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Phase locking and quantum statistics in a parametrically driven nonlinear resonator
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We discuss phase-locking phenomenon at low-level of quanta and quantum statistics for parametrically driven
nonlinear Kerr resonator (PDNR). Oscillatory mode of PDNR is created in the process of a degenerate down-
conversion of photons under interaction with a train of external Gaussian pulses. We calculate the distribution
of photon-number states, the second-order correlation function of photons, the Wigner functions of cavity mode
showing two-fold symmetry in phase space, and we analyze formation of phase-locked states in the regular as

well as the quantum chaotic regime of the PDNR.
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I. INTRODUCTION

The parametric phase-locked oscillators are known to pos-
sess a wide-ranging set of applications in both the fundamental
and the applied sciences. In recent years, this device has
become a significant part in the experimental implementation
of basic quantum optical systems and it is also envisaged to be
a core component of quantum computers [1,2]. The simplest
realization of such systems displaying phase-locking behavior
is the one-mode optical parametric oscillator (OPO), which has
been shown to be an efficient source of squeezed light [3]. The
subharmonic oscillatory mode of the OPO excited through
the degenerate down-conversion process is found to exhibit
two-phase stability. This indicates the presence of two stable
states in the optical mode above the generation threshold, with
the two states having equal photon number but different phases
[4-6]. As a result, the Wigner function of the subharmonic
mode acquires a twofold symmetry in phase space.

Such phase-locking behavior can also be realized in the
nondegenerate (double-resonance) optical parametric oscilla-
tor by including an additional intracavity quarter waveplate
to provide polarization mixing between two orthogonally
polarized modes of the subharmonics [7-9]. A full quantum
mechanical treatment of this system has been presented in
[10,11] on the generation of continuous-variable entangled
states of light beams under mode phase-locked condition,
while experimental realizations have been achieved in [12—14].
The experimental observation of dynamical signatures of the
self-phase-locking phenomenon in a triply resonant degenerate
OPO was reported in [15]. On the other hand, the cascaded
phase-locked oscillators for the production of three-photon
states were proposed in [16—19].

The phase-locking transition was also observed in a
chirped superconducting Josephson resonator [20]. More
recently, the Josephson parametric phase-locked oscillator
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was demonstrated and it was applied to detect binary signals
with the identified digital information stored in the form of
two oscillatory distinct phases [1]. This enables the accurate
measurement of the state of a superconducting qubit without
affecting the integrity of the stored information.

Another important implementation that exploits the phase-
locking mechanism is the combination of the OPO with
the intracavity Kerr nonlinear element, the so-called para-
metrically driven nonlinear resonator (PDNR) [21,22]. This
system was first proposed as an optical parametric oscillator
in the pulsed regime with the incorporation of an intracavity
third-order nonlinear element leading to Kerr interaction [23].
A complete quantum treatment of the phase-locked PDNR
has been developed in terms of the Fokker-Planck equation in
the complex P representation [24-26]. The quantum regime
of PDNR requires a comparatively high level of third-order
Kerr nonlinearity with respect to dissipation. In this regime,
the pulsed PDNR has been proposed for the production of
quantum superposition states and two-photon Fock states [27].

Up till now, the phenomenon of phase locking has been
examined mainly from the mean-field approach, which is fully
justifiable in the case of a relatively high photon number of
cavity modes as well as for the regular operational regimes
of parametric devices, for instance, via the use of continuous-
wave or pulsed driving fields. In this paper we investigate phase
locking at a low level of excitation number of the cavity mode,
in the strong quantum regime, and in complete consideration
of dissipation and quantum fluctuations. Moreover, we analyze
phase locking within the chaotic regime of the PDNR. In other
words, we study properties of dissipative chaos for oscillatory
open systems that display phase-locking behavior.

The most successful approach of probing quantum dissipa-
tive chaos is based on quantum tomographic methods, which
involve measurements of the Wigner function in phase space.
In consequence, quantum chaos can be detected through a
comparison between the contour plots of the Wigner functions
and the strange attractors that characterize dissipative chaos
in the classical Poincaré section [28-31]. Note that such an
analysis seems to be qualitative rather than quantitative for
the range of low-level oscillatory excitation numbers, where
the validity of the semiclassical equation is questionable.
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Nevertheless, we discuss the semiclassical approach to chaos
by using the Poincaré section with a quantum analysis of phase
locking for both the regular and chaotic regimes based on the
Wigner functions. Moreover, the various regimes of the PDNR
will be clarified through consideration of quantum statistical
effects on the basis of the second-order photon correlation
function at coinciding times, the probability distribution of
the photon-number states, and the quantum purity of states.
Note that alternative approaches of probing quantum dissipa-
tive chaos involve consideration of entropic characteristics:
analysis of the statistics of the excitation number [32,33],
application of methods based on fidelity decay [34-36], the
Kullback-Leibler quantum divergence [37], and the purity of
quantum states [38].

Our paper is arranged as follow. In Sec. II we provide a
brief description of the PDNR driven by a train of Gaussian
pulses. In Sec. III we study the phase-locking phenomenon
at a low-level of excitation number and the quantum statistics
of the mode for both the regular and chaotic regimes of the
PDNR. Finally, we summarize our results in Sec. I'V.

II. THE PDNR IN THE PULSED REGIME:
TWOFOLD SYMMETRY

We consider a composite nonlinear one-mode resonator
involving second-order and third-order Kerr nonlinearities
excited by a train of pulses. The system is thus a parametrically
driven Kerr resonator with the following Hamiltonian:

H = hwoa'a + hx(a'a)®
+ hf(t)(Qef"“”aTZ + Q*eithZ) + Hiogs. (D)

Here a' and a are the oscillatory creation and annihilation
operators, respectively, wg is the oscillatory frequency, w is
the mean frequency of the driving field, and y is the strength
of the nonlinearity, which is proportional to the third-order
susceptibility for the case of Kerr media. The coupling constant
Qf(¢) is proportional to the second-order susceptibility and
the time-dependent amplitude of the driving field. It consists
of Gaussian pulses with duration T separated by time interval
7 as follows:
[o.¢]
fy = e o, o)

n=0

Note that Hy,s = al'f 4 a'T is responsible for the linear loss
of the oscillatory mode due to coupling to a heat reservoir,
which gives rise to a damping rate of y.

We describe the dissipative dynamics of the PDNR
with the master equation. The reduced density operator
of the oscillatory mode p obeys the transformation p —
eit@/Dalat poi(w/2alat i the interaction picture. It is governed
by the following master equation:

9P L by + Hiop)
dt - A 0 int> 0

+ Y (LipL = SLiLip— LpLiL) ()
i=12

within the framework of the rotating-wave approximation.
Note that L; = /(N + )ya and L, = /Nya' are the
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Lindblad operators, y is the dissipation rate, and N denotes
the mean number of quanta of the heat bath. Furthermore,

Hy = hAd'a,

4)
Hi = lix(a'a)* + hf (1) (Qa'? + Q*a?),

with A = wy — w/2 the detuning between the half frequency
of the driving field /2 and the oscillatory frequency wy. To
study pure quantum effects, we focus on cases of very low
reservoir temperature for which the mean number of reservoir
photons N = 0.

Various realizations of the Kerr resonator excited by the
parametric two-photon process have been proposed. Recent
progress in circuit QED, superconducting systems, and solid-
state artificial atoms has opened up new avenues for the design
of device configurations based on our model. In this direction,
one of the most promising systems consists of a quarter-wave
coplanar microwave cavity and a superconducting quantum
interference device (SQUID) [39,40]. By replacing the single
junction with a SQUID, the Kerr coefficient then allows the
parametric term to describe a degenerate two-photon excitation
by microwave light [40]. The experimental realization has been
reported in [1]. It was demonstrated that this system can be
described as a PDNR with a Hamiltonian given by Eq. (1)
where f(t) = 1 [1,26,40,41]. In this case, the raising a' and
lowering a operators in Eq. (1) describe the normal modes of
the resonator plus junction circuit, while the quadratic part of
the Josephson potential leads to self-Kerr nonlinear effects.

We solve the master equation given by Eq. (3) numerically
based on the method of quantum state diffusion (QSD) [42].
According to this method, the reduced density operator is
calculated as the ensemble mean

1 N
p(t) = MI[YeO) (Yl = lim Z Ve (D) (e ()] (5)
§

over the stochastic states |1 (¢)) describing evolution along
a quantum trajectory. The stochastic equation for the state
[We(t)) involves the Hamiltonian given by Eq. (1) and the
Lindblad operators of the noise terms from the master
equation (3).

We calculate the density operator using an expansion of
the state vector |y¢) in a basis of Fock’s number states of the
resonator mode. The application of this technique to the studies
of driven nonlinear oscillators and OPOs can be gleaned from
Refs. [28-30,32,33].

After we obtain p, the mean photon number, the distribution
of oscillatory excitation states P(n) = (n|p|n), the purity of
states, the normalized second-order correlation function g(z),
and the Wigner functions will be calculated in the framework
of the QSD method.

In the semiclassical approach, the corresponding equation
of motion for the dimensionless amplitude of oscillatory mode
takes the following form:

da ) 2 . . 1

i —i[A+ x + 2ol xla = 2if(t)Qo™ — Sye (6)
This equation modifies the standard equation for parametric
oscillator with Kerr nonlinearity for the case of pulsed exci-
tation. The semiclassical steady-state solutions and stability
properties of the PDNR for the monochromatic excitation
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f(t) = 1 have been presented in [24,25]. In standard analysis,
the amplitude of the oscillatory mode is described by o =
n'/2exp(ig) in terms of the intensity n (in photon-number
units) and the phase of the mode ¢, with the semiclassical
steady-state solutions obtained in the over-transient regime
and for large oscillatory mean excitation number n > 1.
Note that the amplitude of the driving field is represented
as Q = I'"?exp(i®), where I is the intensity and & is
the corresponding phase. In this case, the above-threshold
regime takes place when I > Iy, = g—z(l + ﬁ—zz). The system
displays regular behavior of photon number n versus I for
positive detunings. On the other hand, the bistable regime is
realized for negative detunings. In the regular above-threshold
regime, there actually exist two stable steady states with equal
intensities but opposite phase:

p=3Ptmm, (7)

indicating the formation of phase locking with twofold
symmetry.

Itis well known that the phase-locking phenomenon reflects
the twofold symmetry of the Wigner function, which has been
demonstrated in the steady-state regime of the OPO under
monochromatic driving [16,17,19]. The situation of phase
locking with twofold symmetry also arises for the composite
system under consideration due to the quadratic form of the
nonlinear term in the Hamiltonian for the pulsed PDNR given
by Eq. (1). Indeed, by considering the transformations

H =U'HU, p =U'pU (8)
with the unitary operator
U = exp(ifa'a), )

we have verified that the Hamiltonian of Eq. (1) and the
density operator of the oscillatory mode satisfy the following
commutation relations:

[H,U]=0, (10)

[p(),U] =0, Y

if the parameter 8 = . It is easy to demonstrate that the
Wigner function of the oscillatory mode expressed through
the density operator

1 1 * * *
W(a) — ;/dzy Tr(pe}/at—)/ a)e)/ a—yo (12)

displays twofold symmetry in its rotation around the origin of
the phase space:

W(r,0 + ) = W(r,0). (13)

Note that the polar coordinates (r,0) are related to the com-
plexplane X = (@ + «*)/2 =rcosfandY = (¢ — a*)/2i =
r sin 6. This result is obtained in the general form for arbitrary
time-dependent amplitudes of the external field and for all
operational regimes of the PDNR. In fact, such twofold
symmetry persists in the Wigner functions when the PDNR is
taken in the quantum chaotic regime, which will be discussed
in the next section.

In the following we consider the phase-locking phe-
nomenon based on the Wigner functions in phase space within
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both the regular and chaotic regimes of the PDNR. The
Wigner function is determined by averaging an ensemble of
quantum trajectories for a definite time instant according to
the following formulation:

W0) =D pam(t)Wyun(r,6), (14)

n,m

with the calculation of the matrix elements p,,, = (n|p|m) of
the density operator in the Fock state representation. Here the
coefficients W,,,,(r,0) are the Fourier transform of the matrix
elements of the Wigner characteristic function.

By analyzing the operational regimes of the PDNR driven
by the pulse train, we have concluded that the regular regime
is mainly realized for positive detunings A > 0, while the
chaotic dynamics takes place for negative detunings A < 0.
This result is in accord with the above discussion on the
case of monochromatic excitation of the PDNR that exhibits
bistability only for negative detuning. It is known that one
of the scenarios of the transition to chaos is realized through
a bistable regime of the nonlinear system. In this way, the
nonlinear system driven by the train of pulses in the range
of bistability oscillates between the two possible metastable
states. Then, for definite parameters leading to strong mixing
of these states, the system becomes chaotic. Indeed, just for
the case of negative detuning, the presence of the pulse train
has served to control the transition from bistable behavior to
chaotic dynamics with respect to the semiclassical solution.
In fact, for chaos to happen, the other parameters of our
model have to satisfy the following criteria: Q2 =~ |A| and
/2 < t/T < 2m.Itshould be noted that the above conditions
are specific to the pulsed PDNR, since for the standard
pulse-driven anharmonic oscillator without a parametric term,
quantum chaotic regimes are realized for both signs of
the detuning. The typical results for the Wigner functions
corresponding to the cases of positive and negative detunings
for the pulse-driven PDNR are illustrated in Figs. 2—4.

III. PHASE LOCKING AND QUANTUM STATISTICS IN
THE ORDER-TO-CHAOS TRANSITION

In this section we analyze the phase-locking phenomenon
by determining the time-dependent excitation numbers,
second-order correlation function, and Wigner function of the
oscillatory mode. We calculate these quantities by averaging
over an ensemble of quantum trajectories for definite time
instants and with respect to the parameters A/y, x/y, and
Q/y as well as the parameters of the pulses corresponding
to the regular and chaotic regimes. Note that all ensemble-
averaged quantities are nonstationary and exhibit a periodic
time-dependent behavior, i.e., they follow the periodicity of
the driving pulses beyond the transient state of the system.

A. Monitoring of phase locking on the Wigner functions

Calculations have shown that the PDNR in the pulsed
regime under quantum treatment displays regular behavior
only for positive detunings A > 0, while a chaotic dynamics is
realized for negative A < 0 detunings. Specifically, the typical
results on the dynamics of the photon number are presented
in Fig. 1 for negative and positive values of the detuning

043856-3



HOVSEPYAN, SHAHINYAN, CHEW, AND KRYUCHKYAN

IS

(2)

10, (b)

1C

3 58

£8 2

z Z 9

g g

E4 g4

&2 & 2

5 10 15 20 3 10 15 20
7t 7t

FIG. 1. Excitation number against time intervals for the negative
and positive detuning. The parameters used are x /y = 1, Q/y = 20,
T =0.5y"" v =4ry~"'/5,and (a) A/y = —20and (b) A/y = 20.

corresponding to the chaotic [Fig. 1(a)] and regular regimes
[Fig. 1(b)]. We observe that the system operates in the strong
quantum regime at a level of small excitation number for these
parameter values. The ensemble-averaged mean excitation
number is clearly regular in both regimes. It demonstrates
the well-known result that the quantum dissipative chaotic
dynamics is not evident in the dynamics of the mean oscillatory
number. Nonetheless, it is possible to detect quantum chaotic
behavior from other physical quantities, in particular, the
Wigner function.

In Fig. 2 we present our results on the Wigner function in
the strong quantum regime for both the regular and chaotic
behavior of the PDNR. Note that the results were selected

FIG. 2. Wigner functions for the positive and negative detunings
at time instants corresponding to (a) and (c) the minimum and (b)
and (d) the maximum of the excitation number observed in Fig. 1.
The parameters employed are (a) and (b) A/y = =20, x/y =1,
Q/y =20, T =05y ", andt =4mwy~'/5and (c) and (d) A/y =
20, x/y =1,Q/y =20, T =0.5y7", and t = 47 /5y ~". Note that
(a) and (c) relate to the minimal value of the photon number, while
(b) and (d) relate to the maximal value. The Wigner functions of (a)
and (b) are for the chaotic regime, while (c) and (d) are for the regular
regime of the PDNR.
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at definite moments in time that correspond to the minimal
and maximal values of the mean excitation number depicted
in Fig. 1. We observe that all the Wigner functions display
twofold symmetry in phase space according to Eq. (13).
In particular, Figs. 2(c) and 2(d) show the formation of
phase-locked states for the regular regime as the photon
number of the oscillatory mode increases. The single-peaked
Wigner function that occurs at the minimum of the excitation
number nni, = 1 is squeezed in phase space [see Fig. 2(c)],
indicating the formation of squeezed states in the oscillatory
mode. By increasing the excitation number, we observe the
formation of two squeezed humps [see Fig. 2(d)] at the
maximum of the excitation number n,,x = 9. The two humps
correspond to two states of equal photon number, but with two
different phases of the cavity mode of the PDNR, which is
above the generation threshold of the semiclassical approach.
We note that the distance between the two humps depends
on the excitation number of the optical mode. Interestingly,
our results have uncovered the occurrence of phase-locking
behavior at relatively small excitation numbers.

In general, the definition of the threshold Iy, as a critical
point commonly emerges from the analysis of semiclassical
solutions and their stability regions. Based on quantum theory,
as the relative nonlinearity yx/y increases, the semiclassical
characteristic threshold behavior, which is determined by
a drastic increase of the intensity in the transition region,
disappears. Thus, for the parameters used in Fig. 2, there
occurs a critical or threshold range, instead of a threshold
point [24-26].

Our results for the case of negative detuning are depicted
in Figs. 2(a) and 2(b) for time instants that correspond to the
minimal and maximal values of the excitation number [see
Fig. 1(a)]. The latter result is cardinally different from the
Wigner function obtained for the regular operational regime.
While the contour plots of the Wigner function for regular
dynamics are clearly bell shaped and localized in a narrow
region of phase space, the phase-space distribution for the
case of negative detuning is observed to be wider. In fact,
we also observe a broadening of the corresponding excitation
number distribution P(n) (see Sec. III C). The shape of the
distribution is found to change irregularly depending on the
duration T and time interval t between pulses. We conjecture
that these Wigner functions depict the chaotic behavior of
PDNR in the strong quantum regime.

A detailed identification of quantum chaos based on a
comparison between the contour plots of the Wigner function
and the corresponding classical Poincaré section has been
performed for the standard nonlinear resonator driven by a
train of periodic pulses [30]. It was demonstrated in [30] that
for comparatively small values of the ratio x/y, the contour
plots of Wigner functions are relatively similar to the strange
attractors in the Poincaré section. Analogous consideration for
the PDNR will be presented below in Sec. III B.

By analyzing the behavior of phase locking in the chaotic
regime of the PDNR, we can easily conclude that the Wigner
function exhibits twofold symmetry under a rotation of angle
7 around its origin in phase space based on the general formula
given by Eq. (13). Thus, the parametric interaction of the cavity
mode in the PDNR is observed to display twofold symmetry
in the phase space for both operational regimes. The Wigner
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FIG. 3. Wigner function for the case of positive and negative
detuning and for a time instant of mean excitation number that lies
between the minimal and maximal values. The parameters used are
x/y =1,Q/y =20,T =0.5y"",t =4ry~'/5,and (a) A/y = 20
and (b) A/y = —20.

function in Fig. 2(a) has the form of a broken one-peaked
localized state, while the two maxima at the Wigner function
of Fig. 2(b) reflect the track of phase-locked states in the
quantum chaotic regime.

It is also important to examine the phase-locking behavior
by considering the system time evolution. To achieve this goal,
we have calculated the Wigner function for time instants that
lie between the minimal and maximal values of the excitation
number. The results depicted in Fig. 3 show the initial stage of
phase splitting of the optical mode for the two phases in both
the regular and chaotic regimes.

We found that the above results are typical for the PDNR in
strong quantum regime. In Fig. 4 we have presented additional

7

FIG. 4. Wigner functions for negative detuning for time instants
that correspond to (a) the minimal and (b) the maximal values
of the mean excitation number. The parameters used are A/y =
—75,x/y =05,2/y =10,T =0.25y",andt = 27/5y~". Also
shown is (c) the Wigner function for the regular regime, with a
time instant at the maximal value of the mean excitation number.
The parameters employed are A/y =15, x/y =1, Q/y =10,

T =05y andr =27y~
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Wigner functions at other parameter values of A/y, x/v,
and 2/y. In particular, we observe that a decrease in the
amplitude of the driving field would lead to a decrease in the
distance between the humps of the two localized states. This
is apparent by comparing the results of Fig. 2(d) with Fig. 4(c)
for the regular regime. In the case of quantum chaotic regimes
[see Figs. 4(a) and 4(b)], we notice that a slight change in the
system parameters can lead to subtle variations in the Wigner
function. Indeed, this can be easily observed in Figs. 4(a)
and 4(b), where a smaller nonlinearity and field amplitude
have been used relative to those employed in Fig. 2.

B. Semiclassical treatment and the Poincaré section

In the semiclassical limit, chaos is observed in the Poincaré
section, which is constructed from the semiclassical trajectory
in phase space from the dimensionless position and momentum
variables, i.e., X = Re(e) and Y = Im(«), respectively, as
solutions of Eq. (6). In order to yield the Poincaré section,
we have employed the real and imaginary parts of the complex
amplitude as an arbitrary initial phase-space point (Xy, Yy) of
the system at time 79. We then define a constant phase map in
the (X,Y) plane by the sequence of periodically shifted points
X, V) =X, Y(@)] at t, =to+nt (n=0,1,2,...). In
this way, the Poincaré section is expressed through the constant
phase map of (X,,,Y;,) in the phase space. If the PDNR is driven
by a sequence of short pulses, the dynamics of the system is
nonstationary and hence the Poincaré section would depend on
the initial time instant #y. We have chosen various initial times
tp in order to ensure proper matching to the corresponding time
instants of the Wigner function. It is evident from Eq. (6) that
the system possesses symmetry properties in the phase space
according to the replacement o — (—«). We demonstrate
below that this phase symmetry is also displayed in strange
attractors of the Poincaré section.

The typical results of our calculations in the semiclassical
approach are depicted in Fig. 5 for the mean excitation number
|a|> and the Poincaré section for the parameters A/y, x /v,
and 2/y as well as for the parameters of pulses corresponding
to the chaotic regimes. It can be observed that while |a|? shows
the usual chaotic dynamics [see Fig. 5(a)], the Poincaré section
[see Fig. 5(b)] displays the structure of the strange attractor.

40 @ 8-
5
E 4
z >
51 0-
s
‘C
& 4
04
| T 7 |'8 T T T 1
0 10 20 30 40 -3 0 3
1L X

FIG. 5. Semiclassical results for the PDNR: (a) the mean excita-
tion numbers (photon numbers) versus dimensionless scaled time and
(b) the Poincaré section. The parameters are A/y = —10, x/y =1,
Q/y =20, T =05y~ !, and t = 4 /5y "
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Moreover, the Poincaré section is found to be symmetric with
respect to rotation by the angle 7 around the origin in the phase
space in lieu of the invariance of the operations X — —X and
Y - —7Y.

A comparison between the Poincaré section and the Wigner
function in the chaotic regime shows that the main difference
between them is the existence of fine fractal structures within
the Poincaré section, which are absent in the Wigner function.
This is due to the Heisenberg uncertainty principle, which
prevents sub-Planck structures to appear in phase space. The
consequence is a loss of correspondence between the quantum
and classical distributions in the deep quantum regime.

C. Photon-number statistics and quantum purity

In this section we discuss quantum effects in the PDNR for
both regular and chaotic regimes on the basis of the second-
order photon correlation function at coinciding times

@ _ (atataa)
~ (dfa)?

the photon-number distribution, and the quantum purity. In
particular, this analysis can be useful for probing quantum
chaos by observing photon statistics.

To achieve our objective, we calculate the correlation
function for both the regular and chaotic regimes of the PDNR
by employing the two sets of parameters used in Fig. 2, which
would lead to approximately equal excitation numbers for
each of the regimes. The correlation function is found to be
nonstationary and strongly dependent on the properties of the
input pulsed driving field. The typical time-dependent behavior
of g? is illustrated in Fig. 6 corresponding to the chaotic
regime [see Fig. 6(a)], which is realized through negative
detuning, and to the regular regime for positive detuning [see
Fig. 6(b)]. These results show drastically different behavior of
the correlation function g® for the chaotic and regular regimes
of the PDNR.

Let us now discuss the above observations in greater detail.
In the regular regime, the minimum value of g equals 1.2
approximately and occurs for time instants corresponding to

g ; 5)

(a) (b)

12 Photon number 4 Ph? number
104
84
8

o
N
[ee]
-
N
-
(]
o
g
-
N
-
()

FIG. 6. Averaged photon numbers and the second-order correla-
tion function for both chaotic and regular regimes of the PDNR. The
parameters are (a) A/y = =20, x/y =1,Q/y =20, T =05y},
and T =4y !'/5and (b) A/y =20, x/y =1, Q/y =20, T =
0.5y7!,and t = 47 /5y .
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FIG. 7. Time dependence of the quantum purity and distribution
of oscillatory excitation numbers for (a) and (b) negative and (c) and
(d) positive detunings. The parameters are as follows: (a), (b) A/y =
-20, x/y =1,Q/y =20, T =05y, and r =4/57y 7}, (c), (d)
Aly=20,x/y=1,2/y =20,T =0.5y", t =4/5zy~".

maximum values of the averaged photon numbers. At the
maximum of the correlation function, we have g® = 5.2 for
the mean photon number n = 2.5. Thus, both results describe
the phenomenon of photon bunching as stipulated by the
parametric two-photon processes leading to the excitation of
cavity mode. These results on photon statistics are in accord
with the results of Wigner functions presented in Figs. 2(c)
and 2(d) for the same parameters. The Wigner functions of
the PDNR for the regular regime displays one-peak structure
as well as two localized states at the maximum values of the
photon number. The peaks are squeezed in the phase space
for the case of photon bunching. In the chaotic regime, the
correlation function at the minimum value of the photon
number equals 2 approximately, which implies a photon
statistic of thermal or chaotic light. For time instants that
correspond to the maximum values of the photon number, g®®
is observed to decrease slightly. Note that the corresponding
Wigner functions depicted in Figs. 2(a) and 2(b) confirm the
chaotic regime of the PDNR. Thus, we conclude that the
two-photon processes that stimulate the excitation of mode
in the PDNR lead to strong photon-number correlation in the
regular regime, but not in the chaotic regime. Nevertheless, this
peculiar feature of the PDNR is displayed within the twofold
symmetry in the phase space of both operational regimes.

Next we illustrate the distribution function of the oscillatory
excitation number P(n) = (n|p|n) in Figs. 7(b) and 7(d) and
the results on quantum purity in Figs. 7(a) and 7(c). It was
demonstrated in Ref. [32] that P(n) tends to broaden when
a driven anharmonic oscillator transits from the regular to
the chaotic regime. We show here that analogous behavior
happens for the PDNR. Indeed, we observe that the P(n)
for the regular dynamics is bell shaped and localized in a
narrow interval of oscillatory number, but the distribution for
the chaotic dynamics is flat topped with oscillatory number
ranging from n = 0 to nyax = 30 [see Fig. 7(b)]. In fact, the
shape of the latter distribution changes irregularly and depends
on the duration 7 and time intervals t between the pulses.
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In Figs. 7(a) and 7(c) we plot the corresponding quantum
purity versus the scaled time y¢. Quantum purity is a usual
measure of the statistical characteristic of quantum states and
decoherence. It is defined through the density matrix p of the
system as P = Tr(p?). For any pure state Tr(p?) = 1 and for
mixed states it is less than 1.

In general, the purity of an ensemble of oscillatory states
strongly depends on the operational regimes of the PDNR.
More specifically, an increase in the excitation number would
raise the number of mixing oscillatory states, leading to a
decrease in purity. In addition, diffusion and decoherence
of oscillatory modes are also relevant to the level of purity.
Therefore, in our comparative analysis of Figs. 7(a) and 7(c),
we consider regimes of regular and chaotic dynamics with the
same level of the mean photon number. From the figures we
observe a time-dependent modulation of the purity by the pulse
train at the over-transient time interval. Comparing the results
of the two figures, we conclude that the magnitude of the
purity for the chaotic regime of the PDNR shown in Fig. 7(a)
is generally lower than that in Fig. 7(c). Thus, we observe a
larger purity for regular dynamics against chaotic dynamics as
we fix the mean oscillatory excitation number within a close
range, which indicates a direct relationship between the purity
of the state and the underlying oscillatory dynamics.
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IV. SUMMARY

We have demonstrated that the phase-locking phenomenon,
which is predicted by the mean-field approximation to arise
under the situation of a relatively high photon number in the
optical modes, can also occur at the level of a few quanta. In
particular, we have explored the formation of phase locking
within a nonlinear Kerr oscillator parametrically driven by a
train of pulses. We have performed our investigation through
the Wigner functions of the cavity mode in phase space for
definite time instants with temporal pulses of different widths
in both the regular and chaotic regimes. In addition, we have
analyzed the photon-number effects of the resonator mode and
quantum purity for both operational regimes, which allows
us to infer the presence of quantum dissipative chaos. These
results have informed us that the phase-locking phenomenon
and the quantum statistical effects are cardinally different
between the regular and chaotic regimes of the PDNR.
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