8)

The HWP (H7) is applied on the polarizations of photons in
the lower mode and the state becomes

1

2
(cos φ + sin φ)|Hu〉 + 1√

2
(cos φ − sin φ)|Hd〉

+1

2
(cos φ + sin φ)|Vd〉, (A9)

which is the same as U |φ〉.

APPENDIX B: VERIFY THE NEW UNCERTAINTY
RELATIONS WITH A TWO-LEVEL SYSTEM

We choose A = σx and B = σy , and a family of states
being measured |ψφ〉 = sin φ|+〉 + cos φ|−〉, where |±〉 are
the eigenstates of σz = −i[σx,σy]/2 corresponding to the
eigenvalues ±1. Similar to the case of a qutrit, for the
special states with φ = π/4 and φ = 3π/4, the Heisenberg-
Robertson relation can be trivial because one of the variances
of measurements is zero. The new uncertainty relations are
valid for all the states, including those with φ = π/4 and
φ = 3π/4.

There is only one state |ψ⊥
φ 〉 = cos φ|0〉 − sin φ|1〉 which

is orthogonal to the qubit state |ψφ〉 and it is the optimal choice
for the first inequality,

�A2 + �B2 � ±i〈[A,B]〉 + |〈ψ |A ± iB|ψ⊥〉|2, (B1)

FIG. 3. Experimental setup. The herald single photons are created
via type I SPDC in a BBO crystal and are injected into the optical
network. The PBS and HWP (H1) are used to generate a qubit state
|ψφ〉. The HWP (or QWP) and the following BD are used to realize
the projective measurements of observables σx(y), σ 2

x(y), C±, and D.
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TABLE III. The setting angles of Q1 and H2 for the projective
measurement stage of the two-level system. Here “−” denotes that
Q1 is removed from the optical circuit.

Observable Q1 H2

σx − 22.50◦

σy 90.00◦ 22.50◦

σ 2
x ,σ 2

y − 0.00◦

σz − 0.00◦

C±(|ψ⊥
φ 〉) − 0.00◦

D(|ψ⊥
φ 〉

σx+σy
) 90.00◦ (φ− π

2 )
2

which becomes an identical equation. This state is also the
only choice for testing the uncertainty inequality in

�A2 + �B2 � 1
2 |A+B〈ψ⊥|A + B|ψ〉|2. (B2)

The observables

C± := (σx ± iσy)|ψ⊥
φ 〉〈ψ⊥

φ |(σx ∓ iσy) (B3)

and

D := 1
2 (σx + σy)|ψ⊥

φ 〉〈ψ⊥
φ |(σx + σy) (B4)

are the same as those for the qutrit case in the main text and
for the qubit case, i.e., Jx,y,z = σx,y,z and |ψ⊥

φ 〉
σx+σy

= |ψ⊥
φ 〉.

For experimental demonstration shown in Fig. 3, we prepare
a qubit state with the basis states |0〉 and |1〉 encoded in
the horizontal and vertical polarizations of heralded single
photons via type I SPDC. By changing the setting angle of
the HWP (H1) which applies a rotation on the polarization
qubit, we can obtain the qubit state |ψφ〉 for 12 values of φ.
For measurement, a BD and a HWP (or a QWP) are used to
implement measurements of observables σx , σy , σz, σ 2

x , σ 2
y ,

C⊥
± , and D. The setting angles of the HWP and QWP are

shown in Table III.
In Fig. 4, we show the direct demonstrations of the new

uncertainty relations in inequalities (B1) and (B2). The solid
black line corresponds to theoretical predictions of the left-
hand sides of inequalities (B1) and (B2), i.e., �σ 2

x + �σ 2
y . The

black squares represent the sum of the measured uncertainties
(�σ 2

x and �σ 2
y ) with the 12 states. The green circles represent

the experimental results of the right-hand side of inequality
(B1) with the state |ψ⊥〉. The red dotted line corresponds to
the bound of inequality (B2) and the red stars represent the
measured 〈D〉 for the 12 states |ψ⊥〉. The blue dot-dashed

φ

FIG. 4. Experimental results. The solid black line corresponds to
the LHS of inequalities (B1) and (B2). The black squares represent
the sum of the measured uncertainties of �σ 2

x and �σ 2
y with the 12

states |ψφ〉. The green circles represent the experimental results of the
RHS of inequality (B1) with the optimal and only state |ψ⊥

φ 〉 for each
of the 12 values of φ. The red dotted line corresponds to the bound
of inequality (B2) and red stars represent the measured 〈D〉 for the
12 states |ψ⊥

φ 〉. The blue dot-dashed curves and triangles represent
the theoretical predictions and experimental results of the product
of the uncertainties and the expectation value of the commutator
(Heisenberg-Robertson relation). Error bars indicate the statistical
uncertainty.

curves and triangles represent the theoretical predictions and
experimental results of the product of the uncertainties and
the expectation value of the commutator (the Heisenberg-
Robertson relation).

All data from the right-hand side of inequality (B1)
are above the lower curves, which are the product of the
uncertainties and the expectation value of the commutator.
Thus the new uncertainty relation in inequality (B1) is more
strengthened compared to the Heisenberg-Robertson relation.
Even for the special states with φ = π/4 and φ = 3π/4 which
trivialize the Heisenberg-Robertson relation, the lower bounds
of the new uncertainty inequalities (B1) and (B2) are always
nontrivial.

As we said in the main text, although the new uncertainty
relations are valid for two-level states, there is only one state
which is orthogonal to the qubit state and it is the optimal
choice for the first inequality, which becomes an identical
equation. The qutrit case displays more features of the new
uncertainty relations.

[1] W. Heisenberg, Z. Phys. 43, 172 (1927).
[2] J. A. Wheeler and H. Zurek, Quantum Theory and Measurement

(Princeton University Press, Princeton, NJ, 1983).
[3] H. P. Robertson, Phys. Rev. 34, 163 (1929).
[4] M. J. W. Hall, Gen. Relativ. Gravit. 37, 1505 (2005).
[5] P. Busch, T. Heinonen, and P. J. Lahti, Phys. Rep. 452, 155

(2007).
[6] M. Ozawa, Phys. Rev. A 67, 042105 (2003).
[7] M. Ozawa, Phys. Lett. A 320, 367 (2004).

[8] M. Berta, M. Christandl, R. Colbeck, J. M. Renes, and R. Renner,
Nat. Phys. 6, 659 (2010).

[9] P. Busch, P. Lahti, and R. F. Werner, Rev. Mod. Phys. 86, 1261
(2014).

[10] W. P. Bowen, R. Schnabel, P. K. Lam, and T. C. Ralph,
Phys. Rev. Lett. 90, 043601 (2003).

[11] O. Gühne, Phys. Rev. Lett. 92, 117903 (2004).
[12] J. C. Howell, R. S. Bennink, S. J. Bentley, and R. W. Boyd,

Phys. Rev. Lett. 92, 210403 (2004).

052108-7

http://dx.doi.org/10.1007/BF01397280
http://dx.doi.org/10.1007/BF01397280
http://dx.doi.org/10.1007/BF01397280
http://dx.doi.org/10.1007/BF01397280
http://dx.doi.org/10.1103/PhysRev.34.163
http://dx.doi.org/10.1103/PhysRev.34.163
http://dx.doi.org/10.1103/PhysRev.34.163
http://dx.doi.org/10.1103/PhysRev.34.163
http://dx.doi.org/10.1007/s10714-005-0131-y
http://dx.doi.org/10.1007/s10714-005-0131-y
http://dx.doi.org/10.1007/s10714-005-0131-y
http://dx.doi.org/10.1007/s10714-005-0131-y
http://dx.doi.org/10.1016/j.physrep.2007.05.006
http://dx.doi.org/10.1016/j.physrep.2007.05.006
http://dx.doi.org/10.1016/j.physrep.2007.05.006
http://dx.doi.org/10.1016/j.physrep.2007.05.006
http://dx.doi.org/10.1103/PhysRevA.67.042105
http://dx.doi.org/10.1103/PhysRevA.67.042105
http://dx.doi.org/10.1103/PhysRevA.67.042105
http://dx.doi.org/10.1103/PhysRevA.67.042105
http://dx.doi.org/10.1016/j.physleta.2003.12.001
http://dx.doi.org/10.1016/j.physleta.2003.12.001
http://dx.doi.org/10.1016/j.physleta.2003.12.001
http://dx.doi.org/10.1016/j.physleta.2003.12.001
http://dx.doi.org/10.1038/nphys1734
http://dx.doi.org/10.1038/nphys1734
http://dx.doi.org/10.1038/nphys1734
http://dx.doi.org/10.1038/nphys1734
http://dx.doi.org/10.1103/RevModPhys.86.1261
http://dx.doi.org/10.1103/RevModPhys.86.1261
http://dx.doi.org/10.1103/RevModPhys.86.1261
http://dx.doi.org/10.1103/RevModPhys.86.1261
http://dx.doi.org/10.1103/PhysRevLett.90.043601
http://dx.doi.org/10.1103/PhysRevLett.90.043601
http://dx.doi.org/10.1103/PhysRevLett.90.043601
http://dx.doi.org/10.1103/PhysRevLett.90.043601
http://dx.doi.org/10.1103/PhysRevLett.92.117903
http://dx.doi.org/10.1103/PhysRevLett.92.117903
http://dx.doi.org/10.1103/PhysRevLett.92.117903
http://dx.doi.org/10.1103/PhysRevLett.92.117903
http://dx.doi.org/10.1103/PhysRevLett.92.210403
http://dx.doi.org/10.1103/PhysRevLett.92.210403
http://dx.doi.org/10.1103/PhysRevLett.92.210403
http://dx.doi.org/10.1103/PhysRevLett.92.210403


WANG, ZHAN, BIAN, LI, ZHANG, AND XUE PHYSICAL REVIEW A 93, 052108 (2016)

[13] C. A. Fuchs and A. Peres, Phys. Rev. A 53, 2038 (1996).
[14] J. M. Renes and J. C. Boileau, Phys. Rev. Lett. 103, 020402

(2009).
[15] J. Erhart, S. Sponar, G. Sulyok, G. Badurek, M. Ozawa, and

Y. Hasegawa, Nat. Phys. 8, 185 (2012).
[16] G. Sulyok, S. Sponar, J. Erhart, G. Badurek, M. Ozawa, and

Y. Hasegawa, Phys. Rev. A 88, 022110 (2013).
[17] G. Sulyok, S. Sponar, Bülent Demirel, F. Buscemi, M. J. W.

Hall, M. Ozawa, and Y. Hasegawa, Phys. Rev. Lett. 115, 030401
(2015).

[18] C.-F. Li, J.-S. Xu, X.-Y. Xu, K. Li, and G.-C. Guo, Nat. Phys. 7,
752 (2011).

[19] R. Prevedel, D. R. Hamel, R. Colbeck, K. Fisher, and K. J.
Resch, Nat. Phys. 7, 757 (2011).

[20] L. A. Rozema, A. Darabi, D. H. Mahler, A. Hayat, Y. Soudagar,
and A. M. Steinberg, Phys. Rev. Lett. 109, 100404 (2012).

[21] M. M. Weston, M. J. W. Hall, M. S. Palsson, H. M. Wiseman,
and G. J. Pryde, Phys. Rev. Lett. 110, 220402 (2013).

[22] M. Ringbauer, D. N. Biggerstaff, M. A. Broome, A. Fedrizzi,
C. Branciard, and A. G. White, Phys. Rev. Lett. 112, 020401
(2014).

[23] F. Kaneda, S.-Y. Baek, M. Ozawa, and K. Edamatsu, Phys. Rev.
Lett. 112, 020402 (2014).

[24] L. Maccone and A. K. Pati, Phys. Rev. Lett. 113, 260401 (2014).
[25] Although the new uncertainty relations are valid for two-level

states (see more details in the Appendix), there is only one state
which is orthogonal to the qubit state and it is the optimal choice
for the first inequality, which becomes an identical equation.
The qutrit case displays more features of the new uncertainty
relations.

[26] W. Elion, M. Matters, U. Geigenmuller, and J. Mooij,
Nature (London) 371, 594 (1994).

[27] O. Nairz, M. Arndt, and A. Zeilinger, Phys. Rev. A 65, 032109
(2002).

[28] M. D. LaHaye, O. Buu, B. Camarota, and K. C. Schwab, Science
304, 74 (2004).

[29] A. Schliesser, O. Arcizet, R. Riviere, G. Anetsberger, and T. J.
Kippenberg, Nat. Phys. 5, 509 (2009).

[30] B. Jack, P. Aursand, S. Franke-Arnold, D. G. Ireland, J.
Leach, S. M. Barnett, and M. J. Padgett, J. Opt. 13, 064017
(2011).

[31] P. Xue, R. Zhang, H. Qin, X. Zhan, Z. H. Bian, J. Li, and B. C.
Sanders, Phys. Rev. Lett. 114, 140502 (2015).

[32] Z. H. Bian, J. Li, H. Qin, X. Zhan, R. Zhang, B. C. Sanders, and
P. Xue, Phys. Rev. Lett. 114, 203602 (2015).

[33] P. Xue, R. Zhang, Z. H. Bian, X. Zhan, H. Qin, and B. C. Sanders,
Phys. Rev. A 92, 042316 (2015).

[34] P. Xue, H. Qin, B. Tang, and B. C. Sanders, New J. Phys. 16,
053009 (2014).

[35] X. Zhan, X. Zhang, J. Li, Y. S. Zhang, B. C. Sanders, and
P. Xue, Phys. Rev. Lett. 116, 090401 (2016).

[36] X. Zhan, J. Li, H. Qin, Z. H. Bian, and P. Xue, Opt. Exp. 23,
18422 (2015).

[37] J. Ahrens, E. Amselem, A. Cabello, and M. Bourennane,
Sci. Rep. 3, 2170 (2013).

[38] D. J. Rowe, B. C. Sanders, and H. de Guise, J. Math. Phys. 40,
3604 (1999).

[39] H. P. Yuen, Phys. Rev. Lett. 51, 719 (1983).
[40] M. Ozawa, Phys. Rev. Lett. 60, 385 (1988).
[41] J. Maddox, Nature (London) 331, 222 (1988).

052108-8

http://dx.doi.org/10.1103/PhysRevA.53.2038
http://dx.doi.org/10.1103/PhysRevA.53.2038
http://dx.doi.org/10.1103/PhysRevA.53.2038
http://dx.doi.org/10.1103/PhysRevA.53.2038
http://dx.doi.org/10.1103/PhysRevLett.103.020402
http://dx.doi.org/10.1103/PhysRevLett.103.020402
http://dx.doi.org/10.1103/PhysRevLett.103.020402
http://dx.doi.org/10.1103/PhysRevLett.103.020402
http://dx.doi.org/10.1038/nphys2194
http://dx.doi.org/10.1038/nphys2194
http://dx.doi.org/10.1038/nphys2194
http://dx.doi.org/10.1038/nphys2194
http://dx.doi.org/10.1103/PhysRevA.88.022110
http://dx.doi.org/10.1103/PhysRevA.88.022110
http://dx.doi.org/10.1103/PhysRevA.88.022110
http://dx.doi.org/10.1103/PhysRevA.88.022110
http://dx.doi.org/10.1103/PhysRevLett.115.030401
http://dx.doi.org/10.1103/PhysRevLett.115.030401
http://dx.doi.org/10.1103/PhysRevLett.115.030401
http://dx.doi.org/10.1103/PhysRevLett.115.030401
http://dx.doi.org/10.1038/nphys2047
http://dx.doi.org/10.1038/nphys2047
http://dx.doi.org/10.1038/nphys2047
http://dx.doi.org/10.1038/nphys2047
http://dx.doi.org/10.1038/nphys2048
http://dx.doi.org/10.1038/nphys2048
http://dx.doi.org/10.1038/nphys2048
http://dx.doi.org/10.1038/nphys2048
http://dx.doi.org/10.1103/PhysRevLett.109.100404
http://dx.doi.org/10.1103/PhysRevLett.109.100404
http://dx.doi.org/10.1103/PhysRevLett.109.100404
http://dx.doi.org/10.1103/PhysRevLett.109.100404
http://dx.doi.org/10.1103/PhysRevLett.110.220402
http://dx.doi.org/10.1103/PhysRevLett.110.220402
http://dx.doi.org/10.1103/PhysRevLett.110.220402
http://dx.doi.org/10.1103/PhysRevLett.110.220402
http://dx.doi.org/10.1103/PhysRevLett.112.020401
http://dx.doi.org/10.1103/PhysRevLett.112.020401
http://dx.doi.org/10.1103/PhysRevLett.112.020401
http://dx.doi.org/10.1103/PhysRevLett.112.020401
http://dx.doi.org/10.1103/PhysRevLett.112.020402
http://dx.doi.org/10.1103/PhysRevLett.112.020402
http://dx.doi.org/10.1103/PhysRevLett.112.020402
http://dx.doi.org/10.1103/PhysRevLett.112.020402
http://dx.doi.org/10.1103/PhysRevLett.113.260401
http://dx.doi.org/10.1103/PhysRevLett.113.260401
http://dx.doi.org/10.1103/PhysRevLett.113.260401
http://dx.doi.org/10.1103/PhysRevLett.113.260401
http://dx.doi.org/10.1038/371594a0
http://dx.doi.org/10.1038/371594a0
http://dx.doi.org/10.1038/371594a0
http://dx.doi.org/10.1038/371594a0
http://dx.doi.org/10.1103/PhysRevA.65.032109
http://dx.doi.org/10.1103/PhysRevA.65.032109
http://dx.doi.org/10.1103/PhysRevA.65.032109
http://dx.doi.org/10.1103/PhysRevA.65.032109
http://dx.doi.org/10.1126/science.1094419
http://dx.doi.org/10.1126/science.1094419
http://dx.doi.org/10.1126/science.1094419
http://dx.doi.org/10.1126/science.1094419
http://dx.doi.org/10.1038/nphys1304
http://dx.doi.org/10.1038/nphys1304
http://dx.doi.org/10.1038/nphys1304
http://dx.doi.org/10.1038/nphys1304
http://dx.doi.org/10.1088/2040-8978/13/6/064017
http://dx.doi.org/10.1088/2040-8978/13/6/064017
http://dx.doi.org/10.1088/2040-8978/13/6/064017
http://dx.doi.org/10.1088/2040-8978/13/6/064017
http://dx.doi.org/10.1103/PhysRevLett.114.140502
http://dx.doi.org/10.1103/PhysRevLett.114.140502
http://dx.doi.org/10.1103/PhysRevLett.114.140502
http://dx.doi.org/10.1103/PhysRevLett.114.140502
http://dx.doi.org/10.1103/PhysRevLett.114.203602
http://dx.doi.org/10.1103/PhysRevLett.114.203602
http://dx.doi.org/10.1103/PhysRevLett.114.203602
http://dx.doi.org/10.1103/PhysRevLett.114.203602
http://dx.doi.org/10.1103/PhysRevA.92.042316
http://dx.doi.org/10.1103/PhysRevA.92.042316
http://dx.doi.org/10.1103/PhysRevA.92.042316
http://dx.doi.org/10.1103/PhysRevA.92.042316
http://dx.doi.org/10.1088/1367-2630/16/5/053009
http://dx.doi.org/10.1088/1367-2630/16/5/053009
http://dx.doi.org/10.1088/1367-2630/16/5/053009
http://dx.doi.org/10.1088/1367-2630/16/5/053009
http://dx.doi.org/10.1103/PhysRevLett.116.090401
http://dx.doi.org/10.1103/PhysRevLett.116.090401
http://dx.doi.org/10.1103/PhysRevLett.116.090401
http://dx.doi.org/10.1103/PhysRevLett.116.090401
http://dx.doi.org/10.1364/OE.23.018422
http://dx.doi.org/10.1364/OE.23.018422
http://dx.doi.org/10.1364/OE.23.018422
http://dx.doi.org/10.1364/OE.23.018422
http://dx.doi.org/10.1038/srep02170
http://dx.doi.org/10.1038/srep02170
http://dx.doi.org/10.1038/srep02170
http://dx.doi.org/10.1038/srep02170
http://dx.doi.org/10.1063/1.532911
http://dx.doi.org/10.1063/1.532911
http://dx.doi.org/10.1063/1.532911
http://dx.doi.org/10.1063/1.532911
http://dx.doi.org/10.1103/PhysRevLett.51.719
http://dx.doi.org/10.1103/PhysRevLett.51.719
http://dx.doi.org/10.1103/PhysRevLett.51.719
http://dx.doi.org/10.1103/PhysRevLett.51.719
http://dx.doi.org/10.1103/PhysRevLett.60.385
http://dx.doi.org/10.1103/PhysRevLett.60.385
http://dx.doi.org/10.1103/PhysRevLett.60.385
http://dx.doi.org/10.1103/PhysRevLett.60.385
http://dx.doi.org/10.1038/331222a0
http://dx.doi.org/10.1038/331222a0
http://dx.doi.org/10.1038/331222a0
http://dx.doi.org/10.1038/331222a0



