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Universal quantum computation with a nonlinear oscillator network
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We theoretically show that a nonlinear oscillator network with controllable parameters can be used for universal
quantum computation. The initialization is achieved by a quantum-mechanical bifurcation based on quantum
adiabatic evolution, which yields a Schrödinger cat state. All the elementary quantum gates are also achieved by
quantum adiabatic evolution, in which dynamical phases accompanying the adiabatic evolutions are controlled
by the system parameters. Numerical simulation results indicate that high gate fidelities can be achieved, where
no dissipation is assumed.
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Introduction. The standard model for quantum computation
consists of quantum bits (qubits) and quantum gates [1] as
present-day digital computers consist of bits and logic gates.
A qubit is often represented by two discrete quantum states of
various physical systems, such as electron or nuclear spins in
neutral atoms, ions, molecules, or solids, polarization states
or optical modes of single photons, and superconducting
artificial atoms with Josephson junctions [2]. Another kind
of implementation of a qubit uses a harmonic oscillator, which
is described by an infinite-dimensional Hilbert space. In this
case, the two computational basis states are defined as two
orthogonal states of a harmonic oscillator, such as two coherent
states with largely different amplitudes or two cat states with
opposite parity [3]. It is known that a universal gate set for such
coherent-state qubits can be achieved by gate teleportation
with cat states [4,5]. Recently, universal quantum computation
with harmonic oscillators accompanied by nonlinear losses has
also been proposed [6,7]. Recent advances in circuit quantum
electrodynamics with superconducting devices [8,9] make the
proposals promising.

More recently, it has been shown that a parametrically
driven oscillator with Kerr nonlinearity (hereafter KPO) can
yield a cat state via its quantum-mechanical bifurcation
based on quantum adiabatic evolution, and a network of
such nonlinear oscillators can be used for adiabatic quantum
computation to find the ground states of the Ising model [10].
In the bifurcation-based adiabatic quantum computation, two
coherent states, |α〉 and |−α〉, corresponding to two stable
branches of the KPO are regarded as up and down states of an
Ising spin. It may be natural to expect that the two coherent
states of a KPO can also be utilized as a qubit in the standard
gate-based model of quantum computation. However, it has not
been obvious so far whether a universal gate set can be achieved
for such qubits with KPOs. (Note that no quantum gates are
used in the bifurcation-based adiabatic quantum computation,
in which the necessary operation is only to increase pump
amplitudes monotonically. It should also be noted that the
proposals in Refs. [6,7] cannot be directly applied to the KPOs
because of the differences in their nonlinearities.)

In this Rapid Communication, we theoretically show that
a universal gate set can be achieved for the above qubits with
KPOs. Figure 1 shows a schematic of the proposed quantum
computer. All the elementary gates are based on quantum

adiabatic evolution, in which dynamical phases accompanying
the adiabatic evolutions are controlled by system parameters.
In the following, we first describe the definition of qubits in
the present model. The physical implementation of the KPO
is also mentioned. Next, we explain how to perform three
kinds of elementary gates on the qubits. Numerical simulation
results supporting the proposal are also provided. Finally, the
conclusion is presented. Note that in the present work, we
assume that there are no control errors and no decoherence
sources such as losses. Such errors will be considered in a
future work.

Definition of qubits. In the present model, we use a KPO
for each qubit. Here we first describe the cat-state generation
with a KPO via quantum adiabatic evolution, and next explain
the definition of the qubit.

In a frame rotating at half the pump frequency of the
parametric drive and in the rotating-wave approximation, the
Hamiltonian for a KPO is given by

H1 = ��a†a + �
K

2
a†2a2 − �

p

2
(a†2 + a2), (1)

where a and a† are the annihilation and creation operators for
the KPO, � is the detuning of the eigenfrequency from half
the pump frequency, K is the Kerr coefficient for the Kerr
effect, and p is the pump amplitude for the parametric drive
[10]. Hereafter, we assume that K is a positive constant and
� is non-negative. (When K is negative, similar discussion is
straightforward.)

A cat state of the KPO is generated deterministically
as follows. The KPO is initially prepared in the vacuum
state |0〉. Then, p is increased sufficiently slowly from zero.
Since |0〉 is the ground state for the initial Hamiltonian, the
KPO adiabatically follows the instantaneous ground state of
the Hamiltonian. When � = 0, the ground state is doubly
degenerate and the eigenspace is spanned by two coherent
states |±√

p/K〉. Since H1 is symmetric under parity inversion
a → −a, the final state should have the same parity as the
initial state |0〉. Thus, the final state is the even cat state [3]
defined as

|C+〉 = |√p/K〉 + | − √
p/K〉√

2(1 + e−2p/K )
. (2)
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FIG. 1. Schematic of the proposed quantum computer. The Rz

gate in Eq. (3) is performed by a driving field denoted by E(t). The
Rx gate in Eq. (4) is performed by controlling a detuning denoted
by �(t). The two-qubit gate in Eq. (5) is performed by controlling a
coupling coefficient denoted by g(t). Each KPO is represented by the
Wigner function of a cat state. The coherent states with positive and
negative amplitudes correspond to the two computational basis states
|0̄〉 and |1̄〉, respectively.

When p is so large compared to K that e−2p/K is negligible,
the two coherent states | ± √

p/K〉 are orthogonal to each
other. Taking a value p0 such that e−2p0/K is negligible, we
define the computational basis states, |0̄〉 and |1̄〉, of a qubit as
two coherent states |√p0/K〉 and | − √

p0/K〉, respectively,
where we have used the bars to distinguish the computational
basis states from the vacuum and single-photon states of the
KPO. (In this Rapid Communication, the quanta of the KPO
are called “photons” assuming that the KPO is implemented
by an electromagnetic resonator.)

Note that the cat-state generation described above is
regarded as the initialization of the qubit to (|0̄〉 + |1̄〉)/√2,
which is the standard initial state in quantum computation
[1,11,12]. After this initialization, the pump amplitude is kept
to p0 during quantum computation. While no operation is
performed, the state of each KPO is in the subspace spanned
by |0̄〉 and |1̄〉.

Here we briefly address the physical implementation of the
KPO. Since the time scale is limited by the Kerr coefficient
K , a large K is desirable. (As shown below, the gate time
is proportional to K−1.) In particular, it is desirable that K

should be larger than the loss rate of the KPO. This condition
is extremely stringent for optical systems. On the other hand,
superconducting systems with Josephson junctions have al-
ready achieved this condition [13,14]. With a superconducting
circuit, parametric oscillation has also been demonstrated
[15]. Thus, superconducting systems are promising for the
implementation of the KPO. In this case, K is typically several
tens of MHz.

Elementary quantum gates. Here we show that a universal
gate set can be achieved for the qubit defined above. As a
universal gate set, we choose two single-qubit gates Rz(φ)
and Rx(θ ), and a two-qubit gate U (�), where these unitary
operators are defined as follows (X and Z denote Pauli

operators) [1]:

Rz(φ) = e−iφZ/2 =
(

e−iφ/2 0
0 eiφ/2

)
, (3)

Rx(θ ) = e−iθX/2 =
(

cos θ
2 −i sin θ

2

−i sin θ
2 cos θ

2

)
, (4)

U (�) = e−i�Z1Z2/2 =

⎛
⎜⎜⎝

e−i�/2 0 0 0
0 ei�/2 0 0
0 0 ei�/2 0
0 0 0 e−i�/2

⎞
⎟⎟⎠. (5)

In the following, we explain how to perform these elementary
gates in turn. [Note that Rx(π/2) and U (π/2) are sufficient for
universality together with Rz(φ) [16].]

To perform Rz(φ) on a qubit, we drive the KPO by a driving
field with a pulse-shaped amplitude E(t). Then, the additional
Hamiltonian is given by

Hz(t) = �E(t)(a + a†). (6)

Note that the additional Hamiltonian violates the parity
symmetry, and consequently induces the transition between
the even and odd cat states. This driving is also interpreted as
a displacement in the phase space.

When |E(t)| is sufficiently small and the variation of E(t)
is sufficiently slow, the KPO is approximately kept in the
subspace spanned by |0̄〉 and |1̄〉. Here we should consider the
energy shifts for |0̄〉 and |1̄〉, which are 2�E(t)

√
p0/K and

−2�E(t)
√

p0/K , respectively. These energy shifts induce dy-
namical phase factors, and consequently Rz(φ) is performed,
where φ is given by (Tg is the gate time)

φ = 4
√

p0/K

∫ Tg

0
E(t)dt. (7)

To verify the above discussion, we did numerical sim-
ulations, in which we numerically solved the Schrödinger
equation with the Hamiltonian H1 + Hz(t). In the simulations,
the parameters are set as p0 = 4K , � = 0, and Tg = 2/K ,
and the Hilbert space is truncated at a photon number of 20.
We performed Rz(φ) on the initial state (|0̄〉 + |1̄〉)/√2 and
calculated the fidelity between the output state in the simula-
tion and the ideal output state (e−iφ/2|0̄〉 + eiφ/2|1̄〉)/√2. (The
fidelity is defined as the square of the absolute value of the
inner product of two state vectors.) To perform Rz(φ), E(t) is
set as

E(t) = πφ

8Tg

√
p0/K

sin
πt

Tg

. (8)

The simulation result is shown in Fig. 2. It is found that
high fidelities are achieved for φ in the range of −π to π , as
expected. The fidelities become even higher for a longer gate
time (a larger value of KTg).

Next, we explain how to perform Rx(θ ). To perform Rx(θ )
on a qubit, we use the detuning � in Eq. (1). When � is slowly
increased from zero to a value �0 near to p0 and then decreased
to zero, the even and odd cat states, (|0̄〉 ± |1̄〉)/√2, obtain
dynamical phase factors depending on their energy shifts due
to the nonzero detuning. (Note that the even and odd states are
simultaneous eigenstates of H1 because of the parity symmetry
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FIG. 2. Simulation result for Rz(φ). F denotes the fidelity
between the output state in the simulation and the ideal output state
(e−iφ/2|0̄〉 + eiφ/2|1̄〉)/√2.

of H1.) Thus, the qubit state changes as follows (θ is the relative
phase between the even and odd cat states due to the dynamical
phase factors):

α0|0̄〉 + α1|1̄〉 = α0 + α1

2
(|0̄〉 + |1̄〉) + α0 − α1

2
(|0̄〉 − |1̄〉)

→ α0 + α1

2
(|0̄〉 + |1̄〉) + α0 − α1

2
eiθ (|0̄〉 − |1̄〉)

= e−iθ/2

[(
α0 cos

θ

2
− iα1 sin

θ

2

)
|0̄〉

+
(

α1 cos
θ

2
− iα0 sin

θ

2

)
|1̄〉

]

= e−iθ/2Rx(θ )(α0|0̄〉 + α1|1̄〉). (9)

Thus, Rx(θ ) is achieved by the detuning control. (The overall
phase factor e−iθ/2 has no physical meaning and therefore can
be ignored.)

Here we present numerical simulation results supporting
the above discussion. We numerically solved the Schrödinger
equation with H1 in Eq. (1), where the detuning � is controlled
as follows (Tg is the gate time):

�(t) = �0 sin2 πt

Tg

. (10)

In the simulations, the parameters are set as p0 = 4K and
Tg = 10/K , the initial state |ψi〉 is set to (|0̄〉 + i|1̄〉)/√2, and
the Hilbert space is truncated at a photon number of 20.

To estimate the rotation angle θ corresponding to �0,
we calculated the fidelity between the output state in the
simulation and Rx(θ )|ψi〉, and found θ maximizing the fidelity.
The results are summarized in Fig. 3, where F denotes the
maximized fidelity. While �0 changes from 0 to 2.5K , the
rotation angle θ changes from 0 to −π . The fidelities are
also high. Thus, it has been shown that Rx(θ ) is achieved by
controlling the detuning.

Finally, we explain how to perform the two-qubit gate
U (�). To perform U (�) on two qubits, we control the coupling
coefficient g(t) between the two KPOs. (In contrast, in the
bifurcation-based adiabatic quantum computation for the Ising
problem [10], the coupling coefficients are set to constants
depending on given problems.) The additional Hamiltonian is

θ

Δ0/K
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1 
–
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FIG. 3. Simulation result for Rx(θ ). (a) θ maximizing the fidelity
between the output state in the simulation and Rx(θ )|ψi〉. (b) F

denotes the fidelity between the output state in the simulation and
Rx(θ )|ψi〉.

given by

HU = �g(t)(a1a
†
2 + a

†
1a2). (11)

Note that this is the standard linear coupling, which describes
photon exchange between two KPOs.

When |g(t)| is sufficiently small and the variation of g(t)
is sufficiently slow, the KPOs are approximately kept in the
subspace spanned by |0̄〉|0̄〉, |0̄〉|1̄〉, |1̄〉|0̄〉, and |1̄〉|1̄〉. Then, the
energy shifts for |0̄〉|0̄〉 and |1̄〉|1̄〉 are 2�g(t)p0/K and those
for |0̄〉|1̄〉 and |1̄〉|0̄〉 are −2�g(t)p0/K . These energy shifts
induce dynamical phase factors, and consequently U (�) is
performed, where � is given by (Tg is the gate time)

� = 4p0

K

∫ Tg

0
g(t)dt. (12)

Θ
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FIG. 4. Simulation result for the two-qubit gate U (�). F denotes
the fidelity between the output state in the simulation and the ideal
output state U (�)|ψi〉 = (e−i�/2|0̄〉|0̄〉 + ei�/2|0̄〉|1̄〉 + ei�/2|1̄〉|0̄〉 +
e−i�/2|1̄〉|1̄〉)/2.
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We did numerical simulations for the two-qubit gate, in
which we numerically solved the Schrödinger equation. In the
simulations, the parameters are set as p0 = 4K , � = 0, and
Tg = 2/K , the initial state is set to |ψi〉 = (|0̄〉 + |1̄〉)(|0̄〉 +
|1̄〉)/2, and the Hilbert space is truncated at a photon number of
20 for each KPO. We performed U (�) on |ψi〉 and calculated
the fidelity between the output state in the simulation and the
ideal output state U (�)|ψi〉. To perform U (�), g(t) is set as

g(t) = π�

8Tgp0/K
sin

πt

Tg

. (13)

The simulation result is shown in Fig. 4. It is found that
high fidelities are achieved for � in the range of 0 to π , as

expected. The fidelities become even higher for a longer gate
time (a larger value of KTg).

In conclusion, we have shown that the network of nonlinear
oscillators called KPOs, which has been used for bifurcation-
based adiabatic quantum computation, can also be used for
universal quantum computation. The qubit is defined with
two coherent states of a KPO. The initialization of the qubit
is achieved by a quantum-mechanical bifurcation based on
quantum adiabatic evolution. All the elementary gates are
also performed by quantum adiabatic evolution, in which
dynamical phases accompanying the adiabatic evolutions are
controlled by driving field amplitudes, detunings, and coupling
coefficients. The present scheme will open a new possibility for
quantum nonlinear systems in quantum information science.
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