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Unified approach to cascaded stimulated Brillouin scattering and frequency-comb generation
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We present a unified approach to cascaded stimulated Brillouin scattering and frequency-comb generation in
which the multitude of interacting pump, Stokes, and anti-Stokes optical fields is described by a single forward
wave and a single backward wave at a single carrier frequency. The envelopes of these two waves are modulated
through coupling to a single acoustic oscillation and through four-wave mixing. Starting from a single pump
field, we observe the emergence of a comb of frequencies as the intensity is increased. The set of three differential
equations derived here is sufficient to describe the generation of any number of Brillouin sidebands in oscillator
systems that would have required hundreds of coupled equations in the standard approach. We test this approach
on some published experiments and find excellent agreement with the results.
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I. INTRODUCTION

Stimulated Brillouin scattering (SBS) transfers energy from
a strong optical pump wave to a lower-frequency Stokes wave
through an interaction with a hypersonic acoustic wave when
the pump power exceeds a certain threshold [1–4]. In principle,
when the Stokes wave also exceeds the threshold for SBS it can
generate a higher-order Stokes wave. In practice, higher-order
Stokes scattering is rarely seen in the absence of feedback
because the threshold for even the second order is two orders
of magnitude higher than that for the first [5]. This is due to
the fact that the effective length of the medium occupied by
the first-order Stokes is extremely small and localized near the
entrance. The presence of reflective feedback or a resonant
cavity dramatically reduces the threshold for higher-order
scattering thus making it possible to observe a cascade of
higher-order Stokes lines [6]. Anti-Stokes orders can also be
generated through four-wave mixing once there are at least two
copropagating pump and Stokes waves [7]. The result is a large
number of equally spaced lines that are coherently phased:
a Brillouin frequency comb [8–13]. These frequency combs
have attracted a great deal of interest because of their potential
applications in areas such as microwave photonics, sensing,
spectroscopy, and wavelength-division multiplexing [14].

In the theoretical analysis of cascaded SBS, all previous
studies have treated the Stokes-shifted waves as separately
propagating waves, each with its own frequency and wave
vector coupled to their copropagating acoustic waves [15–18].
In a comb with many frequencies this approach can lead to
an enormous number of coupled equations that need to be
solved simultaneously. For example, with just the pump and
three Stokes orders, Ogusu had to solve 14 coupled nonlinear
partial differential equations for the forward and backward
propagating pump, Stokes, and acoustic waves [16]. Indeed
there are experimental reports of Brillouin frequency combs
with as many as 800 lines generated through cascaded SBS and
four-wave mixing [19]. A detailed numerical study of such a
comb would require solving more than 3200 partial differential
equations. What makes the task even more daunting is the fact
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that the number of four-wave mixing (FWM) terms scales as
the cube of the number of modes in the comb [20].

These previous studies miss one essential feature of SBS,
the fact that the Brillouin frequency shift, of order 10 GHz
in silica, is four orders of magnitude smaller than the carrier
frequency of the optical waves involved. The generated Stokes
process can be regarded then as an acoustic modulation on top
of the carrier waves. With that recognition the entire process
of cascaded SBS can be seen as the interaction between two
counterpropagating light waves modulated by the acoustic
vibrations and the four-wave mixing process.

In this paper we introduce an elegant way to study cascaded
SBS processes that lead to the formation of frequency combs.
Instead of solving potentially thousands of coupled wave
equations for the interacting optical and acoustic modes, we
reduce the problem to the solution of just three equations in
three variables: a forward optical wave, a backward optical
wave, and a single acoustic wave described by a second-order
differential equation in time. With this approach one does
not manually introduce the higher-order Stokes waves. They
emerge naturally with their appropriate frequency shifts as
the pump intensity is increased. This is reminiscent of the
spatiotemporal description of Kerr-comb formation using the
Lugiato-Lefever equation [20,21] except that our approach
takes into account the essential material dynamics and the
counterpropagating nature of the three-wave SBS interaction.
With this unified approach we simulate some published
experiments and obtain excellent agreement with those results.

II. THEORY

In the traditional approach the electric field of the many
light waves interacting in a Brillouin-active medium is taken
as the superposition of waves of the form

Ej (r,t) = Fj (x,y)Aje
i(kj z−ωj t),

in which each frequency component ωj has its own wave vector
kj and envelope Aj (z,t). Here ωj = ω0 ∓ j�B , ω0 is the pump
frequency, and �B is the acoustic frequency. In our approach
we extract a single carrier frequency ω0 and its associated wave
vector ±k0 and lump all the frequency-shifted components
into a single envelope A+(z,t) for the forward propagating
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field and A−(z,t) for the backward propagating field. For this
to be valid, the wave vector k0 must not change significantly
over the bandwidth of the envelope. This condition is indeed
satisfied in SBS since the frequency shift (�B/2π ∼ 10 GHz
in silica) is typically several orders of magnitude smaller than
the carrier frequency (ω0/2π ∼ 100 GHz). We thus write the
optical and acoustic fields as

E+(r,t) = Fp(x,y)A+(z,t)ei(k0z−ω0t) + c.c., (1a)

E−(r,t) = Fp(x,y)A−(z,t)e−i(k0z+ω0t) + c.c., (1b)

ρ(r,t) = FA(x,y)Q(z,t)eiq0z + c.c., (1c)

where Fp and FA are the transverse profiles of the optical and
acoustic fields, in the context of an optical fiber. We now have
only two optical field variables, a forward propagating and
a backward propagating wave expanded around the carrier
frequency ω0. The acoustic wave variable ρ(r,t) represents
the material density fluctuation from its average value ρ0. In
contrast to the optical fields, we extract only the propagation
constant q0 and retain the rapid temporal oscillations in the
acoustic envelope variable Q(z,t). These variables are then
used in the wave equations for the material density fluctuation

∂2ρ

∂t2
− �A∇2

(
∂ρ

∂t

)
− v2

A∇2ρ = −ε0γe∇2(E · E), (2)

and the optical field

∇2E − ε

c2

∂2E

∂t2
= μ0

∂2PNL

∂t2
. (3)

Here �A is a damping constant, vA is the acoustic velocity,
and γe is the electrostriction constant. The permittivity
ε = n2 − iαn/c includes the refractive index n and the loss
coefficient α. The driving term in the optical wave equation
is the nonlinear polarization,

PNL = ε0

(
γe

ρ0
ρE + χ (3)E3

)
. (4)

where χ (3) is the third-order nonlinear susceptibility.
The derivation follows the standard approach detailed in
Refs. [1–4], the only difference being that we do not identify
a Stokes wave with a downshifted frequency but consider two
counterpropagating waves with the same carrier frequency
ω0. The propagation constants of the optical and acoustic
waves satisfy q0 = 2k0. Using the slowly varying envelope
approximation for the optical fields and keeping only the
phase-matched terms, we obtain the following equations after
appropriate rescaling:

∂A+
∂z

+ 1

vg

∂A+
∂t

= gB

2Aeff
QA− − α

2
A+

+ iγ (|A+|2 + 2|A−|2)A+, (5a)

−∂A−
∂z

+ 1

vg

∂A−
∂t

= − gB

2Aeff
Q∗A+ − α

2
A−

+ iγ (|A−|2 + 2|A+|2)A− (5b)[
∂2

∂t2
+ 1

τB

∂

∂t
+ �2

B

]
Q =

(
4i�B

τB

)
A+A∗

− + f̃ . (5c)

Here gB (m/W) is the Brillouin gain, vg is the group
velocity, Aeff is the effective area of the fiber, γ (m−1 W−1)
is the third-order nonlinear coefficient, α (1/m) is the linear
loss, τB = 1/�B is the Brillouin lifetime, �B = q2

0�A is the
Brillouin linewidth, and f̃ is a Langevin noise source [4,22]. In
writing down the equation for the acoustic wave we have made
the usual assumption that the phonons are heavily damped
and do not propagate far; hence the spatial derivatives can be
dropped. We, however, retain the second derivative in time
and hence the acoustic wave equation corresponds to a driven,
damped harmonic oscillator with resonances at ±�B . The
positive and negative frequencies are associated with forward
and backward acoustic waves. In the optical equations, the
nonlinear terms that are phase matched around frequency ω0

are reduced to only three components, two of them degenerate,
to form what are usually the self-phase and cross-phase
modulation terms. However, the beauty of these equations is
that these terms contain not only phase modulations but also
every possible four-wave mixing combination in the vicinity
of ω0, the gains of which are automatically determined by
the built-in phase matching from each envelope’s frequency
components. The Brillouin gain linewidth and anti-Stokes
scattering also emerge from the above equations. These
equations differ from the ones commonly used in that they
include only a single envelope equation for the forward wave
and a single envelope equation for the backward wave. The
generation of Stokes and anti-Stokes orders will appear as
modulations of the envelopes. In addition the acoustic wave
is described by a single second-order differential equation.
Unlike other approaches where a second-order differential
equation is used for the acoustic wave, we do not extract the
acoustic frequency and hence the variable Q does oscillate
at a frequency of several gigahertz. We also assume, as
done in all other studies of cascaded SBS, that the Brillouin
frequency shift between adjacent modes is constant. In reality
the Brillouin shift depends slightly on the pump wavelength,
resulting in a change of about 600 kHz for successive orders.
We show later why the neglect of this variation is justified.

III. NUMERICAL RESULTS AND DISCUSSION

Equations (5a)–(5c) are what we use to model cascaded
SBS and comb generation. We solve them numerically via a
multistep method: integration along the characteristics for the
optical equations and a fifth-order predictor-corrector algo-
rithm (Adams-Bashforth-Moulton formulas) for the acoustic
equation. Using the parameters listed in Table I we first
simulate a 10-m highly nonlinear silica fiber without any

TABLE I. Parameter values used in the simulations.

Parameter Silica Chalcogenide

gB 1.78 × 10−11 m/W 6.1 × 10−9 m/W
n0 1.50 2.81
�B 2π × 9.44 GHz 2π × 7.8 GHz
Aeff 11 μm2 56 μm2

τB 3.4 ns 12 ns
γ 11.5 × 10−3 (W m)−1 1.737 (W m)−1

α 0.0064 m−1 0.1935 m−1
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FIG. 1. (a,b) Spectra and temporal output for a 5-W cw pump in a 10-m silica fiber without facet reflections. (c,d) Spectra and temporal
output for a 150-W cw pump in a 10-m silica fiber without facet reflections. Note the emergence of a second Stokes line. (e) Transmitted and
reflected spectra from a fiber with a Fresnel reflecting input facet and a 5-W cw pump. Many Stokes and anti-Stokes lines are now visible
due to four-wave mixing. (f) Reflected and transmitted spectra for fiber with Fresnel reflections but without four-wave mixing. Only pump,
first-order, and second-order Stokes lines are seen.

internal reflection from the fiber facets. For such a fiber the
threshold for first-order SBS is about 1.3 W while the threshold
for the second-order Stokes is about 130 W [5]. Figure 1
shows the spectra of transmitted and backscattered waves
at different power levels for a continuous wave input. Even
though the input pump is single frequency, for an input of
5 W we see a strong Stokes-shifted output in the reflected
spectrum. The frequency shift of 9.44 GHz is established
by the acoustic oscillation of Eq. (5c). The temporal output
exhibits random bipolar spikes due to the noise excitation.
When the pump power is raised to 150 W a weak second
Stokes output is seen in the transmitted spectrum. This second
Stokes line is excited by the backward traveling first Stokes
and travels in the same direction as the pump. We stress that

this second Stokes line was not inserted as an additional wave
equation but emerged naturally as a modulation on top of
the forward traveling input wave. In the time domain the
random spikes are much stronger and have the appearance
of the extreme events known as rogue waves [23]. We now
introduce feedback for the first-order Stokes wave by making
the front facet 20% reflective. The input power is also reduced
from the 150 W used in Figs. 1(c) and 1(d) to a mere 5 W.
With feedback the threshold for the higher-order scattering is
greatly reduced [5]. The reflected first-order Stokes is now
able to excite a strong second-order Stokes traveling in the
backward direction. Four-wave mixing between copropagating
waves in the forward direction then gives rise to multiple
anti-Stokes and Stokes orders. It is remarkable that all these
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lines emerge naturally from the solution of just the three
equations. To confirm the role of four-wave-mixing we turn off
the third-order nonlinearity in Eqs. (5a)–(5c) by setting γ = 0.
Figure 1(f) shows that the only lines remaining in the spectrum
are now the pump, first-order, and second-order Stokes, along
with a few weak lines ten orders of magnitude lower that
probably arise from photon-phonon mixing processes with no
gain. This also confirms that the terms which have the form of
self-phase and cross-phase modulation are indeed responsible
for four-wave mixing. Because the higher-order modes arise
from FWM between the pump and low-order Stokes modes,
the frequency separation between the lines is determined by
the fundamental Stokes shift. This justifies the neglect of the
600-kHz variation in the Brillouin shift for higher-order modes
generated purely through cascaded SBS.

Another interesting configuration for cascaded SBS and
comb generation is that of a ring-cavity geometry such as the
one used by Tang et al. to generate a stable frequency comb
through SBS and four-wave mixing [24]. The experiment used
2.5 km of fiber pumped with 160 mW of power at 1546.5 nm.
The Stokes output was fed back to the input. Up to 17 lines

FIG. 2. (a) Output spectrum of a silica fiber ring cavity with
feedback of 99% of the backward Stokes. The odd-order Stokes
and anti-Stokes lines are spaced by twice the Brillouin frequency.
(b) Temporal output showing erratic pulsations.

spaced by twice the Brillouin frequency were observed, with
the even orders in the backward direction and the odd orders
in the forward direction. To avoid excessive computation time
we shrank the fiber to 10 m and increased the pump power to
1 W. We fed back 99% of the backward first Stokes light
to the input. Figure 2 shows the result of our simulation
using the three equations. The reflected spectrum contains
the odd-order Stokes and anti-Stokes components while the
transmitted spectrum contains the depleted pump and the
even-order Brillouin-shifted components. In agreement with
the experiment, the only strong components in the transmitted
spectrum are the pump, second-order, and fourth-order Stokes.
The even transmitted orders higher than fourth are weaker by
about 50 dB. The temporal output is erratic, reflecting the
absence of a definite phase relationship between the comb
lines, a result also noted in the experiment. The scheme
modeled here makes it possible to generate a comb with
a spacing of twice the acoustic frequency. These doubly
spaced frequency components emerged naturally through a
mere change of the boundary conditions. The old approach
would have required that we input all the generated Stokes
and anti-Stokes waves and their associated acoustic waves and
ensured their proper spacing. That would mean having to solve

FIG. 3. Temporal output of 38-cm-long chalcogenide fiber Fabry-
Perot cavity for a 500-ns pulse input and two different values of phase
shift. (a) φ0 = 1.8π ; (b) φ0 = 0.62π .
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70 coupled nonlinear differential equations for the forward and
backward electric (18 × 2) and acoustic (17 × 2) fields, each
with appropriate boundary conditions specified. Furthermore,
since the number of FWM terms scales cubically with the
number of modes, with 18 modes there would be thousands of
nonlinear coupling terms, making simulation impractical.

In order to further test our theory, we consider the
experiment of Büttner et al. in which phase locking and pulse
generation through cascaded SBS and four-wave mixing were
observed in a chalcogenide fiber Fabry-Perot cavity [10]. In
this case the boundary conditions are

A+(0,t) =
√

Pin(t) +
√

RA−(0,t), (6a)

A−(L,t) =
√

RA+(L,t)eiφ0 . (6b)

Here the reflectivity R = 22.6%, φ0 = 4πnL/λ is the round
trip phase shift at the pump wavelength (λ = 1550 nm), and
fiber length L = 38.29 cm. For input we take a 500-ns square
pulse of power 0.7 W. The transmitted power is given by

Pout(t) = (1 − R)|A+(L,t)|2. (7)

Figure 3 shows the temporal evolution of the output power
for two different values of the round trip phase shift φ0. In
Fig. 3(a) we see a rapid oscillation with an envelope whose
period is about 100 ns, in agreement with the experiment.
The zoomed-in inset taken at around 30 ns shows that the
initial rapid oscillations are sinusoidal with a frequency of
�B/2π = 7.8 GHz, the Brillouin frequency shift. They are
due to the beating between the pump and the newly generated
first Stokes wave [10,17]. Later in the evolution of the output
pulse, the interference pattern becomes more complicated
as higher-order Stokes waves are generated. The oscillation
pattern drifts with time indicating that the phase between the
interfering waves is not fixed. In Fig. 3(b), for a different

value of φ0 we find a steady pulsation with a nearly
constant envelope. The nearly constant envelope and the stable
pulsation pattern suggest that the modes that interfere to form
the pulses are nearly phase locked. Our simulations are in very
good qualitative agreement with the experimental results of
Ref. [10]. The power of our approach is that we only needed
to solve three equations to capture the dynamics of all the
interacting Stokes and anti-Stokes waves.

IV. CONCLUSION

In conclusion, we have introduced a unified approach
to studying cascaded stimulated Brillouin scattering and
frequency-comb generation that requires only three variables
and three coupled equations instead of the potentially hundreds
that would be needed in the traditional approach. With this
approach the higher-order Stokes and anti-Stokes lines emerge
naturally through SBS and four-wave mixing with no need
to introduce them as separate waves. Under the previous
treatment of cascaded SBS, finding these lines would require
not only many variables and coupled equations, but also
knowing a priori which frequencies will be amplified with
their relative phases. Our approach automatically picks out
the frequencies that are phase matched, greatly increasing the
theory’s predictive power as we no longer need to manually
insert any wave envelopes with predetermined frequencies. We
believe this approach will greatly facilitate the analysis and
understanding of cascaded stimulated Brillouin scattering.
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[11] T. F. S. Büttner, M. Merklein, I. V. Kabakova, D. D. Hudson,
D.-Y. Choi, B. Luther-Davies, S. J. Madden, and B. J. Eggleton,
Optica 1, 311 (2014).

[12] G. Lin, S. Diallo, K. Saleh, R. Martinenghi, J.-C. Beugnot, T.
Sylvestre, and Y. K. Chembo, Appl. Phys. Lett. 105, 231103
(2014).

[13] S. Loranger, V. L. Iezzi, and R. Kashyap, Opt. Express 20, 19455
(2012).

[14] T. J. Kippenberg, R. Holzwarth, and S. Diddams, Science 332,
555 (2011).

[15] S. Randoux, V. Lecoeuche, B. Segard, and J. Zemmouri, Phys.
Rev. A 52, 2327 (1995).

[16] K. Ogusu, IEEE Photonics Technol. Lett. 14, 947 (2002).
[17] K. Ogusu and A. Sakai, Jpn. J. Appl. Phys. 41, 609 (2002).
[18] K. Ogusu, J. Opt. Soc. Am. B 20, 685 (2003).
[19] B. Min, P. Kim, and N. Park, IEEE Photonics Technol. Lett. 13,

1352 (2001).
[20] S. Coen, H. G. Randle, T. Silvestre, and M. Erkintalo, Opt. Lett.

38, 37 (2013).
[21] Y. K. Chembo and C. R. Menyuk, Phys. Rev. A 87, 053852

(2013).
[22] R. W. Boyd, K. Rzazewski, and P. Narum, Phys. Rev. A 42, 5514

(1990).
[23] K. Hammami, C. Finot, J. M. Dudley, and G. Millot, Opt.

Express 16, 16467 (2008).
[24] J. Tang, J. Sun, T. Chen, and Y. Zhou, Opt. Fiber Technol. 17,

608 (2011).

043851-5

http://dx.doi.org/10.1103/PhysRevLett.12.592
http://dx.doi.org/10.1103/PhysRevLett.12.592
http://dx.doi.org/10.1103/PhysRevLett.12.592
http://dx.doi.org/10.1103/PhysRevLett.12.592
http://dx.doi.org/10.1364/AOP.2.000001
http://dx.doi.org/10.1364/AOP.2.000001
http://dx.doi.org/10.1364/AOP.2.000001
http://dx.doi.org/10.1364/AOP.2.000001
http://dx.doi.org/10.1364/JOSAB.19.002341
http://dx.doi.org/10.1364/JOSAB.19.002341
http://dx.doi.org/10.1364/JOSAB.19.002341
http://dx.doi.org/10.1364/JOSAB.19.002341
http://dx.doi.org/10.1063/1.89018
http://dx.doi.org/10.1063/1.89018
http://dx.doi.org/10.1063/1.89018
http://dx.doi.org/10.1063/1.89018
http://dx.doi.org/10.1016/0030-4018(80)90266-7
http://dx.doi.org/10.1016/0030-4018(80)90266-7
http://dx.doi.org/10.1016/0030-4018(80)90266-7
http://dx.doi.org/10.1016/0030-4018(80)90266-7
http://dx.doi.org/10.1103/PhysRevLett.102.193902
http://dx.doi.org/10.1103/PhysRevLett.102.193902
http://dx.doi.org/10.1103/PhysRevLett.102.193902
http://dx.doi.org/10.1103/PhysRevLett.102.193902
http://dx.doi.org/10.1364/OE.20.020170
http://dx.doi.org/10.1364/OE.20.020170
http://dx.doi.org/10.1364/OE.20.020170
http://dx.doi.org/10.1364/OE.20.020170
http://dx.doi.org/10.1038/srep05032
http://dx.doi.org/10.1038/srep05032
http://dx.doi.org/10.1038/srep05032
http://dx.doi.org/10.1038/srep05032
http://dx.doi.org/10.1364/OPTICA.1.000311
http://dx.doi.org/10.1364/OPTICA.1.000311
http://dx.doi.org/10.1364/OPTICA.1.000311
http://dx.doi.org/10.1364/OPTICA.1.000311
http://dx.doi.org/10.1063/1.4903516
http://dx.doi.org/10.1063/1.4903516
http://dx.doi.org/10.1063/1.4903516
http://dx.doi.org/10.1063/1.4903516
http://dx.doi.org/10.1364/OE.20.019455
http://dx.doi.org/10.1364/OE.20.019455
http://dx.doi.org/10.1364/OE.20.019455
http://dx.doi.org/10.1364/OE.20.019455
http://dx.doi.org/10.1126/science.1193968
http://dx.doi.org/10.1126/science.1193968
http://dx.doi.org/10.1126/science.1193968
http://dx.doi.org/10.1126/science.1193968
http://dx.doi.org/10.1103/PhysRevA.52.2327
http://dx.doi.org/10.1103/PhysRevA.52.2327
http://dx.doi.org/10.1103/PhysRevA.52.2327
http://dx.doi.org/10.1103/PhysRevA.52.2327
http://dx.doi.org/10.1109/LPT.2002.1012394
http://dx.doi.org/10.1109/LPT.2002.1012394
http://dx.doi.org/10.1109/LPT.2002.1012394
http://dx.doi.org/10.1109/LPT.2002.1012394
http://dx.doi.org/10.1143/JJAP.41.609
http://dx.doi.org/10.1143/JJAP.41.609
http://dx.doi.org/10.1143/JJAP.41.609
http://dx.doi.org/10.1143/JJAP.41.609
http://dx.doi.org/10.1364/JOSAB.20.000685
http://dx.doi.org/10.1364/JOSAB.20.000685
http://dx.doi.org/10.1364/JOSAB.20.000685
http://dx.doi.org/10.1364/JOSAB.20.000685
http://dx.doi.org/10.1109/68.969905
http://dx.doi.org/10.1109/68.969905
http://dx.doi.org/10.1109/68.969905
http://dx.doi.org/10.1109/68.969905
http://dx.doi.org/10.1364/OL.38.000037
http://dx.doi.org/10.1364/OL.38.000037
http://dx.doi.org/10.1364/OL.38.000037
http://dx.doi.org/10.1364/OL.38.000037
http://dx.doi.org/10.1103/PhysRevA.87.053852
http://dx.doi.org/10.1103/PhysRevA.87.053852
http://dx.doi.org/10.1103/PhysRevA.87.053852
http://dx.doi.org/10.1103/PhysRevA.87.053852
http://dx.doi.org/10.1103/PhysRevA.42.5514
http://dx.doi.org/10.1103/PhysRevA.42.5514
http://dx.doi.org/10.1103/PhysRevA.42.5514
http://dx.doi.org/10.1103/PhysRevA.42.5514
http://dx.doi.org/10.1364/OE.16.016467
http://dx.doi.org/10.1364/OE.16.016467
http://dx.doi.org/10.1364/OE.16.016467
http://dx.doi.org/10.1364/OE.16.016467
http://dx.doi.org/10.1016/j.yofte.2011.08.005
http://dx.doi.org/10.1016/j.yofte.2011.08.005
http://dx.doi.org/10.1016/j.yofte.2011.08.005
http://dx.doi.org/10.1016/j.yofte.2011.08.005



