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Ferromagnetism in a repulsive atomic Fermi gas with correlated disorder
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We investigate the zero-temperature ferromagnetic behavior of a two-component repulsive Fermi gas in the
presence of a correlated random field that represents an optical speckle pattern. The density is tuned so that the
(noninteracting) Fermi energy is close to the mobility edge of the Anderson localization transition. We employ
quantum Monte Carlo simulations to determine various ground-state properties, including the equation of state,
the magnetic susceptibility, and the energy of an impurity immersed in a polarized Fermi gas (repulsive polaron).
In the weakly interacting limit, the magnetic susceptibility is found to be suppressed by disorder. However, it
rapidly increases with the interaction strength, and it diverges at a much weaker interaction strength compared to
the clean gas. Both the transition from the paramagnetic phase to the partially ferromagnetic phase, and the one
from the partially to the fully ferromagnetic phase, are strongly favored by disorder, indicating a case of order
induced by disorder.
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Understanding the phenomena induced by the interactions
in fermionic systems exposed to strong enough disorder to
cause the Anderson localization of the single-particle states
[1] (a regime which has been referred to as Fermi glass
[2,3]) is one of the most relevant problems in condensed
matter physics [4–6]. Following the first observations of the
Anderson localization of matter waves [7–10], the experiments
performed with ultracold atoms exposed to optical speckle
patterns have emerged as the ideal platform to explore the
intricate interplay between disorder and interactions in a
controllable setup [11–16]. Not only can experimentalists
tune the interaction strength [17], but they can also control
the disorder amplitude and manipulate its spatial correlations
[18]. Some recent theoretical and computational advancements
have allowed scientists to precisely determine the mobility
edge (namely, the energy threshold separating the localized
single-particle orbitals from the extended ones) using realistic
models of the speckle pattern [19–21], thus paving the
way to a quantitative comparison with accurate experimental
measurements [22]. While these previous theoretical studies
have addressed systems of noninteracting particles, in this
Rapid Communication we employ quantum Monte Carlo
simulations within the fixed-node approximation to investigate
the zero-temperature properties of disordered and interacting
Fermi gases. In particular, we consider a two-component
mixture with short-range repulsive interspecies interactions
which is exposed to a blue-detuned isotropic optical speckle
pattern [23,24]. We model this system using a realistic
continuous-space Hamiltonian that takes into account the
spatial correlations of the speckles.

Our main interest is to inspect what impact the disorder has
on the so-called Stoner instability [25], namely, the ferromag-
netic transition which is supposed to occur in clean Fermi
gases when the interatomic repulsion becomes sufficiently
strong. The Stoner instability is one of the standard paradigms
in the theory of quantum magnetism. It was proposed as the
minimal model to explain itinerant ferromagnetism in certain
transition metals. Being a strong-interaction phenomenon, its
nature and even its subsistence are still controversial. So far, in
solid-state systems it has not been possible to unambiguously

identify the Stoner mechanism. Instead, the results of a very
recent cold-atom experiment [26] (in which the problems
related to the three-body recombinations [27–29] have been
circumvented by preparing a configuration with fully separated
components [30]) are consistent with the spin fluctuations
expected in the vicinity of the Stoner instability [31] and with
the quantum Monte Carlo predictions for the critical repulsion
strength in clean systems [32–34].

In this Rapid Communication, we analyze the zero-
temperature ferromagnetic behavior of the disordered repul-
sive Fermi gas, determining the critical interaction strength
of the Stoner instability in the presence of disorder. We
address both the transition from the paramagnetic phase to the
partially ferromagnetic phase, and the one from the partially
ferromagnetic to the fully ferromagnetic phase. The gas
density and the disorder amplitude are tuned so that the Fermi
energy of the noninteracting (balanced) gas is approximately
close to the mobility edge. This (somewhat arbitrary) choice
is motivated by the fact that close to the mobility edge
the single-particle orbitals display multifractal properties, a
feature which is expected to enhance the interaction effects
[35]. In order to figure out the ferromagnetic behavior, we
compute the zero-temperature equation of state as a function
of the interaction strength and of the population imbalance,
we extract the spin susceptibility, and we determine the energy
of a single impurity immersed in a single-component Fermi
gas. We find that in the presence of disorder these quantities
vary with the interaction strength quite differently compared
to the clean gas. More specifically, the magnetic susceptibility
is suppressed by the disorder if the repulsion is weak, but
it increases with the interaction strength much more rapidly
than in the clean gas. The critical interaction strength where
it diverges—which signals the instability towards the partially
ferromagnetic phase—is much smaller than in the absence
of disorder. The polaron energy is also strongly influenced
by disorder, and the critical interaction strength at which it
exceeds the chemical potential of the majority component—
which signals the transition to the fully ferromagnetic phase—
is significantly weaker than in the clean gas. These results
indicate that disorder strongly favors the onset of ferromag-
netic behavior.
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The disordered Fermi gas we consider is described by the
following Hamiltonian:

H =
∑

σ=↑,↓

Nσ∑

iσ =1

[−�∇2
iσ

+ V (riσ )
] +

∑

i↑,i↓

v(ri↑i↓ ) , (1)

where m is the atomic mass, � is the reduced Planck constant,
and we introduced � = �

2/2m. The indices i↑ and i↓ label
atoms of the two species, hereafter referred to as spin-up and
spin-down particles. The distance between unlike fermions is
ri↑i↓ = |ri↑ − ri↓ |. The total number of fermions is N = N↑ +
N↓, and the polarization is defined as P = (N↑ − N↓)/N . The
system is enclosed in a cubic box of size L with periodic
boundary conditions. v(r) is a model potential that describes
the short-range (interspecies) interactions. In a sufficiently
dilute and cold gas, the interaction strength is parametrized
just by the s-wave scattering length a (this parameter can be
tuned experimentally using Feshbach resonances [17]), while
the other details of the interatomic potential, such as, e.g.,
the effective range reff and the p-wave scattering length ap,
are irrelevant. We choose the hard-sphere model: v(r) = +∞
if r < R0 and zero otherwise; in this case, one has a =
R0,reff = 2a/3, and ap = a. The possible nonuniversal effects
due to the details beyond a have been thoroughly analyzed in
Refs. [33,34,36–38] using different models for the interatomic
interactions, including the zero-range pseudopotential. While
these works considered homogeneous Fermi gases, in Ref.
[39] the universality has been studied in the presence of
periodic optical lattices, which induce pronounced spatial
inhomogeneities of the density, as the speckle disorder does.
Both in the homogeneous and in the nonhomogeneous case,
it was found that the equation of state (and, hence, the critical
interaction strength for the Stoner instability) is affected
by about 10% in the strong-interaction regime kF a � 1,
where kF = (3π2n)1/3 is the Fermi wave vector defined with
the average density n = N/L3, and that these nonuniversal
effects rapidly vanish for weaker interactions. In this Rapid
Communication, we consider the disordered Fermi gas in the
moderate interaction regime kF a � 1, where we expect the
nonuniversal effects not to play a significant role.

V (r) is an external random field representing a blue-detuned
isotropic optical speckle pattern; such a random optical field
can be experimentally realized by shining lasers through a dif-
fusive plate [11,12]. In the case of a blue-detuned optical field,
the atoms experience a repulsive potential with the exponential
local-intensity distribution: Pbd(V ) = exp (−V/Vdis)/Vdis, if
the local intensity is V � 0, and Pbd(V ) = 0 otherwise [23].
The parameter Vdis � 0 fixes both the spatial average of the
random field Vdis = 〈V (r)〉 and its standard deviation, so that
V 2

dis = 〈V (r)2〉 − 〈V (r)〉2; therefore, Vdis is the parameter that
characterizes the global disorder amplitude. The two-point
spatial correlations of the speckle field depend on the profile
of the illumination on the diffusive plate and on the details
of the optical setup. We consider the idealized case where
the spatial correlations are isotropic, being described by
the following correlation function [19]: �(r = |r|) = 〈V (r′ +
r)V (r′)〉/V 2

dis − 1 = [sin(r/σ )/(r/σ )]2 (here we assume av-
eraging over the position of the first point r′). The function
�(r) rapidly decreases with the distance r; it vanishes at
r = πσ , which corresponds to the typical speckle size and,

thus, to the disorder correlation length; for larger distances
�(r) displays small oscillations. To favor comparison with
previous literature, we will express length scales in units of
the correlation length πσ and the energy scales in units of
the correlation energy eσ = �

2/(mσ 2). In our simulations, the
isotropic speckle pattern is generated following the numerical
recipe described in Ref. [20]; it satisfies the periodic boundary
conditions. See also Refs. [19,40,41].

To determine the ground-state properties of the Hamiltonian
(1) we employ quantum Monte Carlo simulations based on the
fixed-node diffusion Monte Carlo (DMC) algorithm [42]. The
DMC algorithm is designed to sample the lowest-energy wave
function by stochastically evolving the Schrödinger equation
in imaginary time. The fixed-node constraint, which consists
in imposing that the nodal surface of the many-body wave
function is the same as that of a trial wave function ψT , is
introduced in order to circumvent the sign problem, which
would otherwise hinder fermionic Monte Carlo simulations.
If the nodal surface of ψT is exact, this variational method
provides unbiased estimates of the ground-state energy. In
general, the predicted energies are rigorous upper bounds,
which have been found to be very close to the exact ground-
state energy if the nodes of ψT are good approximations of the
ground-state nodal surface (see, e.g., [43]). We adopt a trial
wave function of the Jastrow-Slater type, which is known to
describe quite accurately the normal (nonsuperfluid) phases of
interacting fermions; for a review on this issue, see Refs. [43]
and [44]. It is defined as

ψT (R) = D↑(N↑)D↓(N↓)
∏

i↑,i↓

f (ri↑i↓) , (2)

where R = (r1,...,rN ) is the spatial configuration vector and
D↑(↓) denotes the Slater determinant of single-particle orbitals
of the particles with up (down) spin. In this study, the Jastrow
correlation term f (r) is taken to be the solution of the
s-wave radial Schrödinger equation describing the scattering
of two hard-sphere particles in free space, as in Refs. [33]
and [39]. Since f (r) > 0, the nodal surface is fixed by the
antisymmetry of the Slater determinants only. This, in turn,
is fixed by the choice for the single-particle orbitals. We
employ the N↑ (N↓) lowest-energy single-particle eigenstates
φj (r) (with j = 0, . . . ,N↑(↓) − 1) of the disordered potential
V (r) for the spin-up (spin-down) particles. These eigenstates
satisfy the equation [−�∇2 + V (r)]φj (r) = ejφj (r), with
the eigenvalues ej . We determine them via exact numerical
diagonalization of the finite matrix obtained after introducing
a discretization in the continuous space and approximating
the Laplacian using high-order finite-difference formulas. We
carefully analyze how the discretization error affects both
the single-particle eigenvalues and the many-body ground-
state energy obtained from the DMC simulations, ensuring
that the discretization error is negligible compared to the
statistical uncertainty of the Monte Carlo predictions. Three
representative single-particle orbitals are visualized in Fig. 1.
The first is the ground state (j = 0), which is localized in a
restricted region of space due to the Anderson localization
phenomenon. The second has an energy near the mobility
edge ec; it has an intermediate character between extended and
localized. The third orbital corresponds to an eigenvalue well
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FIG. 1. (a) Speckle pattern intensity V (x,0,0)/eσ along a one-
dimensional cross section. eσ = �

2/(mσ 2) is the disorder correlation
energy. The length unit is the disorder correlation length πσ . The
dashed (green) line indicates the average intensity Vdis = 1.5eσ . (b, c,
d) Particle density distribution for three representative single-particle
eigenstates φj (r) of a speckle pattern: (b) ground state (j = 0); (c)
state at the Fermi energy ej = eF 	 0.84eσ corresponding to the
density n = N/L3 ∼= 0.185(πσ )−3 (notice that the mobility edge is
ec = 0.80(3)eσ ); (d) state at the energy ej 	 1.2eσ . The particle
density is proportional to the probability density |φj (r)|2, with the
normalization set so that max(|φj (r)|2) = 1; the color scale indicates
the probability density.

above the mobility edge (and the Fermi energy). We mention
that the energy on a noninteracting disordered gas with N↑
(N↓) spin-up (spin-down) particles particles can be computed

as E(N↑,N↓) = ∑N↑−1
j=0 ej + ∑N↓−1

j=0 ej .
While, in principle, the fixed-node constraint might intro-

duce a systematic bias, in the case of weakly and moderately
repulsive Fermi gases, the results based on the Jastrow-Slater
trial wave function described above have been confirmed by
comparison with different techniques. For weakly interacting
atoms in deep optical lattices, which can also be described with
the single-band (discrete) Hubbard model, the predictions pro-
vided by continuous-space DMC simulations [39] (obtained
by fixing the nodes using the single-particle eigenstates, as
we do here) have been found to precisely agree with accurate
Hubbard model simulations performed using the auxiliary-
field quantum Monte Carlo method [45], which represents
the state of the art in the simulation of strongly correlated
fermions [46]. For moderately repulsive homogeneous Fermi
gases, more elaborated trial wave functions including back-
flow correlations have been employed in Ref. [34], finding
essentially negligible effects in the interaction regime of
interest.

In this Rapid Communication, we first determine the
zero-temperature equation of state of a population balanced
Fermi gas with N↑ = N↓ (P = 0). We consider a blue-detuned
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FIG. 2. Main panel: Single-particle (noninteracting) density of
states (in arbitrary units) as a function of the energy e/eσ (brown
solid curve). The vertical dashed (green) line indicates the disorder
amplitude Vdis/eσ = 1.5, the vertical (gray) bar the mobility edge
ec/eσ , and the vertical dot-dashed (red) line the Fermi energy εF at
the density n ∼= 0.185(πσ )−3. Inset: Many-body ground-state energy
per particle E/N versus the particle number N ; the density is n ∼=
0.185(πσ )−3; the interaction parameter is kF a = 0.7, corresponding
to a ∼= 0.397πσ .

isotropic speckle field with average intensity Vdis = 1.5eσ .
The density of states of the noninteracting problem at this
disorder strength is shown in Fig. 2 (main panel). The mobility
edge ec, namely, the energy threshold that separates the
localized single-particle orbitals with energies ej < ec from
the extended orbitals with energies ej > ec, is ec = 0.80(3)eσ .
This value is obtained from the statistical analysis of the
spacings between energy levels [47], exploiting the universal
value of the critical adjacent level-spacings ratio, following
the procedure of Refs. [20] and [21]. This result agrees within
statistical error with the prediction ec = 0.787(9)eσ obtained
in Ref. [19] using the transfer matrix method. We consider a
gas with fixed average density n ∼= 0.185(πσ )−3, for which
the (noninteracting) Fermi energy is found to be eF 	 0.84eσ ,
just above the mobility edge. With this choice, a significative
part of the atoms are Anderson localized in the noninteracting
limit.

In Fig. 3 we plot the energy per particle E/N , computed
using the DMC algorithm described above, for increasing
values of the s-wave scattering length a. We stress that in
this study the adimensional density parameter n(πσ )3 is fixed,
while the ratio a/(πσ ) increases. The interaction parameter
can also be cast in the form kF a, familiar from the theory
of clean Fermi gases, defining the Fermi wave vector using
the average density n. These results have been obtained by
averaging over 15 to 25 realizations of the speckle field, using
systems sizes from N = 40 to N = 80.

The analysis of the finite-size effects (shown in the inset of
Fig. 2) suggests that the systems we simulate are sufficiently
large to predict the ground-state energies corresponding to the
thermodynamic limit, within the statistical uncertainties. It is
worth emphasizing that while the simulations of finite clean
Fermi systems are affected by strong shell effects (which can
be largely alleviated, e.g., using twisted-averaged boundary
conditions [48]), in the presence of disorder the degeneracies
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FIG. 3. Energy per particle E/N at polarization P = 0 as a
function of the scattering length a/(πσ ) for the clean gas (red circles,
right vertical axis) and for the disordered gas (blue squares, left
vertical axis) with disorder amplitude Vdis = 1.5eσ . The interaction
strength can be expressed also as kF a, where the Fermi wave vector
kF = (3π 2n)1/3 is defined with the average density n ∼= 0.185(πσ )−3.
The solid (red) curve is a fourth-order fit to the DMC data, the dashed
(blue) line is a linear fit (see text). The horizontal dashed segments
indicate the corresponding energies of the fully imbalanced gases.
3/5e0

F is the energy per particle of a clean noninteracting Fermi gas.

between single-particle energies are suppressed, thus strongly
reducing the shell effects (at the cost of having to average over
disorder realizations).

The ground-state energy E/N displays a different depen-
dence on the interaction strength with respect to the clean
gas (also shown in Fig. 3, data from Ref. [33]). In the latter
case, the equation of state is well described by the polynomial
E/N = eu

∑
i=0,...,4 ci(kF a)i , where c0 = 1,c1

∼= 0.353 6, and
c2

∼= 0.185 5 are provided by the second-order perturbation
theory [49,50], while c3 = 0.307(7) and c4 = −0.115(8) are
fitting parameters [51], and the energy unit is eu = 3/5e0

F ,
namely, the energy per particle of the clean noninteracting
Fermi gas [being e0

F = (�kF )2/(2m) the corresponding Fermi
energy].

In the disordered gas, a simple linear form (with c0 =
0.724(2), c1 = 0.162(5), eu = eσ , and ci = 0 for i = 2,3,4)
appears to accurately fit the data. It is surprising to observe
this simple behavior emerging in such a complex quantum
system.

We observe that in the disordered gas the energy of the bal-
anced (P = 0) gas exceeds the energy of the fully imbalanced
gas with P = 1 (which is indicated with a horizontal segment
in Fig. 3) at weaker interaction strength than in the absence
of disorder. This is a sufficient—though not necessary—
condition for the occurrence of ferromagnetic behavior [34]. A
more precise characterization of the ferromagnetic properties
can be obtained by analyzing the spin susceptibility and the
polaron energy, as described below.

The transition from the paramagnetic phase to the partially
ferromagnetic phase can be identified from the divergence

of the spin susceptibility χ = n( ∂2(E/N)
∂P 2 )

−1
. This criterion is

associated to a second-order phase transition, consistent with
the argument of Ref. [52]. We determine χ by performing
DMC simulations with imbalanced populations with N↑ > N↓
(0 � P � 1), keeping the total particle number N fixed, for
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FIG. 4. Inverse magnetic susceptibility χ0/χ for the clean gas
(red circles) and for the disordered gas (blue squares). χ0 = 3n/(2eF )
is the result corresponding to the clean noninteracting Fermi gas. The
solid (red) curve is a cubic fit to the DMC data, the dashed (blue) line
is a linear fit (see text).

individual disorder realizations. For sufficiently small values
of the population imbalance P , the energy per particle is
found to vary with P according to the quadratic function:
E(P )/N = E(P = 0)/N + nP 2/(2χ ), where E(P = 0) and
χ are fitting parameters. In Fig. 4 we show the inverse
susceptibility χ−1 as a function of the interaction strength,
obtained after averaging over 5 to 10 disorder realizations.
We notice that in the weakly interacting limit, χ−1 is larger
than in the clean gas (data from Ref. [51]), meaning that the
disorder alone (i.e., in the absence of interactions) suppresses
the spin fluctuations. However, χ−1 quickly drops to zero
as the interaction parameter increases, indicating a strong
interplay between disorder and interactions. Already at the
interaction strength kF a 	 0.2, the inverse susceptibility is
smaller in the disordered gas than in the clean gas. In the
disordered case, the critical point where χ−1 vanishes, which
signals the transition to the partially ferromagnetic phase,
is kF a 	 0.38, considerably smaller than in the clean gas
kF a 	 0.80 [51]. We point out that while our data support
the scenario of a second-order phase transition, our numerics
cannot rule out an extremely weakly first-order transition
[53] or an infinite-order transition [54]. Furthermore, in the
case of clean systems, more exotic magnetic phases with
spin-textured magnetization have been predicted to occur in the
close vicinity of the ferromagnetic transition [32]; we do not
consider these spin-textured phases. We also notice that while
in the clean gas the inverse susceptibility is well described by
the cubic fitting function χ0/χ = ∑

i=0,...,3 di(kF a)i , where
d0 = 1, d1

∼= −0.637, and d2
∼= −0.291 are provided by per-

turbation theory [31], and d3 = −0.56(1) is a fitting parameter,
in the disordered case the simple linear fitting function [with
d0 = 1.60(1), d1

∼= −4.2(1), and di = 0 for i = 2,3] precisely
reproduces the trend of the data.

The transition from the partially ferromagnetic phase to
the fully ferromagnetic phase can be located by determining
the chemical potential at zero concentration of the repulsive
polaron, defined as A = E(N↑,1) − E(N↑,0), where E(N↑,1)
is the energy of a gas with N↑ spin-up particles plus a spin-
down impurity (N↓ = 1). For sufficiently strong repulsion,
A exceeds the chemical potential of the majority component
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FIG. 5. Chemical potential at zero concentration of the repulsive
polaron in the clean gas (red circles, right axis) and in the
disordered gas (blue squares, left axis). e0

F↑ = (�kF↑)2/2m is the
Fermi energy of the clean fully imbalanced noninteracting Fermi gas.
The interaction parameter a/(πσ ) can be cast in the form kF↑a using
the Fermi wave vector kF↑ = (6π 2n↑)1/3 defined with the average
spin-up density n↑ = N↑/L3 ∼= 0.185(πσ )−3. The horizontal dashed
segments indicate the chemical potential of the majority component.
The solid curves through DMC data are guides to the eye.

[which we compute as eF↑ = E(N↑ + 1,0) − E(N↑,0)]. At
this point, the fully ferromagnetic phase becomes energetically
favorable [33,55]. The data shown in Fig. 5 (obtained by
averaging 10 to 20 disorder realizations) indicate that in the

presence of disorder this transition takes place at kF↑a 	 0.82
[where kF↑ = (6π2n↑)1/3 is the majority-component Fermi
wave vector, defined with the corresponding average density
n↑ = N↑/L3], which is significantly smaller than in the clean
gas: kF↑a 	 1.22. It is worth noticing that while in the absence
of disorder the partially ferromagnetic phase is stable in
the window 0.80 < kF a < 0.97 [33,51], in the presence of
disorder this window is shifted to weaker interactions, and
it is enlarged: 0.38 < kF a < 0.65 (we used the conversion
kF = kF↑/21/3).

In conclusion, we employed continuous-space quantum
Monte Carlo simulations to investigate the zero-temperature
properties of interacting Fermi gases exposed to correlated
speckle disorder, including the equation of state, the magnetic
susceptibility, and the polaron energy. We considered a fixed
density and disorder amplitude—tuned so that the Fermi
energy is in the rough vicinity of the mobility edge—and
we observed that the ferromagnetic transition is shifted
to significantly weaker interaction than in the clean gas.
These results indicate an alternative route to observe quan-
tum magnetism is cold-atom experiments, circumventing the
molecule-formation problem that plagues the regime of strong
interactions, and they constitute a useful benchmark for future
theoretical studies on disordered interacting many-fermion
systems.

We thank Alessio Recati and Giacomo Roati for useful
discussions and for illustrating to us the results of Ref. [26].
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