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Quantum statistics in a time-modulated exciton-photon system
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We consider a system consisting of a large individual quantum dot with excitonic resonance coupled to
a single-mode photonic cavity in the nonlinear regime when exciton-exciton interaction becomes important.
Quantum statistics of coupled exciton-photon modes is studied for two regimes of driving: a monochromatic
input field and a field with periodically time-modulated amplitude. We show that sub-Poissonian statistics for both
modes are realized in the case of monochromatic driving for transient and steady-state regimes in the presence of
decoherence and cavity-induced feedback. We also demonstrate that variances of quantum fluctuations of photon
and exciton numbers display oscillations in the case of modulated input. In this case, we show an improvement
of the degree of sub-Poissonian statistics and antibunching for both modes at periodic sequence of definite time
intervals in comparison with the case of the steady-state regime for monochromatic driving. We also observe the
Wigner functions with negative values in phase space for a time-modulated exciton-photon system.
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I. INTRODUCTION

Light-matter interaction usually is considered in two quali-
tatively different regimes, namely, weak and strong coupling.
For the first of them the spectrum of the material system
remains unchanged, and light-matter interaction results in
single acts of the emission and absorption of the photons.
On the contrary, in the regime of strong coupling light and
matter can no longer be treated independently of each other,
and hybrid half-light, half-matter modes appear in the system.
Those modes are known as polaritons. Nowadays, the variety
of polaritonic systems is impressive and includes such widely
studied cases as surface plasmon polaritons [1] and cavity
polaritons [2]. In the latter case the photonic mode is coupled
with excitonic transition in the quantum well, quantum wire,
or individual quantum dot (QD).

Coupling between the QD and photonic mode of a zero-
dimensional cavity lies at the heart of a rapidly developing
branch of science known as cavity quantum electrodynamics
(cQED). The problem is important not only because of
the fundamental aspects brought forward by the interaction
of material systems with photons [3] but also because of
the potential application of cQED to quantum information
processing [4–6]. From the point of view of experimental
realization, excitons in individual QDs can be brought to strong
coupling with a confined electromagnetic mode provided by
a pillar (etched planar cavity) [7], the defect of a photonic
crystal [8], or the whispering gallery mode of a microdisk
[9,10], among other things. In the regime of weak excitation
such structures have demonstrated the Rabi doublet in their
optical spectra, which is characteristic of the mode anticrossing
that marks the overcoming of dissipation by the coherent
exciton-photon interaction.

These achievements open the way to a new research area,
namely, investigation of the pure quantum effects originating
from strong exciton-photon coupling [11]. Although the
system exhibits strong coupling, it is usually not known in

which quantum state it is actually realized. For the system to
be useful for quantum information applications, one should be
able to manipulate not just the mean number of the particles
in the system but also have a tool to monitor and control
their statistics. In this context, the possibility to create states
different from essentially classical coherent and thermal states
is highly desirable. If the energy of the system scales linearly
with the number of particles, it is essentially classical [12], and
adding or removing a single particle will not change its behav-
ior. Therefore, an analysis of the nonlinear effects is highly
desirable.

With QDs in microcavities, two types of strong nonlin-
earities are expected, both associated with the excitons [13].
The first one comes from Pauli exclusion, which arises from
the fermionic character of the particles forming an exciton. It
becomes extremely important for the case of small QDs for
which, similar to individual atoms, the excitation of more than
one exciton becomes impossible. Pauli blocking leads to the
radical transformation of the spectrum of the system, which
changes from the Rabi doublet to the Mollow triplet when the
intensity of the external pump is increased [14–18].

The second is Coulomb repulsion between the excitons,
again arising from their composite nature. This mechanism is
important for the case of the excitons in the quantum wells and
large QDs. In the former case it leads to the blueshift of the
polaritonic modes increasing with the intensity of the external
pump, an effect which can be satisfactorily described within
the framework of the mean-field approximation. The case of an
individual large QD inside the cavity is, however, more tricky.
Coulomb repulsion between the excitons in this configuration
leads to the emergence of a rich multiplet structure in the
emission spectrum [19], which reveals the pure quantum nature
of light-matter coupling.

In the present paper we analyze further the quantum effects
arising from nonlinearities in a coupled QD-cavity system for
two cases of the external driving field: a cw monochromatic
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field and a field with amplitude time-periodic modulations. The
importance of the last regime stems from the idea that quantum
effects can be modified if the system is driven by an external
pump with fast time-periodic modulations. Particularly, it has
been demonstrated that the application of a time-modulated
cw field as well as a sequence of tailored pulses leads to an
improvement of the degree of quantum effects in open-cavity
nonlinear systems and the onset of qualitatively new quantum
effects in the time domain. Indeed, it has been demonstrated
that amplitude modulation can improve single-photon statistics
in photon sources based on a quantum dot [20] and leads
to the formation of a high degree of continuous-variable
entanglement and squeezing in optical parametric oscillators
[21–23] for definite time intervals. This approach was also
recently exploited for generation of Fock states and effective
multiphoton blockades in a Kerr nonlinear resonator driven
by a sequence of Gaussian pulses [24–27]. The idea to enrich
quantum physical systems by designing a time modulation has
been explored in several other fields of research, including
periodically driven nonlinear oscillator [28] and periodically
driven quantum matter [29].

Here we focus on the consideration of cavity modes
in regimes of strong exciton-photon coupling and strong
exciton-exciton interaction with respect to the rates of damping
of the photonic and excitonic modes. In these regimes the
transition frequencies between the energy levels of the systems
without any interaction with the external field are spectacularly
distinguishable in the quantum regime. Thus, we enable
spectroscopic identification and selective excitation of tran-
sitions between combined exciton-number–photon-number
states.

This consideration is done in the framework of the master
equation and the numerical calculation of quantum trajectories
and is based on the calculations of excitation numbers, the
Q Mandel parameter, the second-order correlation functions,
and the Wigner functions of exciton and photonic modes that
allow phase-space monitoring of exciton-photon coupling in
the quantum treatment.

In regimes of strong coupling we observe a quantum
effect of sub-Poissonian statistics of both photon and exciton
modes via the monochromatic driving field for all time
intervals, including the transient regime and the steady-state
regime for time intervals exceeding the characteristic time of
dissipative processes, t � γ −1. In the regime of time mod-
ulation the ensemble-averaged mean photon numbers, the
populations of photon-number and exciton-number states, and
the Wigner functions are nonstationary and exhibit a periodic
time-dependent behavior, i.e., repeat the periodicity of the
pump laser for time intervals over transient dynamics. We
also demonstrate that the application of a time-modulated
field leads to improving the degree of sub-Poissonian statistics
of modes for definite time intervals in comparison with the
analogous results for the case of monochromatic excitation.
In addition to this we observe that the Wigner functions
with negative values in the phase space showing quantum
interference are realized due to time modulation. The results
can be directly applied in time-resolved quantum technologies.
In addition to this we investigate temperature noisy effects for
a cavity at finite temperatures. This leads to applications in
simulating more realistic exciton-photon systems as well as to

the study of unusual quantum phenomena connecting quantum
engineering and temperature.

This paper is organized as follows. In Sec. II we present
the effective Hamiltonian for the periodically driven polariton
system and describe the physical quantities of interest. In
Sec. III we study quantum statistics and the Wigner functions
of exciton and photon modes in the steady-state regime as
well as for the case of time-modulated external pumping. We
analyze also the distributions of photon-number states and
the phase-space properties of photon and exciton-modes on
the basis of the Wigner functions. The effects of a thermal
reservoir are also briefly analyzed. We summarize our results
in Sec. IV.

II. COUPLED EXCITON-PHOTON SYSTEM

The system consists of coupled fundamental photonic dot
and exciton modes driven by a cw field with mean frequency ω

and time-modulated amplitude. The Hamiltonian of the driven
photon-exciton system in the rotating-wave approximation
(RWA) reads

H = �pha
†a + �exb

†b + χb†
2
b2 + g(ba† + b†a)

+ [�1 + �2exp(−iδt)]a + H.c., (1)

where a† and a are creation and annihilation operators of the
photon mode, b† and b are creation and annihilation operators
for the exciton mode, g is the exciton-photon coupling con-
stant, χ is the strength of the exciton-exciton interaction, and
�ph = ωph − ω and �ex = ωex − ω are detunings between
the mean frequency of the driving field and the frequencies of
the photonic and exciton modes. �1 and �2 are the components
of the complex amplitude of the driven field, and δ is the
frequency of the modulation. Such a situation can also be
realized if the photon-exciton system is driven by two fields
with different frequencies. In this case, the Hamiltonian of the
system in the RWA is reduced to Eq. (1), with δ being the
difference between frequencies of the driving fields. The case
�2 = 0 describes the exciton-photon cavity driven by a cw
monochromatic field treated within the RWA.

In realistic systems one should necessarily take into account
the dissipation because the modes suffer from losses due to
partial transmission of light through the mirrors of the photonic
cavity, nonradiative decay of excitons, and decoherence. We
consider these effects by assuming that the interaction of
the driven photon-exciton system with a heat reservoir gives
rise to the damping rates of modes γa and γb. We trace out
the reservoir degrees of freedom in the Born-Markov limit
assuming that the system and environment are uncorrelated at
initial time t = 0. This procedure leads to the master equation
for the reduced density matrix in the Lindblad form. The
master equation within the framework of the rotating-wave
approximation in the interaction picture corresponding to the
transformation ρ → e−iωa+atρeiωa+at reads

dρ

dt
= −i[H,ρ] +

∑
i=1,2,3,4

(
LiρL

†
i − 1

2
L
†
i Liρ − 1

2
ρL

†
i Li

)
,

(2)
where L1 = √

(nth + 1)γ a, L2 = √
nthγ a+, L3 =√

(nth + 1)γ b, and L4 = √
nthγ b+ are the Lindblad
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operators, γ is a dissipation rate, and nth denotes the mean
number of quanta of a heat bath. Here for simplicity we
assume that the decay rates and the mean numbers of quanta
of a heat bath are equal for both modes, γa = γb = γ .

We analyze the mean values of excitation numbers, and
we also probe the strength of quantum fluctuations of exciton
and photonic modes via the Mandel factor and the normally
ordered second-order correlation functions of the photon
numbers and excitation numbers. In addition we monitor the
phase properties of both modes using the Wigner function.
The quantities of interest are calculated by using the reduced
density operators of the photons ρa(t) and of the excitons ρb(t).
These operators are constructed from the full-density operator
of the system ρ(t) by tracing out the excitonic and photonic
modes, respectively,

ρa(t) = Trb(ρ), (3)

ρb(t) = Tra(ρ). (4)

For the system under time-modulated external pumping the
ensemble-averaged excitation numbers of the modes as well as
the other physical quantities exhibit a periodic time-dependent
behavior after transient time intervals. Using the master
equation, we calculate the time evolution of the Q Mandel
factor for the photonic and exciton modes. For the photonic
mode it is defined as

Q(t) = 〈[�n(t)]2〉 − 〈n(t)〉
〈n(t)〉 , (5)

where 〈[�n(t)]2〉 = 〈(a†a)2〉 − (〈a†a〉)2 describes the devia-
tion of the excitation number uncertainty from the Poissonian
variance, 〈(�n)2〉 = 〈n〉. The case Q = 0 corresponds to Pois-
sonian statistics. If Q > 0, the statistics is super-Poissonian;
if Q < 0. it is sub-Poissonian, and the statistics is analogous
for the exciton mode.

The Mandel factor is connected to the normalized second-
order correlation function for zero delay time g(2), defined (for
the photonic mode) as

g(2)(t) = 〈a†(t)a†(t)a(t)a(t)〉
[〈a†(t)a(t)〉]2

. (6)

For short counting time intervals the approximate relation be-
tween these quantities reads 〈(�n)2〉 = 〈n〉 + 〈n〉2(g(2) − 1).
Thus, the condition g(2) < 1 corresponds to the sub-Poissonian
statistics, 〈(�n)2〉 < 〈n〉.

We analyze the master equation numerically using the well-
known quantum state diffusion method [30]. According to
this method, the reduced density operator is calculated as the
ensemble mean over the stochastic states describing evolution
along a quantum trajectory.

It should be mentioned that the exciton-photon system
can actually be presented as the model of coupled photonic
resonators with anharmonic terms when only one of the cavity
modes is driven resonantly. In this case the exciton-photon
coupling constant corresponds to the tunnel coupling rate
between two resonators. Such a model has been the focus of
considerable attention, and this interest is justified by many
applications in different contexts. Particularly, in the field
of quantum devices on a few-photon level one application

concerns the realization of the so-called unconventional
photon blockade originating from the destructive interference
between different paths from the ground state to two-photon
states in two coupled photonic cavities with Kerr nonlinearities
that are very small compared to the mode decay rates [31–35].
In the regime of optimal one-photon blockade weak Kerr
nonlinearity is required only for the auxiliary cavity that is
not laser driven, and hence, the coupled-resonators model
is described by the Hamiltonian (1). This mechanism of an
unconventional photon blockade is valid for weak pumping
conditions, leading to very small mean excitation numbers of
the cavity mode. In this paper we consider the other regime
of a strong Kerr nonlinearity for the exciton mode, leading to
quantum effects for comparatively large excitation numbers of
both photonic and excitonic modes.

III. SUB-POISSONIAN STATISTICS, ANTIBUNCHING,
AND WIGNER FUNCTIONS FOR COUPLED

EXCITON-PHOTON MODES

In our further consideration we concentrate on the analysis
of coupled exciton-photon modes in quantum regimes at a
low level of quanta. This analysis is performed by using the
set of dimensionless parameters �/γ , χ/γ , g/γ , as well as
parameters of amplitude modulation �1/γ , �2/γ and the
frequency of modulation δ.

Let us discuss the operational regimes in more detail. If
the energy levels of the coupled exciton-photon states are well
resolved, we can consider selective transitions near resonance
between lower photon-exciton states. In this way, the detunings
play an important role when identifying the spectral lines;
thus, we arrange the detunings of modes to reach a qualitative
quantum effect. We estimate the detuning by using the results
on the structure of energy levels of a quantum dot in a
microcavity in the nonlinear regimes [19]. In this paper the
optical spectrum at the resonance transition was studied by
diagonalizing the Hamiltonian (1) without the driving term.
In this case the total number of excitations is conserved, and
eigenstates of the total particle number a†a + b†b with the
eigenvalue m can be used as the mth manifold of the system.
Particularly, two-photon excitation of the system with m = 2
leads to eigenvectors that involve triplet states |2,0〉, |1,1〉,
|0,2〉 with photon- and exciton-number states. If we neglect
the exciton-exciton interaction, the energy levels form the
Rabi triplet E+ = 2ωph + 2g, E0 = 2ωph, E− = 2ωph − 2g.
In this way, the two-photon resonant frequency leading to
excitation of the level E− equals 2ω2 = E− − Eg , where Eg

is the level of the ground state. Therefore, ω2 = ωph − g,
and hence, the detunings �ex = ωex − ω2, �ph = ωph − ω2

are �ph = �ex = g. In this approach the effects of exciton-
exciton interaction can be included by using the numerical
calculations [19]. For the strong driving field the detunings can
also be shifted due to Stark effects. Thus, for the concrete
calculations, later we use the approximate value of detunings
corresponding to the parameters g/γ and χ/γ . Note that such
analysis seems to be qualitative rather than quantitative but
allows us to estimate the values of detunings.

Indeed, considering the analysis of the selective excitation
of cavity modes, we need to consider the other resonant
frequencies corresponding to large numbers of quanta, m > 2.
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FIG. 1. Time evolution of the mean excitation numbers of pho-
tonic (1) and excitonic (2) modes for the nondissipative case, without
any driving. The parameters are as follows: �ph/γ = �ex/γ = 7.12,
g/γ = 5, χ/γ = 4.

Below, for the concrete calculations we use the values
�ph/γ = �ex/γ = 7.12 that are estimated for the parameter
g/γ = 7.

For illustrative purposes let us first consider the case of
the nondissipative system. The typical results for the time
evolution of the mean excitation numbers of both the photon
mode and the exciton mode due to the coupling between modes
and the exciton-exciton nonlinearity are shown in Fig. 1. We
assume that at t = 0 the exciton mode is in vacuum state
〈n(0)〉b = 0 while the four-photon number state is injected into
the resonator, 〈n(0)〉a = 4. As we see, without any driving,
the total number of quanta is conserved, and the dynamics
of the excitation numbers displays oscillatory behavior, where
the Rabi transitions between the modes with collapses and
revival effects are observed.

The collapses and revivals are well-known phenomena in
quantum optics, particularly in the context of the Jaynes-
Cummings model (see, for example, [36]) and for ion-trap
systems [37,38]. Here we obtain interesting collapses and
revival effects in the simplest model as a manifestation of
nonlinear exciton-exciton interaction that leads to spaced
energies of exciton-number states. Also note that in this
case conservation of total particle numbers leads to antiphase
dynamics of the mode that is violated in the presence of driving.

A. Quantum statistics in the case of monochromatic driving

Now, we turn to the realistic case in which dissipation and
decoherence are taken into account considering pure quantum
effects for a zero-temperature cavity. We start from the case
of �2 = 0, which corresponds to the single monochromatic
excitation and the initial state corresponding to no excitations
in the cavity. The typical results for the excitation numbers,
the Mandel parameters, and the contour plots of the Wigner
functions of two modes are depicted in Fig. 2. As we see,
the mean excitation numbers and the Mandel parameter show
Rabi-type oscillations for short time intervals in the transient
regime and reach equilibrium in the steady-state regime. From
Fig. 2(a) we conclude that for the parameters used the system
is operated in a strong quantum regime at the level of small
excitation numbers. In the steady-state regime, the exciton

FIG. 2. The results for the case of single-mode driving, �2 =
0. (a) Temporal dependence of the mean excitation numbers of
photonic (1) and excitonic (2) modes; (b) temporal dependence of
the Mandel parameters for photonic (1) and excitonic (2) modes.
The contour plots of the Wigner functions of (c) the photonic
mode and (d) excitonic mode for time intervals corresponding to
the maximal values of excitation numbers. The parameters are as
follows: �ph/γ = 7.12, �ex/γ = 7.12, g/γ = 5, χ/γ = 1, �1/γ =
5, �2/γ = 0.

Mandel parameter Qb > 0, while Qa = −0.2; that is, the
photonic mode displays sub-Poissonian statistics. The Wigner
functions of both modes are positive in the entire phase
space, but contours of the Wigner function for the photonic
mode have a slightly squeezed form corresponding to small
sub-Poissonian statistics.

Below we discuss how the statistics of the modes, particu-
larly the bunching of the exciton mode and the antibunching
of the photon mode in the monochromatic excitation regime,
are changed by increasing the amplitude of the driving field.
In Fig. 3 we show the excitation numbers and the Mandel
parameters for a comparatively large value of the amplitude,
�1/γ = 10. It can be seen that, naturally, the level of mean
excitation numbers increases as a function of amplitude. We
also observe that in this regime both modes, photonic and
excitonic, display sub-Poissonian statistics and antibunching.
Increasing the external field amplitude leads to a decrease in the
Mandel parameter [in Fig. 3(b) Qa = −0.6, while Qa = −0.2
in Fig. 2(b)].

In Fig. 3(d) we demonstrate that increasing the coupling
constant of the exciton-photon coupling and the strength of
exciton-exciton nonlinear interaction makes quantum effects
more pronounced. Increasing these parameters leads to in-
creasing the mean excitation number of the photonic mode
and to decreasing the Mandel factors. Naturally, the question
of which parameter is exactly responsible for that arises.
The analysis shows that both processes stipulated by the
parameters χ/γ and g/γ are responsible for such behavior.
To clarify this point we turn to the analogous effects for a
single driven anharmonic oscillator with Kerr nonlinearity. In
this system, the efficiency of the quantum effects requires a
high nonlinearity χ with respect to dissipation, and increasing
the parameter χ/γ leads to a decrease of the mean excitation
number of the oscillatory mode (see, for example, [25]). As we
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FIG. 3. The results for the case of single-mode driving, �2 = 0,
where curves (1) correspond to the photonic mode and curves (2)
correspond to the excitonic mode. (a) and (c) Temporal dependence
of the mean excitation numbers of modes; (b) and (d) temporal
dependence of the Mandel parameters for excitonic and photonic
modes. The parameters are as follows: �ph/γ = 7.12, �ex/γ =
7.12, g/γ = 5, χ/γ = 1, �1/γ = 10, �2/γ = 0, δ/γ = 0 in (a)
and (b); �ph/γ = 7.12, �ex/γ = 7.12, g/γ = 7, χ/γ = 3, �1/γ =
10, �2/γ = 0 in (c) and (d).

see, the situation is different from the analogous one for two
coupled oscillators realized for the exciton-photon system.

As the numerical calculations show for the exciton-photon
system, the mean excitation number of the excitonic mode
decreases with the increase of the nonlinearity parameter,
while the mean excitation number of the photonic mode
increases with the nonlinearity parameter. For the coupling
constant g/γ we have different behavior; increasing the
coupling parameter increases the levels of excitation numbers
of both modes.

B. Quantum statistics in the case of time-modulated driving

The typical results for the case of time-modulated driving
with �2 �= 0 are presented in Figs. 4, 5, 6, and 8 for various
parameters of the exciton-photon system. As one can see in
Figs. 4(a) and 4(b), for the parameters χ/γ = 1 and g/γ = 5,
the mean excitation numbers and the Mandel parameters repeat
the periodicity of the input field in an over-transient regime.
It is remarkable that time modulation of modes leads to the
formation of highly sub-Poissonian statistics compared with
the case of monochromatic driving [see the results depicted
in Figs. 2(a), 2(b), 3(a), and 3(b)]. Indeed, in the case of
time modulation the values of the Mandel parameter can
reach the values of Qa ≈ −0.65 for the photonic mode and
Qb ≈ −0.45 for the exciton mode at definite time intervals.
To be correct we compare the results for two-field pumping
[Figs. 4(a) and 4(b)] with the results for one-mode pumping
in the cw regime [Figs. 3(a) and 3(b)] at the same total
pumping intensity. Thus, if one compares these values of
Mandel parameters with those obtained earlier for single-mode
cw pumping, one can make the conclusion that quantum effects
in the exciton-photon system become more pronounced for the
case of time-modulated pumping for a periodic sequence of

FIG. 4. The results for the case of a periodically driven photon-
exciton system. Curves (1) correspond to the photonic mode, and
curves (2) correspond to the excitonic mode. (a) Temporal dependence
of the mean excitation numbers for both modes, (b) temporal
dependence of the Mandel parameters for both modes, (c) the
Wigner function of the photonic mode corresponding to the maximal
occupancy of the mode, and (d) the Wigner function of the photonic
mode corresponding to the minimal occupancy of the mode. The
parameters are as follows: �ph/γ = 7.12, �ex/γ = 7.12, g/γ = 5,
χ/γ = 1, �1/γ = 5, �2/γ = 5, δ/γ = 2.

definite time intervals. We also note that the maximal degree
of sub-Poissonian statistics is realized for the time intervals
corresponding to the maximal values of the occupations of
the modes. Thus, the quantum effects are most essential for a
comparatively large number of quanta.

The contour plots of the Wigner functions for maximal
and minimum values of the photonic mode are presented in
Figs. 4(c) and 4(d), respectively. We observe that the Wigner
function corresponding to the maximal values of the photon
excitation number displays negative values in the phase – space
(these regions are shown in black), which means quantum
interference is realized in this regime. For time intervals
corresponding to the minimal photon numbers the Wigner

FIG. 5. (a) The mean excitation number and (b) Q factor depend-
ing on time intervals for various values of the modulation frequency:
δ/γ = 1.5, curve (1), δ/γ = 2.5, curve (2), δ/γ = 3, curve (3). The
parameters are as follows: �ph/γ = 7.12, �ex/γ = 7.12, g/γ = 5,
χ/γ = 1, �1/γ = 5, �2/γ = 5.
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FIG. 6. The results for the case of the periodically driven photon-
exciton system in the deeply sub-Poissonian regime. Curves (1)
correspond to the photonic mode, and curves (2) correspond to the
excitonic mode. (a) Time dependence of the mean excitation numbers,
(b) time dependence of the Mandel parameters, (c) the contour plots
of the Wigner function corresponding to the maximal occupancy of
the photonic mode, and (d) time-dependent normalized second-order
correlation functions for photonic and exciton modes. The parameters
are as follows: �ph/γ = 7.12, �ex/γ = 7.12, χ/γ = 3, g/γ = 7,
�1/γ = 5, �2/γ = 5, δ/γ = 2.

function for the photonic mode is positive in the entire phase
space and have a slightly squeezed form corresponding to
sub-Poissonian statistics.

As the numerical analysis shows, the improvement of
sub-Poissonian statistics occurs for a period of modulation
comparable to the characteristic time of dissipation γ −1 and
disappears for asymptotic cases of slow frequency δ/γ < 1
and fast frequency δ/γ > 1 modulations. This situation for
three different values of the ratio, δ/γ = 1.5, δ/γ = 2.5,
and δ/γ = 3, is shown in Fig. 5. Comparing time-dependent
Mandel parameters for different ratios δ/γ with the analogous
results depicted in Fig. 4(b), we can see that a more efficient
effect of sub-Poissonian statistics takes place for the optimal
value δop/γ = 2 used in Fig. 4(b). As the calculations show,
variations of the modulation frequency from its optimal value
lead to a decrease of the Q factor and the degree of the
sub-Poissonian statistics. It is interesting to compare the
optimal modulation frequency with the frequency of damped
Rabi-type oscillations δR that take place for the main excitation
numbers and Q factor at short time intervals for the case of
the monochromatic excitation. From the data of Figs. 3(a)
and 3(b) we estimate the Rabi frequency as δR/γ = 5.2, which
is noticeably larger than the value obtained for the optimal
frequency. Thus, the effect of improving the degree of the
sub-Poissonian statistics via modulation takes place for a time
interval that exceeds the period of the Rabi-type oscillations.

It seems intuitively clear that such an achievement is due
to the control of quantum dissipative dynamics as well as
the quantum noise level through the application of a suitable
tailored, time-dependent driving field. Indeed, the suppression
of quantum fluctuations in time-modulated optical parametric
oscillator and nondegenerate optical parametric oscillator
[21,23] has been demonstrated in the frame of the analytical

solution of the stochastic equations of motion. It was shown
that this effect is stipulated by multiplicative noise terms
for which the stochastic noise correlators also include the
time-modulated amplitude of the input field. On the whole time
modulation significantly improves the degree of squeezing and
continuous-variable entanglement in the time domain.

We also note that the regime of time modulation is
analogous (preferable for the case of �1 = �2) to excitation
of the system by a sequence of identical pulses. In this
field, generation of the nonclassical states of light for various
systems has been analyzed for time-domain operations. The
improvement of photon statistics by choosing the parameters
(mainly amplitude, shape, and pulse duration) of the driving
laser pulses has also been shown [20,22,25,39,40]. Thus, there
is an analogy between the observed effects on modification
of quantum statistics of the exciton-photon system by time
modulation and the above-mentioned previous results for
pulsed regimes.

Increasing the exciton-photon coupling constant and the
strength of exciton-exciton nonlinear interaction makes quan-
tum effects more pronounced, as shown in Fig. 6 for both
excitonic and photonic modes and for the parameters χ/γ

= 3, g/γ = 7. Note that for these parameters the detunings
�ph/γ = 7.12, �ex/γ = 7.12 approximately correspond to
two-photon selective excitation of the level E− from the
vacuum state, as has been shown above. Time evolution of the
mean excitation numbers is depicted in Fig. 6(a). Comparing
these results with analogous ones shown in Fig. 4(a), we
conclude that increasing the parameters χ/γ and g/γ while
leaving the other parameters the same leads to increasing
the level of photon excitation numbers and decreasing the
excitation numbers of the exciton mode. Considering the
quantum statistics of modes [see Fig. 6(b)], we conclude that
this regime displays a deeply sub-Poissonian statistics with
the Mandel parameter achieving values of Qa ≈ −0.8 for
the photonic mode and Qb ≈ −0.5 for the excitonic mode
in their minima. Comparing these results with the results for
the monochromatic pumping regime [Fig. 3(d)] with the same
total pumping intensities, we can conclude that enhancement
of these quantum effects is indeed due to time modulation of
the exciton-photon system.

It is also interesting to present results for quantum statistics
of the exciton-photon system within the framework of the nor-
malized second-order correlation function by using the above
formulas. The results for nonstationary correlation functions
for photonic and excitonic modes versus dimensionless time
intervals are depicted in Fig. 6(d). As we see, the correlation
functions display antibunching for exciton and photon modes
for all time intervals. However, the degree of antibunching for
the exciton mode is slightly stronger than that for the photonic
mode.

In addition, the correlation function of the exciton mode
shows monotonous time behavior, with g(2) ≈ 0.76, while the
analogous result for the photonic mode is nonmonotonous with
g(2) ≈ 0.82 at its minimum value at definite time intervals
corresponding to the minimal values of the mean photon
number. For the comparison note that for the pure Fock state
|2〉 the normalized second-order photon correlation function
is equal to 0.5. Thus, the obtained results reflect excitations of
states with high-order m > 2 manifolds and probably describe
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FIG. 7. The photon number distributions (a) at the minimum level
of quanta and (b) at the maximum level of quanta. The exciton
number distributions (c) at the minimum level of quanta and (d) at the
maximum level of quanta. The parameters are as follows: �ph/γ =
7.12, �ex/γ = 7.12, χ/γ = 3, g/γ = 7, �1/γ = 5, �2/γ = 5,
δ/γ = 2.

antibunching of photon-exciton states for a moderate number
of quanta. A more complete description of the system can be
obtained by calculating the Wigner function in phase space.
In this way, the contour plots of the Wigner function for the
photonic mode depicted in Fig. 6(c) display the typical form
corresponding to light with sub-Poissonian statistics.

Additionally, the probability distributions of photon-
number and exciton-number states for the definite time
intervals are presented in Fig. 7. These results show that
nonselective excitations of both photonic and excitonic modes
are realized for the parameters used. Indeed, the distributions
of photon numbers are relatively large and centered around
the maximal and minimal values of the mean photon number
[see Figs. 6(a) and 6(b)]. Nevertheless, the distributions
considerably differ from the Poissonian distribution. The
distributions of exciton numbers correspond to excitations of
the mode at the level of a few quanta, in accordance with the
results of mean exciton numbers.

It is interesting to analyze the minimal values of the
Mandel factor in its time evolution for various exciton-photon
coupling constants and strengths of exciton-exciton nonlinear
interaction. The results for the photonic mode depending on the
coupling constant g/γ are presented in Fig. 8 for three values
of the parameter χ/γ and a fixed value of the amplitude of
the driving field. One can clearly see that for the definite pa-
rameters of the driving time-dependent field, exciton-exciton
interaction, and the detunings an optimal value of the ratio
g/γ exists for which the quantum effects in the behavior of the
system become the most pronounced. These results indicate
the regime presented in Fig. 6 is the most preferable one for
production of strong sub-Poissonian statistics.

C. Discussion of thermal effects

Now, we turn to the thermal effects, considering briefly
the interaction of the exciton-photon system with the reservoir
at finite temperatures. We investigate how the temperature

FIG. 8. The minimal values of the Mandel parameter depending
on the exciton-photon coupling strength for several values of the
exciton-exciton interaction: χ/γ = 1, dashed curve; χ/γ = 3, solid
black curve; χ/γ = 5, solid pink curve. The parameters are �ph/γ =
7.12, �ex/γ = 7.12, �1/γ = 5, �2/γ = 5, δ/γ = 2.

affects the Mandel factor and the correlation function of the
photon mode in comparison to the case of a zero-temperature
reservoir. The effects of the thermal reservoirs are interesting
for carrying out a more realistic approach to generating
nonclassical states in exciton-photon systems and for studying
phenomena connecting quantum engineering and temperature.

The results for the thermal photons in the range nth =
0.01 − 1 are shown in Figs. 9(a) and 9(b). Taking into account
that T = �ωth/kB , for the frequencies of thermal photons
ωth = 10 GHz the temperature in this range corresponds to
10−1–10 K. In order to illustrate the difference from the case
of a zero-temperature resonator we assume here the same
parameters as in the previous case depicted in Fig. 4. As our
calculation shows, the maximal values of the mean photon
numbers and the mean exciton numbers are approximately
the same as in the case of a pure resonator, while the quantum
statistics of the oscillatory modes is changed due to the thermal
noise. The light inside the cavity remains sub-Poissonian and
antibunched for all time intervals if nth = 0.05. In this case the
minimal values of the Q parameter and the correlation function
remain close to the case of a vacuum reservoir. As expected,

FIG. 9. (a) Time evolution of the Mandel factor for three values of
thermal photon numbers nth; (b) the second-order correlation function
versus time intervals for several numbers of thermal photons. The
parameters are as follows: �ph/γ = 7.12, �ex/γ = 7.12, χ/γ = 1,
g/γ = 5, �1/γ = 5, �2/γ = 5, δ/γ = 2.
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further increasing the temperature leads to a decrease of the
quantum effects.

IV. CONCLUSION

In conclusion, we have considered the quantum statistics
of a coupled exciton-photon system for two regimes of mode
excitations: a cw monochromatic field and a time-modulated
pump field. The temporal behavior of the mean excitation
numbers of quanta, the Mandel parameter, the second-order
correlation function, and the Wigner function of exciton and
photon modes have been studied in the case of strong exciton-
photon coupling and exciton-exciton interaction. We have
demonstrated that results obtained by numerically solving the
master equation have a strong dependence on the properties of
the input driving. In this way, sub-Poissonian statistics for both
modes has been observed in the case of monochromatic driving
for all time intervals including transient and steady-state
regimes. We have illustrated how the degree of sub-Poissonian
statistics is controlled by exciton-photon and exciton-exciton
couplings and the intensity of the pump field.

We have also investigated in detail nonlinear and quantum
effects of the exciton-photon system driven by a time-
modulated external field. Such amplitude modulation can be
realized electronically using standard techniques, particularly
with the help of an electro-optic amplitude modulator. Alter-
natively, amplitude modulation can be achieved in the system
driven by a bichromatic pump field.

In the regime of time modulation the ensemble-averaged
mean photon numbers, the populations of photon-number
and exciton-number states, and the Wigner functions are
nonstationary and exhibit a periodic time-dependent behavior,
i.e., repeat the periodicity of the input for time intervals over
transient dynamics. We have shown that the time-modulated

exciton-photon system provides an effective mechanism for
the improvement of the degree of sub-Poissonian statistics
and antibunching for both modes in comparison with the
monochromatic driving even in the presence of decoherence
and cavity-induced feedback. The nonclassical states with
strong sub-Poissonian statistics are formed for definite time
intervals corresponding to the maximal values of the occupa-
tions of the modes depending on the modulation frequency,
nonlinear coupling constants, the detunings, and driving input
intensity. Thus, oscillations of both the variance of quantum
fluctuations 〈[�n(t)]2〉 and the level of antibunching have been
also observed. Further, a Wigner function with negative values
in the phase space, showing quantum interference, has been
observed for the time-modulated exciton-photon system.

We would like to underline that results for the time-
modulated exciton-photon system have been obtained in time
domain, without any time averaging, and hence can be directly
applied in areas of time-resolved quantum measurements and
quantum technologies (see, for example, [41,42]). In this field,
the sources of nonclassical states must be operated in the
pulsed or time-modulated regimes. In this way, the exciton-
photon system interacting with a periodically modulated
external field could be a good quantum device for producing
high-degree sub-Poissonian and antibunched photons and
excitons at periodic sequences of definite time intervals.
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