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Although progress has been made recently in defining nontrivial uncertainty limits for the SU(2) group, a
description of the intermediate states bound by these limits remains lacking. In this paper we enumerate possible
uncertainty relations for the SU(2) group that involve all three observables and that are, moreover, invariant
under SU(2) transformations. We demonstrate that these relations however, even taken as a group, do not provide
sharp, saturable bounds. To find sharp bounds, we systematically calculate the variance of the SU(2) operators
for all pure states belonging to the N = 2 and N = 3 polarization excitation manifold (corresponding to spin 1
and spin 3/2). Lastly, and perhaps counter to expectation, we note that even pure states can reach the maximum
uncertainty limit.
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I. INTRODUCTION

The algebra of SU(2) is ubiquitous in Physics, describing,
among other phenomena, the angular momentum character-
istics of atomic systems. Formally equivalent to the angular
momentum operators, the Stokes parameters describe the
polarization state of light. In classical optics, the degree of
polarization has been defined as the length of the Stokes vector.
This quantitative measure of polarization has been found to
be insufficient in the quantum domain; states which appear
unpolarized have been shown to possess polarization structure
via higher- (than dipolar) order correlation measurements
[1–3]. Thus it is essential to consider quantum fluctuations
of the Stokes operators to arrive at an operationally adequate
description of polarization in the quantum domain. Moreover,
quantum fluctuations of angular momentum operators, and
hence their associated uncertainty relations, also play a crucial
role in metrology, where they define the ultimate limit to
the resolution of interferometric measurements [4–6]. In
this paper, we study the second-order statistics to arrive at
nontrivial limits for the uncertainty relation for the Stokes
observables and detail the states that reside within these limits.

In some sense the uncertainty relations in quantum me-
chanics embody the departure from the classical world. They
describe the impossibility of simultaneous sharp preparations
of incompatible observables as embodied in the Robertson-
Schrödinger (RS) uncertainty relations [7,8]. Since the SU(2)
group has three mutually incompatible generators, one can
write three different uncertainty relations for different pairs of
observables using the RS inequalities. However, a more natural
uncertainty relation involving all three generators cannot be
arrived at by using only their commutation relations. Moreover,
in contrast to the canonical uncertainty relations involving
position and momentum observables, �x�px � �/2, the
uncertainty relations for the SU(2) group give state-dependent
bounds which can lead to trivial results. Below we present a
framework to address these issues.

Noncanonical uncertainty relations have been studied in
various ways. One approach has considered the states saturat-
ing the RS uncertainty relation [9–11] named as “intelligent
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states” [9]. However, although the class of intelligent states
seems to have applications in interferometry with sensitivity
below the shot-noise level [12,13], they don’t seem to have
attracted the experimentalists’ fancy. Another approach has
been to form weighted uncertainty relations [14]. These some-
times provide sharper bounds than the Robertson-Schrödinger
relations, but at the expense of weighing the operators un-
equally. An experimental justification for doing so is presently
lacking. In [15] uncertainty limits were derived for an arbitrary
number of noncommuting observables, but the limits were
state dependent, just as in the intelligent state approach.
Pati et al. [16] have used another approach and derived the
uncertainty limits for a joint measurement of many identical
copies of a certain state. They have shown that such a joint
measurement of N identical systems will have an uncertainty
a factor of N−1/2 smaller than if each of the N systems were
measured individually and these N measurement values were
used to estimate the value of the measured observable.

Our approach in this work is to some extent similar to
Wünsche’s who has derived higher-order uncertainty relations
for a variety of algebras from invariants [17]. Specifically,
much of the algebra needed to derive our relations is found
in [6], where the authors looked at the ultimate measure-
ment precision of angular momentum operators, which apart
from a factor of 1/2 are identical to the Stokes operators.
The alternative method of quantifying uncertainties via en-
tropic uncertainty relations has also been studied extensively
[18–20]; however, here we restrict ourselves to nonentropic
measures.

II. STOKES OPERATORS AND THEIR
UNCERTAINTY RELATIONS

For the monochromatic field of light in two orthogonal
modes, the Stokes operators [21,22] can be succinctly repre-
sented as

Ŝμ = (â†
R â

†
L) σμ

(
âR

âL

)
, (1)

where âR and âL are the annhilation operators of right-
(R) and left-handed (L) circular polarization modes. The
Greek letter μ runs from 0 to 3 with σ0 = 1, and σk ,
k ∈ {1,2,3}, are the Pauli matrices. The Casimir operator Ŝ0
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then defines the total number of photons, and the Stokes vector
〈Ŝ〉 = 〈Ŝ1,Ŝ2,Ŝ3〉 indicates the polarization in horizontal &
vertical, diagonal & antidiagonal, and left- & right-circular
modes, respectively. (The Schwinger boson representation
of the angular momentum operators are smaller than the
Stokes operators by a factor of 1/2, but otherwise identical.)
Using these operators, the Stokes operator in an arbitrary
(normalized) direction n on the Poincaré sphere can be written
Ŝn = Ŝ · n.

Ŝk satisfy the commutation relations of the SU(2) alge-
bra: [Ŝk,Ŝl] = iεklmŜm, where εklm is the Levi-Civita fully
antisymmetric tensor. Since the commutation relation is state
dependent, so is the uncertainty limit for the Stokes (or angular
momentum) operators

�Sk�Sl � 1
2 |εklm〈Ŝm〉|, (2)

where �Sk = (〈Ŝ2
k 〉 − 〈Ŝk〉2)1/2. Thus the uncertainty limit

depends on the state, as mentioned above.
Complete second-order statistics of the polarization ob-

servables can be extracted from the 3 × 3 covariance matrix
� [6,23,24], where

�kl = 〈ŜkŜl + Ŝl Ŝk〉/2 − 〈Ŝk〉〈Ŝl〉. (3)

It’s utility stems from its simple connection to measurements
and, furthermore, it’s Hermitian by construction. Since it is a
second-rank tensor, we can readily define three invariants; the
determinant, the sum of the principle minors, and the trace.
Expressed in terms of the (real and non-negative) eigenvalues
λk of �, k ∈ {1,2,3}, these can be used to form state-dependent
uncertainty relations, viz.

0 � λ1λ2λ3 �
〈
Ŝ3

0 (Ŝ0 + 2)3
〉
/27, (4)

Ŝ2
0 � λ1λ2 + λ2λ3 + λ3λ1 �

〈
Ŝ2

0 (Ŝ0 + 2)2〉/3, (5)

2〈Ŝ0〉 � λ1 + λ2 + λ3 � 〈Ŝ0(Ŝ0 + 2)〉. (6)

The eigenvalues λk are the principal variances in the above
equations. If we use the corresponding orthonormal eigenvec-
tors �k of the covariance matrix on the Poincaré sphere, then
the variance of the Stokes operator Ŝn can be written as

(�Ŝn)2 =
3∑

k=1

(�k · n)2 λk. (7)

This implies that, e.g., the smallest (largest) of the three
eigenvalues for a certain state will define the smallest (largest)
Stokes operator variance under any polarization rotation of the
state. However, while the relations (4)–(6) are state dependent,
all three relations are invariant under any polarization trans-
formation. We will come back to this important point below.

Equation (6) is the more restrictive among the three
uncertainty relations enumerated above. For example, the
lower limit of (4) follows from the non-negativity of the
eigenvalues, and this limit is reached for all SU(2) coherent
states that are eigenstates of one of the Stokes operators
and thus have zero variance in that observable. Given the
constraint λ1 + λ2 + λ3 � 〈Ŝ0(Ŝ0 + 2)〉 from (6) and the fact
that the eigenvalues are real and non-negative, choosing the
eigenvalues to be equal, i.e., 〈Ŝ0(Ŝ0 + 2)〉/3, will maximize
their product. The upper limit of (4) follows, and this limit is

reached by pure states such as the polarization NOON states
(|N,0〉 + |0,N〉)/√2 which is perhaps counterintuitive since
one would expect the uncertainty to be maximum for only
mixed states. To derive the lower limit of (5) one notes that
all three bilinear uncertainty terms are non-negative, so to
minimize the sum, the best one can do with a term is to make
it vanish. If one of the principal variances, say λ1, is zero, two
of the terms vanish and do not contribute to the sum. However,
this implies that the state in question is an eigenstate of Ŝ1,
which in turn implies that λ2 = λ3. To get the lower limit for (5)
we should now try to simultaneously minimize λ2 and λ3. We
therefore look at the lower limit of (6) from which we find that
the smallest permissible value for λ2 = λ3 is S0, which inserted
in (5) defines its lower limit. To find the upper limit of (5) we
see that the maximum under the sum constraint (6) is reached
when λ1 = λ2 = λ3 and using the upper limit (6) we see that
the maximum hence is reached when all eigenvalues equal
S0(S0 + 2)/3. Inserting this into (5) leads to its upper limit. In
the following we utilize (6) and in particular the fact that the
trace operation is basis independent, so the sum of the Stokes
operator variances is equal to the sum of the principal variances
and is constant, invariant of any polarization transformation of
the state. We use this invariance to demonstrate the uncertainty
structure of all pure states for a given excitation manifold.
However, Eqs. (4)–(6) are not particularly “sharp” in denoting
what principal variance triplets (λ1,λ2,λ3) are permissible.
As an example, the triplet (0.75,0.75,2.5) satisfies all three
equations, but no pure, two-photon state has this particular
variance triplet.

III. POINCARÉ SPHERE AND THE MAJORANA
REPRESENTATION

The Poincaré sphere affords an elegant pictorial represen-
tation of the polarization state of light. Each of the Stokes
operators define the polarization of the state along the three
coordinate axes of the Poincaré sphere. The polarization
characteristics of a single photon are represented by a point
on, or within, the surface of the Poincaré sphere. For N > 1,
any pure, two-mode state can be represented on the Poincaré
sphere via its Majorana representation [25,26] which maps the
N -photon state as N points on the surface of the sphere. We
know that any general, pure, two-mode N -photon state can be
expressed as

|�N 〉 =
N∑

n=0

cN |n,N − n〉 ≡
N∑

n=0

cN |nR,nL〉

= 1√
N

N∏
n=1

[cos(θn/2)â†
R + eiφn sin(θn/2)â†

L]|0,0〉, (8)

where N is the normalization factor [27,28]. (The two mode
Fock-state |nR,nL〉 can be converted into the spin notation
|S,m〉 by using nR = S + m and nL = S − m, where S =
N/2.) Each of the factors in the above equation can be
represented as a point on the Poincaré sphere with coordinates
[sin(θn) cos(φn), sin(θn) sin(φn), cos(φn)]. For example, the
Majorana representation of an N -photon, SU(2) coherent
state, |�SU(2)〉 = (N !)1/2(â†

R)N |0,0〉, is a collection of N points
stacked on top of each other at the North pole of the Poincaré
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sphere, in line with the intuitive description of SU(2) coherent
states as exhibiting the most classical behavior with their
Stokes vector pointing in one particular direction.

At the opposite end, SU(2) maximally unpolarized, pure
states have vanishing Stokes vector and isotropic variance
(for N > 3). That is to say their polarization, up to second
order, points nowhere [26,29]. The Majorana representation
of these states is comprised of points spread as symmetrically
as possible over the surface of the Poincaré sphere. For
certain excitations greater than 3, these points form the
vertices of the platonic solids. Somewhere in-between these
two extremes is the N -photon NOON state, |�NOON〉 =
(2N !)1/2[(â†

R)N + (â†
L)N ]|0,0〉 which can be represented by

N equidistant points along the equator. It is because of
this configuration that such NOON states have the highest
sensitivity to small rotations about Ŝ3 [29], thus underscoring
their metrological importance. Similar to the biphotons |1,1〉
generated in spontaneous parametric down conversion, the
NOON states manifest hidden polarization [1] for N � 2.
All of these have vanishing Stokes vector but do indeed
show polarization structure with higher-order polarization
correlation measurements such as the variance.

IV. N = 2 ORBITS AND VARIANCE

In terms of the Stokes operators any general, linear
polarization transformation can, e.g., be written as

ÛPol = exp(iαŜ3) exp(iβŜ2) exp(iγ Ŝ3). (9)

Such transformations rotate the input state around Ŝ3 by an
angle 2γ , followed by a rotation around Ŝ2 by 2β followed by a
final rotation again around Ŝ3 by 2α. From this two conclusions
follow. First, an SU(2) transformation rigidly rotates the
configuration of the points represented by (8), resulting in a
different state on the same SU(2) orbit as the original state. To
state explicitly, an orbit is the locus of SU(2) transformations
for a particular state. Described another way, an orbit is
a set of all states that are mutually convertible via SU(2)
transformations. Second, different orbits are parametrized by
different relative orientations of the Majorana points with
respect to each other on the Poincaré sphere. For N = 2, there
is only one relevant parameter governing the orientation of the
two points with respect to each other—the angle θ subtended
by the two points at the center of the sphere. The most general
representation of the N = 2 orbit generating state can thus be
given by fixing one of its Majorana points at the North pole and
constraining the other to move on the Greenwich-Meridian.
This allows us to write the orbit generating state for the N = 2
manifold as

|�2〉 = 1√
N

â
†
R[cos(θ/2)â†

R + sin(θ/2)â†
L]|0,0〉, (10)

where 0 � θ � π .
Consequently, states with different θ lie on different SU(2)

orbits. By definition, states on the same SU(2) orbits have
the same properties for invariants such as the Stokes operator
principal variance sum (6). As mentioned in Sec. II, this sum,
being the trace of a tensor, is always equal to the sum of the
variances for any state. Hence (�S1)2 + (�S2)2 + (�S3)2 is a
constant on every orbit.

We know that the N -photon SU(2) coherent states and the
N -photon NOON states saturate the lower and upper limits
of Eq. (6), respectively. [Choosing θ = π in Eq. (10) defines
the state |1,1〉, which can be transformed into the two-photon
NOON state by an SU(2) rotation. This is particular only to
the N = 2 excitation manifold.] To study the intermediate
states, we calculate the covariance matrix from the orbit
generating state as a function of the orbit generating parameter
θ . The eigenvalues of the covariance matrix (λ1,λ2,λ3) give
the extrema of the Stokes operator variances. These can be
physically permuted by applying an SU(2) transformation that
rotates the state around a particular Stokes-operator axis by
±π/2. In variance space formed by the axes (�S1)2, (�S2)2,
and (�S3)2, using permutations of eigenvalues as the vertices,
the so-constructed polygon is the convex hull of the allowed
variances for a given orbit (Fig. 1). Thus all the points inside
the polygon including the border are reachable from any other
point on the polygon via an SU(2) transformation.

If the eigenvalues are threefold degenerate, λ1 = λ2 = λ3,
one obtains a point. In other words the states on such an
orbit have isotropic variance over the Poincaré sphere that
will not change under any SU(2) rotation. Doubly degenerate
eigenvalues lead to a triangle in variance space. Due to the
fact that the sum of the three variances is a constant, the
triangle’s surface normal will point in the direction (1,1,1)
in the variance space, thus keeping the variance sum constant
on the triangle surface. In the case of no eigenvalue degeneracy,
the orbit defines a triangle with chopped corners (in general,
an irregular hexagon) in variance space, again oriented in
the (1,1,1) direction. Finally, to obtain the whole volume
of allowed variances, polygons for different orbit parameter
values θ in Fig. 1 are stacked on top of each other, and the hull
of the stacked polygons is drawn. For the N = 2 excitation
manifold the stacking is relatively easy to do, as we know that
the sum variance, that determines the distance between each

FIG. 1. Convex hull of the allowed variances. The eigenvalues of
the covariance matrix form the vertices of the polygons. In case of
threefold degeneracy, the point in the middle is obtained. A triangle
is formed in the case of twofold degeneracy via cyclic permutation
of the eigenvalues. If all three eigenvalues are distinct, one obtains
an irregular hexagon. For N � 3, the figure also demonstrates the
situation of overlapping orbits (for more information, see text).
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FIG. 2. (a) Permissible uncertainty values for the N = 2 exci-
tation manifold. The volume is formed by stacking the obtained
polygons in Fig. 1. (b) Top view with surface normal in the (1,1,1)
direction corresponds to the orbit for the NOON state. (c) Side view.
(d) Bottom view with surface normal again in the (1,1,1) direction.
The drawn triangle shows the orbit for the SU(2) coherent state.

polygon’s center and the origin in Fig. 2, is monotonically
increasing with an increase of the orbit generating parameter
θ in the interval 0 � θ � π .

Figure 2 shows the shape of the volume in which all
permissible triplets of variances [(�S1)2,(�S2)2,(�S3)2] must
lie for N = 2. Any cross section normal to the variance space
diagonal is a polygon circumscribing the allowed variances for
a specific orbit. The polygon closest to the origin is a triangle,
with the variance sum 4 and the vertices (2,2,0), (2,0,2), and
(0,2,2). As expected, it represents the SU(2) coherent state
|2,0〉 and its SU(2) orbit. The polygon furthest from the origin
is also a triangle, with variance sum 8 and the vertices at
(4,4,0), (4,0,4), and (0,4,4). This triangle represents the state
|1,1〉 and its orbit. On each orbit one can quite obviously find
a state which has (�S1)2 = (�S2)2 = (�S3)2. However, for
N = 2 the parameter space is too small to allow for complete
isotropy, that is, an orbit with invariant Stokes variances.

V. N = 3 ORBITS AND VARIANCE

The Majorana representation of three points corresponds
to a triangle on the surface of the Poincaré sphere, and as a
result the orbit generating state for N = 3 is a function of three
parameters. Following the same idea as for the N = 2 case,
we fix one point on the North pole (θ1 = φ1 = 0). The second
point is constrained to move on the Greenwich-Meridian (φ2 =
0) and the third point is nominally allowed all possible θ and φ

configurations. Accordingly, the orbit generating state for the
N = 3 manifold is given as follows:

|�3〉 = 1√
N

â
†
R[cos(θ2/2)â†

R + sin(θ2/2)â†
L]

× [cos(θ3/2)â†
R + eiφ3 sin(θ3/2)â†

L]|0,0〉, (11)

where one can use the restriction θ2 � θ1 to eliminate some of
the degeneracy this parametrization leads to. It is also possible
to restrict φ � π since point configurations obeying mirror
symmetry define identical uncertainty limits although they

FIG. 3. (a) Permissible uncertainty volume for the N = 3 mani-
fold. (b) Top view with surface normal in the (1,1,1) direction. The
drawn triangle shows the orbit for the NOON state. (c) Side view.
(d) Bottom view with surface normal again in the (1,1,1) direction.
The orbit for the SU(2) coherent state is shown.

don’t belong to the same orbit. The stacking of the polygons
is a bit trickier in this case, as different combinations of the
orbit generating states parameter may result in overlapping
orbits (that is, orbits with the same variance sum). An explicit
example is given in Fig. 1.

We see that the permissible uncertainty values for N = 3
(Fig. 3) has a similar structure as for the N = 2 case (Fig. 2).
However, as just mentioned, one of the primary distinctions is
that in contrast to the N = 2 case, the cross section normal to
the space diagonal is composed of two or more overlapping
orbits. As a consequence, different orbits may have the same
variance sum as illustrated in Fig. 1 where, e.g., one orbit could
have its permissable variances bounded by a triangle, while a
different orbit with the same sum variance may be bounded by
a irregular hexagon. Thus equal sum variance is not a sufficient
condition for two states to be on the same orbit and thus be
mutually transformable via an SU(2) transformation.

An interesting class of states

|ηN 〉 = η|N,0〉 +
√

1 − η2|0,N〉, (12)

where

η =
√

1

2
(1 ±

√
(N − 1)/N ), (13)

emerges in the N � 3 excitation manifolds. These states
have the Stokes vector [0,0,N (2η2 − 1)], but have isotropic
variance

�Ŝ2
n = N, (14)

for any SU(2) transformation ÛPol where Ŝn = Û
†
PolŜ1ÛPol.

Such states are thus uniform (variance) states [26] and their
orbit is represented by a point in the variance coordinate
system. However, as their Stokes vector does not vanish,
they are not “anticoherent” [26], i.e., they are not uniform
states with vanishing mean polarization. These states may be
interesting for polarimetric applications since their variance
does not change with the rotation of the Stokes vector.
In contrast, maximally unpolarized, pure states [29] have
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vanishing Stokes vector and isotropic variance. However,
states unpolarized to second order can only be found for N = 4
and N � 6 [29].

For N = 3 the uniform state can be written as

|η3〉 = (0.30291,0,0,0.95302), (15)

expressed in the basis {|0,3〉,|1,2〉,|2,1〉,|3,0〉}, with a nonva-
nishing Stokes vector (0,0,2.4495). If the state is rotated such
that one Majorana point lies at the North pole, and another
along the Greenwich meridian, then the state’s Majorana points
are defined by the angles θ1 = 0, θ2 = θ3 ≈ 107.5◦, φ2 = 0,
and φ3 ≈ 115.47◦.

This state has the same variance sum (�Ŝ2
1 + �Ŝ2

2 +
�Ŝ2

3 = 9) as the state (0,0.5704,0.7914,0.2199) that lies
on another orbit. The latter state’s principal variances are
λ1 = 1.1637, λ2 = 1.8990, and λ3 = 5.9373. Thus the state’s
associated variance orbit is an irregular hexagon. These two
states demonstrate the concept of different orbits’ overlapping
sum variance, as illustrated in Fig. 1.

VI. CONCLUSIONS

In conclusion, we have illustrated the permissible Stokes
operator variances for all pure states for the N = 2 and N = 3
manifold. The obtained figures are surprisingly involved and
show that uncertainty relations such as (2) or (4)–(6) have
limited value. Since the Stokes operators obey the SU(2)
algebra, all such operators, for instance the angular momentum
operators, will be restricted to the same, or proportionally
scaled, uncertainty volumes. The method is extendible to
higher excitation manifolds, but gets progressively difficult. As
as example, for the N = 4 excitation manifold, one can define
the orbit generating state in the same way as for the N = 2 and
N = 3 cases. The orbit generating state will then be a function

of five parameters and all distinct orbits will correspond to
distinct Majorana point quadrilaterals on the Poincaré sphere.
The difficulty however lies in defining angular limits that result
in distinct orbits. An alternative approach is to generate a
point cloud sampled sufficiently densely over all orbits and
all polarization transformations (which adds another three
parameters). Such an analytically simplistic strategy comes
at the expense of significantly increased computation time.

We have highlighted a simple method to check whether
states lie on the same SU(2) orbits and are connected via linear
polarization transformations in terms of the equivalence of
their Majorana representations. This provides a first check for
identifying realizable quantum experiments [30] (excluding
postselection) in the domain of quantum optics. In this context,
consequently, the sum uncertainty relation equation (6) pro-
vides useful experimental information; given different values
for the uncertainty sum for the initial and required states, one
can be sure that (excluding all nonunitary processes such as
postselection, etc.) there can no be experimental realization
that creates the required state from the initial.

Lastly, pertaining to mixed states we find that although their
uncertainty is also bounded by the limits in (6), they do not
always lie inside the shown uncertainty volumes.

Note added. Recently, the work of Dammeier et al. [31]
which has a few results similar to this paper, was brought to
our attention.
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