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Tolerance in the Ramsey interference of a trapped nanodiamond
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In the scheme recently proposed by M. Scala et al. [Phys. Rev. Lett. 111, 180403 (2013)], a gravity-dependent
phase shift is induced on the spin of a nitrogen-vacancy (NV) center in a trapped nanodiamond by the interaction
between its magnetic moment and the quantized motion of the particle. This provides a way to detect spatial
quantum superpositions by means of only spin measurements. Here, the effect of unwanted coupling with other
motional degrees of freedom is considered, and we show that it does not affect the validity of the scheme. Both this
coupling and the additional error source due to misalignment between the quantization axis of the NV center spin
and the trapping axis are shown not to change the qualitative behavior of the system, so that a proof-of-principle
experiment can be neatly performed. Our analysis, which shows that the scheme retains the important features
of not requiring ground-state cooling and of being resistant to thermal fluctuations, can be useful for several
schemes which have been proposed recently for testing macroscopic superpositions in trapped microsystems.
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I. INTRODUCTION

Since its discovery more than one century ago, quantum
mechanics has puzzled the scientific community with founda-
tional questions. Indeed, while everybody agrees on the power
of quantum mechanics for the description of microscopic
systems, such as atoms and molecules, and on its applicative
power, from electronics to the most recent developments in
quantum information processing and computing [1], there is
still a lot of debate about the transition from the microscopic to
the macroscopic world, where experience shows that quantum
mechanics does not seem to be valid and is substituted by
classical physics [2]. As an example, the naı̈ve use of quantum
mechanics for the description of the macroscopic world would
lead to predictions contradicting our experience, such as in
the well-known case of Schrödinger’s cat [3]. While it is a
relatively simple task to define what the microscopic and the
macroscopic worlds are, it is difficult to draw a line separating
these worlds. Finding the border between the two worlds is
an important foundational issue, and so far, many solutions
have been proposed to describe the transition from quantum to
classical physics, from more widely accepted theories based on
decoherence processes due to the interaction with an external
environment [2,4] to more debated theories, which propose
modifications of quantum mechanics but have not been tested
so far, such as the spontaneous localization theories [5–8].

In this framework, mesoscopic physics, i.e., the physics
of systems which lie somewhere in between the microscopic
and macroscopic worlds, plays an important role since one
can play with parameters which are intuitively related to
the transition from quantum to classical, such as the total
mass or the total number of atoms involved in the dynamics
of the systems. Examples of experiments with mesoscopic
systems are given by double-slit interference with very large
molecules [9], the production of nonclassical states of light
by means of optomechanical systems [10–13], and the study
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of coherence in trapped nanoparticles [14–18]. In all these
experiments, the scientific community is producing quantum
superpositions of states of larger and larger systems, and there
has been a lot of work related to quantifying the macroscopicity
of such superpositions [19–21]. The generally accepted idea is
that, by taking more macroscopic regimes and by making the
interaction with the environment weaker and weaker, we can
finally reach a regime wherein alternative theories, as opposed
to orthodox quantum mechanics, will become experimentally
testable [8,22].

Usually, the experiments to test such macroscopic super-
positions can be quite involved since, in general, they require
the possibility of cooling the system, coupling it with cavity
resonators, and also resolving the spatial extension of the
particles under study [23]. Moreover, in general, one will
need an ensemble of identically prepared systems. In our
previous work we proposed a quantum interference scheme
for trapped nanoparticles which overcomes these requirements
and would allow for the detection of the quantum features of
the motion of the particle by only spin measurements [24].
In the proposal, we considered a conditional displacement
induced by a magnetic field gradient on a trapped nanodiamond
containing one nitrogen-vacancy (NV) center (as shown in
Fig. 1). Starting from a superposition of two distinct states of
the spin of the NV center and from a generic coherent state
for the motion of the center of mass (c.m.) of the trapped
bead, we showed that the phase difference acquired by the
different trajectories of the harmonic motion in the presence
of gravity can be completely transferred to the spin states, so
that standard Ramsey interferometry is all we need to detect
the gravity-induced phase difference.

The analysis performed neglected some terms in the
Hamiltonian, making it effectively one-dimensional, instead of
genuinely three-dimensional, as it would be in real experiments
with optical tweezers. The simplified model allowed us to catch
the features of the scheme proposed in an easily understandable
way. In this paper we will show that a perturbative approach can
be used to prove that those additional terms can be neglected
up to very high values of the relevant coupling constants,
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FIG. 1. An optical trap holds a diamond bead with an NV center
with both weakest confinement and spin quantization along the z

axis. A magnetized sphere at z0 produces spin-dependent shifts to
the center of the harmonic well. An angle θ between the vertical
and the z axes places the centers of the wells corresponding to the
|+1〉 and |−1〉 states in different gravitational potentials. Starting
with an arbitrary coherent state, the c.m. of the bead oscillates as
different coherent states in the center-shifted, spin-dependent well
(red solid and dashed lines), accumulating a relative gravitational
phase difference due to the superpositions. At t0 = 2π/ωz this phase
can be read from Ramsey measurements on spin. The blue shaped
zone shows a generic orientation of the NV center’ s axis z′ with
respect to magnetic direction z.

which implies that the confinement along x and y as shown
in Fig. 1 need not be as tight as one would naı̈vely think:
this is due to the fact that the first-order correction to the
energy due to the additional terms is zero, and so one has
to go to second order to get corrections to the dynamics. We
will indeed show that, for parameters describing correctly the
dynamics of a nanodiamond trapped in an optical tweezer,
the fidelity between the perturbatively corrected state and
the state predicted by the one-dimensional model is always
larger than 99%. The same perturbative techniques can be used
to treat the effect of misalignment between the quantization
axis of the spin of the NV center, which essentially depends
on the relative direction between the color center and the
diamond lattice, and the trapping axis z. We will show that
misalignment does not change the qualitative behavior of
the system dynamics and that we are still able to detect
interference fringes showing the gravitationally induced phase
difference between the spin states. Moreover, the most
important feature of the one-dimensional scheme, i.e., the
robustness of the phase difference against thermal fluctuations,
is not substantially affected by the additional terms in the
Hamiltonian: therefore the more realistic scheme shows that
no (or a very small amount of) cooling is required in order
to get the interference fringes, so that the simplicity of the
proposal remains. The paper is structured as follows. In Sec. II
we review the one-dimensional scheme, showing how the
quantized motion of the particle leaves phase signatures on
the states of the spin of the NV center, while the effect of the
coupling with the motion along the x and y directions and
the effect of misalignment are presented in Secs. III and IV,

respectively. In Sec. V the results are discussed, and some
concluding remarks are given.

II. GRAVITATIONAL-INDUCED PHASES ON SPIN STATES

A. The system and its dynamics

As shown in Fig. 1, the setup consists of a nanoscale
diamond bead containing a single spin-1 NV center levitated
by an optical tweezer in ultrahigh vacuum. The motion of
the bead is coupled to the S = 1 spin of the NV center
by means of a static magnetic field gradient which can be
generated by a magnetized sphere with a permanent dipole
moment m = (0,0,mz) oriented along the z direction. Defining
a reference frame such that the centers of the harmonic
potential and the magnetized sphere are at (0,0,0) and (0,0,z0),
respectively, we can expand the magnetic field of the sphere
around (0,0,0) and get

Bx = −B0 x, By = −B0 y, Bz = μ0 mz

2π |z0|3 + 2B0 z, (1)

where B0 = 3μ0 mz/(4πz4
0). Therefore the interaction be-

tween the spin of the NV center and the vibrational motion
can be described by the Hamiltonian

Hint = −λ

[
2Sz(c+c†)−

√
ωz

ωx

Sx(a + a†)−
√

ωz

ωy

Sy(b+b†)

]
,

(2)
where

λ = 3μ0mzz0

4π |z0|5 gNV μB

√
�

2mωz

, (3)

with m being the mass of the bead, gNV being the Landé factor
of the NV center, μB being the Bohr magneton, and a,b,c

being the annihilation operators of the oscillation in x,y,z,
with the corresponding frequencies ωx,ωy,ωz, respectively.
Given the value of magnetization of a commercial magnetized
sphere (with radius r0 = 40μm) M = 1.5 × 106 A/m, the cor-
responding magnitude of dipole momentum is |m| = 4π/3 ×
r3

0 × M ∼ 4 × 10−7 A m2. Experimentally, the trapped parti-
cle could possibly be located at z0 = 60 μm, giving a field
gradient B0 ∼ 2 × 104 T/m. In this section we will neglect
the interaction between the spin and the x and y directions in
Eq. (2), whose effect will be analyzed in the next section on the
basis that ωx,ωy � ωz. In support of this approximation, in
Fig. 2 we present experimental data measured in our laboratory
from a nanodiamond levitated in moderate levels of vacuum
of approximately 10 mB using 200 mW of 1064-nm trapping
power. We measure ωz

ωx
≈ ωz

ωy
≈ 0.18. Due to asymmetry in the

laser focus [25], oscillation frequencies in the radial directions
are separated by approximately ω/2π = 5 kHz. The lower
axial z frequency arises from the smaller electric field gradient
along the beam axis in comparison to x and y. The x or y

frequency is revealed to the balanced photodiode by rotating
the polarization of the trapping light, while z is measured on
the individual photodiodes [26].

Finally, we add the free Hamiltonian of the bead and of
the NV center and the Hamiltonian describing the interaction
between the bead and the earth’s gravitational field, i.e.,
mgz cos θ , where θ is the angle between the z and vertical
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FIG. 2. (a) Experimental schematic of the optical dipole trap. A
1064-nm laser beam is tightly focused by a high-numerical-aperture
(0.95) objective. The polarization of the trapping light can be rotated
by a half-wave plate. Scattered light from levitated nanodiamonds is
collected by a lens and sent to a balanced photodiode in an interfero-
metric scheme described in Ref. [25], providing a position-dependent
signal from the levitated nanodiamond. (b) Power spectral density
(PSD) as a function of ω at approximately 10 mB using 200 mW of
trapping power. Fourier transforming the position-dependent signal
yields the PSD of the trapped nanodiamond. For the measurement of
the z frequency, the amplitude has been increased by a factor of 20
for clarity.

directions (see Fig. 1), so that the total Hamiltonian of the
system is given by

H = DS2
z + �ωzc

†c − 2(λSz − �λ)(c + c†), (4)

with

�λ = 1

2
mg cos θ

√
�

2mωz

. (5)

The Hamiltonian above represents a harmonic oscillator whose
center depends on the eigenvalue of Sz. In its derivation we
have also assumed that the Zeeman splitting of | + 1〉 and
| − 1〉 due to the zeroth-order expansion of Bz is canceled by
the addition of a uniform magnetic field along z.

It can be shown that, starting at t = 0 from the state |β〉|sz〉,
where |β〉 is a coherent state of the c.m. quantized motion of
the bead in the harmonic well centered at z = 0 and |sz〉 is an
eigenstate of the operator Sz with eigenvalue sz = +1,0,−1,
the system evolves at time t to the state |β(t,sz)〉|sz〉, where

|β(t,sz)〉 = e− i
�

(D−�ωzu
2)t eiu2 sin(ωzt)

× |(β − u)e−iωzt + u〉 (6)

and u = 2(szλ − �λ)/�ωz. A derivation of Eq. (6) is provided
in Appendix A. It is worth noting that, at time t0 = 2π/ωz,
the oscillator state returns to its original coherent state β for
any β and sz. One can take advantage of this feature to show
that spin measurements at t0 will be unaffected by any thermal
randomness in the initial motional state of the oscillator.

B. Detecting the gravitational field by Ramsey interferometry

What we want to do now is to prepare the spin in a
superposition of states, so that when the center of mass
of the bead undergoes a conditional displacement due to
dynamics, the hybrid system evolves to a state which involves
superpositions of |β(t,sz)〉| + 1〉 and |β(t,sz)〉|−1〉. We then
measure the spin at a special time t0 at which the conditional
displacements are again undone due to the natural dynamics so
that the spin state becomes unentangled from the vibrational
one. In this way we can perform measurements on only the spin
to reveal the different phases acquired by the spin components
due to the evolution for the vibrational state.

Preparing the system in the separable state |β〉|sz = 0〉
and applying a microwave (MW) pulse corresponding to the
Hamiltonian Hmw = ��(| + 1〉〈0| + |−1〉〈0| + H.c.), with �

being much larger than any other coupling constant and for
a pulse duration tp = π/(2

√
2�), the spin state becomes

|	(0)〉 = |β〉( |+1〉+|−1〉√
2

), which we will take as the initial
state for the interaction under the Hamiltonian (4). After the
interaction time t , the state is

|	(t)〉 =
( |β(t,+1)〉|+1〉 + |β(t,−1)〉|−1〉√

2

)
, (7)

which is the superposition we intend to evidence. From the
expressions of |β(t,±1)〉 in Eq. (6) we can see that separated
coherent states are involved in the above superposition along
with phases due to gravitational potential, which will evidence
the above superposition. Up to a global phase factor, the state
after an oscillation period t0 = 2π/ωz is

|	(t0)〉 = |β〉
( |+1〉 + ei�φGrav |−1〉√

2

)
, (8)

with

�φGrav = 16λ�λ

�2ωz

t0. (9)

The phase difference �φGrav can be revealed by applying Hmw

again. Indeed, after a second MW pulse, the population of the
spin state with Sz = 0 is

P (sz = 0) = cos2

(
�φGrav

2

)
, (10)

which gives a direct connection between the value of the
phase shift and the spin population. As �φGrav ∝ g can never
appear as a relative phase between spin states unless spatially
separated states of c.m. were involved in the superposition
[|β(t,+1)〉|+1〉 + |β(t,−1)〉|−1〉]/√2 for 0 < t < t0, the de-
tection of �φGrav evidences such a superposition.

Finally, let us consider what happens if the initial state is
the product of a thermal motional state ρth and an eigenstate
of the spin operator Sz. In fact, one can exploit the fact that
the results given above are independent of the amplitude β
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and that any thermal state ρth of the motion can be written
as ρth = ∫

d2βPth(β)|β〉〈β|, where Pth is the Glauber P

representation of the thermal state, to show that, after the
evolution over one oscillation period, the state of the system is
again factorizable and that the phase difference accumulated
by the spin states is not affected by the thermal motion.
Basically, although a mixture of many Schrödinger’s cats
|β(t,+1)〉|+1〉 + |β(t,−1)〉|−1〉 is generated for 0 < t < t0,
the interference between the components |β(t,+1)〉|+1〉 and
|β(t,−1)〉|−1〉 of the cat is independent of β. This immunity
of the interference to thermal states hinges on the mass being
trapped in a harmonic potential. We assume that anharmonic
effects of the trapping potential will be avoided by feedback
cooling of our oscillator to mK temperatures [25–27].

III. THE EFFECT OF THE TERMS NEGLECTED:
PERTURBATIVE ANALYSIS

In the previous discussion, we restricted our analysis to
the one-dimensional case; that is, we neglected the coupling
between the spin and the motion of the trapped bead along
the x and y directions on the basis that the confinement along
such directions is much tighter than the trapping along the z

directions. Since the coupling terms neglected in Eq. (2) are
proportional to

γx,y =
√

ωz

ωx,y

, (11)

it is worth analyzing the effect of such terms on the dynamics
predicted in the previous section. In the following we will
use a perturbative approach, the main scope of the treatment
being the effect on the interference fringes corresponding to
the gravity-induced phase difference in Eq. (9). In order to do
so, we first define the appropriate zeroth-order Hamiltonian as

H0 = DS2
z + �ωxa

†a + �ωyb
†b + �ωzc

†c

+ 2�λx(a + a†)+2�λy(b + b†)+2�λ(c + c†), (12)

which differs from the Hamiltonian in Eq. (4) because we
have added the quantized motion along the directions x

and y, represented by the annihilation operators a and b,
respectively. Subsequently, the extra gravitational terms due to
these transverse oscillations is included through the constants:

�λx,y = 1

2
mg cos θx,y

√
�

2mωx,y

, (13)

where θx and θy are the angles between the direction of
the gravitational acceleration and the x and y directions,
respectively.

The evolution of the system with the full Hamiltonian

H = H0 + Vx + Vy,

Vx = λγxSx(a + a†),Vy = λγySy(b + b†), (14)

can be obtained by treating the terms Vx and Vy perturbatively
with respect to the Hamiltonian (12), whose eigenstates are
products of eigenstates of Sz and displaced number states [28]:∣∣E(0)

n,sz

〉 = D(α)|nz,ny,nz〉 ⊗ |sz〉; (15)

correspondingly, the unperturbed eigenvalues reads

E(0)
n,sz

= �

∑
i=x,y,z

ωini + Ds2
z − 4

(−szλ + �λz)2

�ωz

. (16)

In Eq. (15), we have n = (nx,ny,nz), and D(α) is
a three-dimensional displacement operator, i.e., D(α) =
Dx(αx)Dy(αy)Dz(αz), with

αz = −2λsz + 2�λz

�ωz

, αx = 2�λx

�ωx

, αy = 2�λy

�ωy

. (17)

The first-order correction to the energy due to Vx,Vy is zero
since

〈sz|Vx,y |sz〉 = 0. (18)

The first nontrivial deviation from the underperturbed dynam-
ics can be obtained by correcting the energies up to second
order and, accordingly, the eigenstates up to first order. The
corrected-energy eigenstates and eigenvalues are therefore
given by

∣∣E(2)
n,sz

〉 = Z−1
n

⎛
⎝∣∣E(0)

n,sz

〉 + ∑
k �=n,s ′

z

H ′
n.sz;k,s ′

z

E
(0)
n,sz − E

(0)
k,s′

z

∣∣E(0)
k,s′

z

〉⎞⎠ (19)

and

E(1)
n,sz

= E(0)
n,sz

+
∑

k �=n,s ′
z

|H ′
n.sz;k,s ′

z
|2

E
(0)
n,sz − E

(0)
k,s′

z

, (20)

where

H ′
n,sz;k,s ′

z
= 〈

E(0)
n,sz

∣∣(Vx + Vy)
∣∣E(0)

k,s′
z

〉
(21)

and Z−1
n is an appropriate normalization factor.

For any initial state, the perturbative dynamics at any
time t can be obtained by expanding it into the basis given
by Eq. (19) and multiplying each term in the expansion
by the corresponding exponential factor exp(− i

�
E

(1)
n,sz t). In

particular we have calculated the evolution of our system
from the same initial state as in Sec. II. As a result, the
motional and spin states will be entangled at every time
instant t > 0. We can quantify how much the perturbed
evolution deviates from the unperturbed one by computing
the fidelity F = |〈	(2)(t0)|	(0)(t0)〉| between the perturbed
state |	(2)(t0)〉 and unperturbed state |	(0)(t0)〉 after one
oscillation period. We have computed fidelities for a very
large range of parameters, with λ ranging from 0 to 0.1 and
γx and γy ranging from 0 to 0.4: this choice includes also
the realistic experimental conditions of our proposal, where
ωx = ωy = 10ωz, corresponding to γx = γy � 0.32. We have
found that the fidelity decreases with increasing values of λ,γx ,
or γy , but only by a very small amount in the range considered:
in all cases the value of the fidelity stays above 99%, which
ensures that our treatment in Sec. II is accurate enough. This
is somehow surprising, but the reason relies on the fact that
the first-order correction in the energies is exactly zero due to
the selection rules, so that the first significant correction to the
energies is second order in γx and γy , so even relatively large
values of these parameters have little effect on the evolution
of the spin-diamond system.
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These results remain true when the initial state is thermal.
We have indeed found that the fidelity is still very close to
unity for coherent states whose average thermal occupation
number is up to 600. This corresponds to the robustness of
our schemes up to temperatures of the order of 1 mK, so that
feedback cooling is sufficient for our scheme to work [26].

IV. THE EFFECT OF THE RANDOM ORIENTATION

Once the nanodiamond is trapped in the potential, it is very
likely that the orientation of the NV center quantization axis,
with respect to which the splitting D is computed, is randomly
orientated with respect to the trap axis. Measuring the optically
detected magnetic resonance spectrum of the NV electron spin
in an applied magnetic field will reveal the orientation of the
NV center with respect to the applied magnetic field and hence
the trap axis. This orientation could be controlled in the x-y
plane by adjusting the linear polarization of the trapping light
because the nanodiamonds are not spherical. Using rod-shaped
diamonds would increase this control [29]. Alternatively, the
birefringence of diamond [30] might be used to control the
orientation with circularly polarized light [31].

In this section, without introducing extra measurements
and manipulation of the NV’s orientation, we will evaluate
the systematic errors introduced by the misalignment between
the axes of the NV center and the trap. We will show that the
visibility of the interferometry will reduce to some degree
when these two axes are perpendicular, but in most cases
we can get a good resolution of the interference fringes. We
will essentially use the same perturbative methods as in the
previous section.

Assuming we can neglect the coupling with the x and y

directions, the Hamiltonian we will use is

H = DS2
z + �ωzc

†c + 2�λ(c† + c)

− 2λ(cxSx + cySy + czSz)(c
† + c), (22)

where cx,cy , and cz are the direction cosines of the NV
symmetry axis z′ with respect to the trapping axis z, whose
values are obtained by a rotation transformation between
these two axes, bounded by the condition c2

x + c2
y + c2

z =
1. Generally, there is no exact analytical solution for this
Hamiltonian, so we divide it into two parts by H = H0 + HI ,
where

H0 = DS2
z + �ωzc

†c + 2�λ(c† + c) − 2λczSz(c
† + c),

(23)
for which we can solve analytically, and

HI = −2λ(cxSx + cySy)(c† + c), (24)

which will be treated perturbatively. The time evolution of any
state under Hamiltonian (22) and the effect on the Ramsey
scheme afterwards can be calculated numerically by means
of a perturbative expansion to the second order, and based on
numerical results, we reconstruct the fringes of the spin-zero
state population over a range of angles θ between the trapping
axis z and the direction of the gravitational acceleration.

We can investigate the dependence on the orientation of
the NV center by changing the parameters cx and cy . Since
the system is rotationally invariant along the trapping axis,
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FIG. 3. Fringes of spin-zero population P (sz = 0) as a function
of the orientation θ of the trapping axis z, with respect to the direction
of the gravitational acceleration, and of the direction cosine, where
cx = 0 corresponds to the NV center being parallel to the trapping
axis and cx = 1 corresponds to the case in which the NV center is
orthogonal to it. The initial motional state has been taken to be equal
to the vacuum state of the quantum oscillator. The other parameters
are such that λ = 0.01 J and �λ/ cos θ = 11.9 J.

we simplify the simulation by taking cy = 0 and consider cx

varying from 0 (aligned case) to 1 (perpendicular case).
Figure 3 shows the interference fringes, given by the

population P (sz = 0) of the state |sz = 0〉, as a function of
the tilting angle θ and of the direction cosine cx (cx = 0
corresponds to the NV center being parallel to the trapping
axis, while cx = 1 corresponds to the case in which the NV
center is orthogonal to it). Figure 3 compares the interference
fringes in the case of perfect alignment with the fringes
in the orthogonal case. The interferometry fringes turn out
to be qualitatively robust against the misalignment; that is,
the visibility of the fringes does not change over quite a
long range of values of cx when the NV axis deviates from
the paraxial case and only shows a limited reduction at the
extreme case. We can therefore deduce that, if we want to
perform a proof-of-principle experiment to show the existence
of the gravity-dependent phase factors in the evolution of the
components of the spin state, we do not have to worry too
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FIG. 4. Fidelity F = |〈	 (2)(t0)|	 (0)(t0)〉| against the magnitude
of |βx | = |βy | = |βz| = |β0| under realistic parameters λ = 0.01�ωz

and γx = 0.4,γy = 0.5.
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much about correcting the orientation of the NV center with
respect to the trapping axis.

The results in Fig. 3 were obtained with λ = 0.01 J and
�λ/ cos θ = 10 J and for a motional initial state corresponding
to the vacuum state of the quantum oscillator. In order to
investigate the effect of an initial thermal distribution we must
carry out the simulation starting from a generic initial coherent
state for the oscillator. For computational purposes we have
simulated the dynamics with the QUTIP software [32], which
ensures faster convergence than our perturbative approach, and
computed the evolution of the system with a generic coherent
state. Up to an average thermal occupation number of the c.m.
motion 〈N〉 = 600 we did not note any visible changes in
the behavior of our system as shown in Fig. 4, which assures
us that the initial thermal distribution should not affect our
predictions, at least up to a temperature of the order of 1 mK.
However, going beyond such a temperature might leave the
assumption of harmonic confinement of the trapped particle.
Therefore it would be pointless to evaluate the performance of
our system for a larger excitation number. More details about
the effect of temperature on the system dynamics can be found
in Appendix B.

V. DISCUSSION AND CONCLUDING REMARKS

We will now give the experimental parameters necessary
to obtain good visibility of the interferometric fringes in
a setup in which we are allowed to vary the angle θ . As
realistic values for the setup, we consider ωz ∼ 100 kHz
and diamond spheres whose radius R ∼ 100 nm, so that,
considering the density of 3500 kg/m3 for diamond, the
corresponding mass is ∼1.25 × 10−17 kg. Good visibility of
interferometry fringes in the population in Eq. (10) is given
for K = 8λ�λt0/(�2ωz cos θ ) ∼ 10, which makes the value
of the population change completely from 0 to 1 when θ varies
between π/2 and π/2 − π/20 (the z axis is horizontal for
θ = π/2; see the red line in Fig. 3). Assuming that the magnetic
field in Eq. (1) is generated by a magnetized sphere with radius
r0 = 40 μm and magnetization M = 1.5 × 106 A/m (typical
for commercial magnets) and z0 = 120 μm, we get, according
to mz = M(4π/3)r3

0 and Eqs. (3) and (5), a magnetic gradient
of ∂B/∂z ∼ 103 T/m and, consequently, the desired value
of K . All these values are achievable experimentally and
correspond to the values of λ and �λ used to obtain Figs. 2
and 3.

With these values, the time necessary to have a complete
oscillation of the center of mass is of the order of t0 = 50 μs.
This must be compared with the typical spin dephasing times
of NV centers in nanodiamond. NV centers in isotopically
purified bulk diamond can have electron-spin dephasing times
T2 > 1 ms measured with a spin-echo sequence [33], but such
long times have not been found for nanodiamonds. The longest
times have been achieved by making nanodiamonds from pure
bulk material with a low concentration of spin defects: nitrogen
impurities must be reduced and, ideally, also 13C. This material
can then be milled [34] or, preferably, etched with reactive
ion etching (RIE) to form nanoparticles. Nanodiamond pillars
with a 300–500 nm diameter made with RIE have shown a
spin-echo T2 time of over 300 μs [35]. Pillars with a 50 nm
diameter and 150 nm length have achieved a spin-echo T2

time of 79 μs [36]. By means of appropriate decoupling
techniques and by slightly changing our Ramsey scheme in
order to accumulate the gravitational phase over more than
one cycle, such a dephasing time can be made larger. With
T2 = 79 μs we would get perfect visibility of the interference
fringes.

The robustness to the temperatures up to 1 mK also shows
that our proposal is promising for an experimental realization.
As we have shown, both the terms neglected in obtaining
our results in Sec. II and the misalignment terms are not
a problem if we want to perform an experiment aimed at
obtaining interference fringes demonstrating the existence of
gravity-induced phases in the spin state.

For other applications of our scheme, such as in metrology,
we will need a perfect quantitative agreement between our
predictions and the data obtained. In this case, either we will
have to measure the exact value of cx in order to know to
which slice of Fig. 3 our fringes correspond, or we will have
to correct for misalignment. This is currently experimentally
achievable, for example, by the methods shown in Ref. [31].

Finally, let us stress that our perturbative approach can be
useful to study the effect of similar spurious coupling terms in
experimental proposals involving the coupling of the motion
of nanoparticles with spin degrees of freedom [11,15,37].

In this paper we have studied the dynamics of an NV
center in a harmonically trapped nanodiamond, considering
the effect of unwanted coupling between the spin and the
directions orthogonal to the direction where the conditional
displacement takes place, inducing a gravity-dependent phase
which can be detected by only spin measurements. We have
shown that a perturbative treatment of the additional terms in
the Hamiltonian proves that, for the experimental parameters
characterizing the setup proposed, the fidelity between the
realistic and the unperturbed states is always above 99%.
This ensures that the experiment should confirm the one-
dimensional theory, which allows for a very clear physical
interpretation of the results. Moreover, the robustness with
respect to thermal fluctuations in the initial state is retained,
which is the most important feature of our proposal since no
ground-state cooling is required, only some feedback cooling
to mK temperatures in order to guarantee that no anharmonic
effects come into play in the dynamics. The same perturbative
approach can be applied to treat the misalignment between the
NV center and the trapping axis. In the case of misalignment,
the quantitative agreement with the one-dimensional model is
lost, but the qualitative behavior of the interference fringes
stays valid up to very high deviations from the perfectly
aligned case. Therefore a proof-of-principle experiment aimed
at showing the existence of Ramsey interference fringes
induced by gravity can be performed without caring too
much about the alignment between the NV center and the
trapping axis.
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APPENDIX A: DERIVATION OF THE
UNPERTURBED EVOLUTION

We solve the dynamics of unperturbed Hamiltonian (4) by
rotating the system to a new frame by the displaced operator
D(α) = D[(−2Szλ + 2�)λ/�ωz], where the exact dynamics
for the coherent state could easily be obtained, and then
transforming it back to the original picture. With the property
of the displacement operator, we obtain the Hamiltonian in the
new picture,

H ′ = D†(α)HD(α)

= DS2
z + �ωzD

†(α)c†D(α)D†(α)cD(α)

+ (−2λSz + 2�λ)D†(c† + c)D(α)

= DS2
z + �ωzc

†c − 4(−szλ + �λ)2

�ωz

, (A1)

and our initial state (an arbitrary coherent state with an
eigenstate of spin Ŝz) reads

|	(0)〉′ = D†(α)|β,sz〉 = D†(α)D(β)|0,sz〉
= eIm(αβ�)D(β − α)|0,sz〉 = eIm(αβ�)|β − α,sz〉,

and the time evolution under H ′ is

|	(t)〉′ = e− iH ′
�

t |	(0)〉′

= e− iH ′
�

t |β − α,sz〉
= e

− i
�

(Ds2
z − 4(−szλ+�λ)2

�ωz
)t |(β − α)e−iωzt ,sz〉.

Afterwards, we transform back to the initial frame and obtain
the final state after t :

|	(t)〉 = D(α)|	(t)〉′

= e
− −i(szλ−�λ)2

�2ω2
z

sin ωzt
e
− i

�
(Ds2

z − 4(−szλ+�λ)2

�ωz
)t

× |(β − α)e−iωzt + α,sz〉. (A2)

APPENDIX B: THERMAL DEPENDENCE OF THE
PERTURBATION EFFECT

In order to investigate the thermal dependence of our
perturbative analysis, we first evaluate how the fidelity between
the unperturbed and perturbed states varies given different
magnitudes of the initial coherent state of the c.m., as shown
below.

Since any thermal state can be represented in a diagonal
form in the coherent basis, our initial state (for a thermal
particle) reads

ρth(0) = 1

2

∫
d2 βPth( β)| β〉〈 β|(|+1〉+|−1〉)(〈+1| + 〈−1|),

(B1)

where β = (βx,βy,βz) and Pth( β) is the Glauber P represen-
tation for the thermal state,

Pth( β) =
∏

i=x,y,z

1

π〈n̂i〉e
−|βi |2/〈n̂i 〉,

where 〈n̂i〉 is the average excitation number in each direction.
Under the unperturbed Hamiltonian H0 from Eq. (12) the final
state after a full oscillation is

ρ
(0)
th (t0) = 1

2

∫
d2 βPth( β)(| β〉|+1〉 + | β〉| − 1〉eiφGrav )

⊗ (〈 β|〈+1| + 〈 β|〈−1|e−iφGrav )

≡ 1

2

∫
d2 βPth( β)(|	(0)( β,+1)〉 + |	(0)( β,−1)〉)

⊗ (〈	(0)( β,+1)| + 〈	(0)( β,−1)|)
≡ 1

2

∫
d2 βPth( β)σ (0)( β), (B2)

while the final state for the perturbed case [to the second-order
correction in the perturbation analysis and here we denote the
corresponding propagator by U (2)(t0)] is

ρ
(2)
th (t0) = U (2)(t0)ρth(0)U †(2)(t0)

= 1

2

∫
d2 βPth( β)(|	(2)( β,+1)〉 + |	(2)( β,−1)〉)

⊗ (〈	(2)( β, + 1)| + 〈	(2)( β, − 1)|)
≡ 1

2

∫
d2 βPth( β)σ (2)( β), (B3)

where |	(2)( β,±1)〉 = U (2)(t0)| β〉|±1〉 is obtained numeri-
cally. By the virtue of the concavity of the fidelity of the
two-density matrix,

F
(
ρ

(0)
th (t0),ρ(2)

th (t0)
)

�
∫

d2 βPth( β)F (σ (0)( β),σ (2)( β)),

the lower bound of F (σ (0)( β),σ (2)( β)) could be approximately
estimated by sampling the value of β0 from Pth( β), provided
there is a sufficient sample size. However, given the insensi-
tivity of F = |〈	(2)( β,±1)|	(0)( β,±1)〉| to the magnitude β

up to 150 (which we are capable of simulating), we conclude
that for a thermal state F (ρ(0)

th (t0),ρ(2)
th (t0)) is bounded by a high

value within the simulation range. Recalling that the average
excitation number for a coherent state |β0〉 is 〈n〉 = |β0|2, we
conjecture that our perturbation analysis is not sensitive to the
initial thermal effect for the temperature (1 mK correspond
to ∼1000 thermal occupations) we consider since in going
beyond such a temperature we would encounter anharmonicity
in the trap potential and invalidate the scheme.
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