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The concept of directionally unbiased optical multiports is introduced, in which photons may reflect back out
the input direction. A linear-optical implementation is described, and the simplest three-port version studied.
Symmetry arguments demonstrate potential for unusual quantum information processing applications. The
devices impose group structures on two-photon entangled Bell states and act as universal Bell-state processors to
implement probabilistic quantum gates acting on state symmetries. These multiports allow optical scattering
experiments to be carried out on arbitrary undirected graphs via linear optics and raise the possibility of
linear-optical information processing using group structures formed by optical qudit states.
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I. INTRODUCTION

Symmetry has long been a guiding principle in physics.
Central to linear optics is the beam splitter (BS), which has
reflection symmetry as well as a time-reversal symmetry in
which a photon may either enter or leave any of the four
ports. However, the BS is asymmetric in another sense.
Once a photon enters a port, it may not leave from the
same port: a photon in one port breaks the symmetry. We
call this inability to reverse direction directional bias. Here
we introduce a linear-optical arrangement that restores the
symmetry: it is directionally unbiased. This arrangement,
which can be thought of from multiple viewpoints (as a
directionally unbiased multiport BS, as a resonant cavity with
three or more exit directions, or as a scattering vertex for an
undirected graph), is generalizable to any number of ports
n � 3; we focus on the simplest case of n = 3. Despite its
simplicity, the high degree of symmetry and the ability of
photons to reverse direction lead to interesting properties that
allow it to be used as the basis for a variety of applications
related to quantum information processing.

Finding practical means of transmitting higher-dimensional
optical states (qudits) with a large information capacity is
a longstanding goal of quantum communication, but here
we raise a further possibility: increasing the number of
operations that can be applied to qudits and arranging for these
operations to form a mathematical group. For example, instead
of information processing using a one-dimensional string of
N orbital angular momentum states connected in a chain by
a single operator and its adjoint, it should be possible to use
a set of N states lying on some two (or higher-)-dimensional
manifold and connected to each other by transformations of
some d-dimensional group, so that N × d parameters are now
needed to specify all possible transitions between states. This
would allow the power of group theory to be brought to bear
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on problems in quantum information processing and quantum
communication to a greater degree than it has previously and
could potentially offer increased speed and flexibility in areas
such as quantum computation [1]. As one example of the new
possibilities, consider that group-based quantum cryptography
protocols could be constructed in which the qudits being
communicated may lie on points of a collection of overlapping
sets and in which different sets form representations of
different groups. Then, in order to extract information about
the key, an eavesdropper might need to obtain not just the
qubits being sent, but also knowledge of the abstract group
that joins them and of the group representation to which they
belong. Group structures have already been shown to be useful
for several purposes in classical cryptography [2,3] but have
not been widely applied in quantum cryptography protocols.

In the following we show, using only linear optics, that
unbiased optical three-ports can encode Bell states [4] in such
a way that they form a representation of the Klein Vierergruppe
or four-group. Generalized multiports and larger sets of states
may allow implementations of larger group representations.
We also apply the multiport to an example of processing
entangled-photon states, with bits encoded into the state’s
symmetry. Generalizations and conclusions are then discussed.
Elsewhere we will show that networks of unbiased multiports
can produce quantum walks with unusual features.

Quantum walks are of great interest for implementing
quantum algorithms [5–9]. In Refs. [10–12], quantum walks
on graphs were investigated, with scattering at the vertices.
Particular attention was paid to an example with three-edge
vertices that scatter both backward and forward; in our termi-
nology they are directionally unbiased. The initial motivation
for the arrangement presented here was to implement such
graphs using only linear optics.

In the current paper, we do not yet make use of the full
power of the arrangement presented. In particular, the vertices
of the multiport have free parameters (mirror reflectances and
phase shifts) that can be varied to produce further effects;
but in the present paper we keep all of these parameters
fixed and require them to have the same values at all vertices
of the multiport. One effect of this is clear: by making the
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FIG. 1. Schematic of the directionally unbiased three-port. Beam
splitters connect input ports to two internal edges and a mirror unit
U . U is composed of a mirror M and phase plate P (inset). Reflection
at a mirror unit imparts to each photon a total phase factor of −i.

vertices identical we are restricting ourselves to Abelian-group
structures. By allowing each vertex of the multiport to have
different parameter values, it seems likely that non-Abelian
structures could be generated as well, although this remains to
be investigated in detail.

II. DIRECTIONALLY UNBIASED OPTICAL
THREE-PORTS

The arrangement shown in Fig. 1 has three input/output
ports, labeled A, B, and C, each attached to two internal edges
by a nonpolarizing 50:50 BS (r = it = i√

2
). Light exiting the

remaining port of each BS strikes a mirror normally. Phase
plates in front of each mirror add adjustable phase shifts.
We keep the phase shift constant at − 3π

4 per passage, so
the total phase factor gained at each mirror is e−iπ/2 = −i

(including −1 from the mirror itself). This choice makes all
exit amplitudes pure imaginary. Beam splitter and mirror losses
are neglected.

Assume equal distances d between beam splitters, with
BS-to-mirror distance d/2. Then T = d

c
is the time between

successive photon-BS encounters. The probability of not
exiting the device decreases exponentially to near zero within
several steps (Table I), so for small enough d (such that T is

TABLE I. Amplitudes for paths exiting at time t = NT , assuming
input at A. Columns 2–4 list the amplitudes for exit at each port. The
last two columns list the exit probability at t = NT and the cumulative
exit probability at t � NT .

Exit Cumulative exit
N A exit B exit C exit probability probability

2 0 i

2
i

2
1
2 0.5

4 − i

2
i

4
i

4
3
8 0.875

6 i

4 − i

8 − i

8
3
32 0.96875

8 − i

8
i

16
i

16
3

128 0.99219

10 i

16 − i

32 − i

32
3

512 0.99805

small compared to the photon coherence time) the exit can be
treated as instantaneous.

Each photon path through the system has an amplitude of
absolute value 2−N/2, after N BS encounters. The number
of paths increases more slowly (roughly linearly) with N ,
so output states can be calculated to a good approximation
from the shortest few paths. For single-photon input at A,
summing the amplitudes of all possible paths of length N is
straightforward. Amplitudes up to N = 10 are tabulated in
Appendix A. For N � 3, the exit probability at the N th step
is 3/2N for even N ; the probabilities vanish at odd N .

Ignoring overall normalization, the resulting state is
|ψ(t)〉 = a(t)|A〉 + b(t)(|B〉 + |C〉) + |ψint(t)〉, where

a(t) =
(

− i

2
�(t − 4T ) + i

4
�(t − 6T )

− i

8
�(t − 8T ) + i

16
�(t − 10T )

)
+ O(2−5), (1)

b(t) =
(

i

2
�(t − 2T ) + i

4
�(t − 4T ) − i

8
�(t − 6T )

+ i

16
�(t − 8T ) − i

32
�(t − 10T )

)
+ O(2−6). (2)

|A〉, |B〉, and |C〉 are shorthand for single-photon states
|1〉A|0〉B |0〉C , |0〉A|1〉B |0〉C , and |0〉A|0〉B |1〉C . The step func-
tion �(t) vanishes for t < 0 and equals unity for t > 0. Finally,
|ψint(t)〉 is the state with the photon still inside the device;
its exponentially decaying amplitude can also be obtained by
summation of paths.

The transient internal state |ψint(t)〉 decays with character-
istic time taken conservatively as Tc ≈ 10T . If the detector
response time TD exceeds Tc, the possible photon paths are
indistinguishable, so the exit state is a coherent superposition
of outputs at different ports. Integrated onto a chip, d could be
very small; as a conservative example take d = 0.1 mm. Then
Tc = 3.3 ps, allowing sampling at rates up to 0.3 THz. Using
a tabletop setup, d would be of the order of centimeters, with
a proportionally lower maximum sampling rate.

For information processing, timing information must be
supplied to synchronize gates. For instance, a CW source
can be gated to form pulses. Assuming a Gaussian temporal
envelope, the pulse duration �t and spectral width �ν are
related by �t�ν = 1

4π
[13]. For example, pulses of �t ∼

10−10 s have �ν ∼ 1 GHz, giving a coherence time and
length of τcoh = 1

�ν
≈ 1 ns and lcoh ≈ 30 cm, consistent with

the constraints above. Using parametric down conversion is
another possibility, with the signal sent into the multiport and
the idler heralding the event to provide timing information. In
this case, signal coherence times are of the order τcoh ∼ 1 ps,
leading to coherence length lcoh ∼ 10−4 m, bordering on the
acceptable limit in the example above.

If the unit is constructed on a chip, then the refractive index
of the chip will increase the transit time T (by a factor of
2–4 for materials like silicon nitride and silicon). This will
tighten the constraints somewhat. Using the numbers above,
this would rule out parametric down conversion, but it still
leaves the gated CW source as a plausible possibility, with a
correspondingly reduced sampling rate.
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Before treating the three-port quantitatively, let us look at
some potential problems that could arise. First, when TD < Tc,
different exit times for the same input become distinguishable.
In this case, the output will be a mixed state, and the system
behaves classically. Further, when the wave packet has a finite
coherence time, the corresponding frequency spread in the
packet will cause different parts of the packet to go out of
phase with each other, introducing a phase spread of up to
�φ = d �k = 2πd

cτcoh
during propagation along each edge. This

will affect the shape of the wave packet through interference, as
well as introducing some spectral dependence into the output.
All of these troublesome effects are to be avoided for high-
quality output, so keeping their effects at a minimal level is
necessary to make sure that the inequalities τcoh � TD > Tc

hold.
A further potential problem is that when the multiport is

used as a vertex in a quantum walk, the number of steps over
which the walk will retain its quantum nature will be limited
because of the broadening of wave packets that results from
the existence of different-length paths through the multiport.
The maximum number of steps possible for the quantum walk
will then be given roughly by the ratio τcoh/Tc; this again
highlights the importance of maintaining the inequalities given
above. By the same reasoning, when the multiport is used as a
quantum gate the number of such gates that can be connected
in sequence will be limited by the same ratio. For the examples
given above, it can be seen that the gated laser pulse should be
able, under ideal conditions, to maintain a quantum walk for
dozens of steps, while the down-conversion example will not
be able to support walks of more than a couple of steps.

Given the considerations above, we now assume that τcoh �
TD > Tc. Then the input |ψin〉 = |A〉 leads to

|ψout〉 ≈ −i

(
1

2
− 1

4
+ 1

8
− 1

16

)
|A〉

+ i

(
1

2
+ 1

4
− 1

8
+ 1

16
− 1

32

)
(|B〉 + |C〉). (3)

The A → A part gives the first few terms in a geometric
series. Assuming that this pattern continues, the A → A

transition amplitude is therefore

− i

2

∞∑
n=0

(
− 1

2

)n

= − i

2

(
1

1 + 1/2

)
= − i

3
. (4)

By similar extrapolation, the A → B and A → C coefficients
are both

i

[
1

2
+ 1

4

∞∑
n=0

(
−1

2

)n
]

= i

(
1

2
+ 1

6

)
= 2

3
i. (5)

Rotational symmetry allows transition amplitudes for input
at other ports to be obtained by cyclic permutation, giving
the long-time single-photon unitary transition matrix: |ψout〉 =
U |ψin〉, where (in the |A〉,|B〉,|C〉 basis)

U = − i

3

⎛
⎝ 1 −2 −2

−2 1 −2
−2 −2 1

⎞
⎠. (6)

Up to an overall phase, U gives the reflection and transmission
amplitudes from [10–12].

This matrix can also be found from more general unitarity
and symmetry arguments, as follows. Assume that a photon is
sent into port A. Due to reflection symmetry about the input
direction, the exit amplitudes at the other two ports should be
equal. Therefore, for |ψin〉 = |A〉, the output must be of the
form

|ψout〉 = a|A〉 + b(|B〉 + |C〉) (7)

for complex amplitudes a and b. Repeating the argument for
inputs at ports B and C, the system’s transition matrix V must
be of the form

V =
⎛
⎝a b b

b a b

b b a

⎞
⎠. (8)

The matrix must be unitary, so that V · V † = I ; the diag-
onal and off-diagonal entries of this condition imply two
constraints:

|a|2 + 2|b|2 = 1, 2Re(ab∗) + |b|2 = 0. (9)

Defining a = αeiφa , b = βeiφb , and φ = φb−φa , then solving
these unitarity constraints gives

α =
√

1

1 + 8 cos2 φ
, β = −2

√
cos2 φ

1 + 8 cos2 φ
. (10)

So the most general form of V is

V = eiφa√
1 + 8 cos2 φ

⎛
⎝ 1 −2 cos φ −2 cos φ

−2 cos φ 1 −2 cos φ

−2 cos φ −2 cos φ 1

⎞
⎠.

(11)
In the special case where φ = 0, this becomes

V (φa) = 1

3
eiφa

⎛
⎝ 1 −2 −2

−2 1 −2
−2 −2 1

⎞
⎠. (12)

For φa = −π
2 this gives back the matrix U of Eq. (6).

It should be pointed out that, up to an overall phase, Eq. (6) is
the same as the well-known Grover coin for three-dimensional
coined quantum walks. Similarly, the unbiased n-ports with
n > 3 that are discussed briefly in Sec. VI correspond, when
appropriate choices are made for the phases at the mirrors,
to higher-dimensional Grover coins. Therefore, the unbiased
n-ports can also be viewed as particularly simple linear-optical
realizations of n-dimensional Grover coins. Note, however,
that the unbiased n-ports are more general than this: by
changing the phases and reflectances other coins can be
implemented as well.

III. ACTION ON BELL STATES

For two-photon entangled states, coherence requirements
are less stringent than for single-photon states, since it is
primarily the much longer coherence time of the pump that
is relevant, rather than the coherence times of the signal and
idler. Further, spectral filtering can stretch out the coherence
time and remove distinguishability due to the arrival time
within each pair [14]. So it is natural to consider the action on
two-photon states. Advantage can be taken of this in order to
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FIG. 2. Two-photon input enters ports A/B, with the control state
entering A/C. Output exits ports B/C.

construct quantum gates in which the input and output qubits
are not defined by identities of individual photons but, rather,
by the symmetries shared by pairs of ingoing and outgoing
two-photon states.

Applying appropriate control states, the multiport can
convert any input Bell state into any output Bell state. The
states considered here are distributed over two ports, for exam-
ple, |�±〉AB = 1√

2
(|H 〉A|V 〉B ± |V 〉A|H 〉B) and |�±〉AB =

1√
2
(|H 〉A|H 〉B ± |V 〉A|V 〉B) at A and B. H and V denote

horizontal and vertical polarization. Similar states are defined
at other pairs of ports. Although mirror units interchange
horizontal and vertical polarizations, every path through the
system encounters an even number of such units, leaving
polarizations unchanged.

Consider creating two Bell states (by the procedure used in
[14], for example): a target state and a control state (Fig. 2).
These are input at ports AB (input) and AC (control). They
are coupled into fibers, and the portions being fed into the
same port are merged using integrated Y couplers. The output,
which can be separated from the input by an optical circulator,
will be an entangled state shared by B and C. Consider states
with one photon exiting at B and one at C. (If multiple gates
are concatenated, states with two photons exiting the same
port need to be rejected. Methods for doing this are known
[15]). There will then be two photons exiting A. Acceptance
of BC output states is conditioned upon some outcome at
A. The choice of conditioning outcome provides control over
the gate action. Consider two possibilities: conditioned upon
detecting two photons of either opposite polarization (o) or
same polarization (s) at A. It is necessary only to determine
whether or not the polarizations are the same, not to determine
what the polarizations are (similar to the the probabalistic gates
in [16–19]).

Computing outputs for any input and control, and for either
heralding condition, is straightforward (sample calculations
are given in Appendix B) and result in Table II. We see that
the multiport acts as a universal processor on Bell states; with
the appropriate choice of control and heralding conditions any
input state can be converted to any desired output state.

TABLE II. Action on Bell states. The input is at AB, and the
control at AC, with the output at BC conditioned, respectively, on
detecting the same (s) or opposite (o) polarizations at A.

Output Output

Input Control s o Input Control s o

�+ �+ �+ �+ �+ �+ �+ �+

�+ �− �− �− �+ �− �− �−

�− �+ �− �− �− �+ �− �−

�− �− �+ �+ �− �− �+ �+

�+ �+ �+ �+ �+ �+ �+ �+

�+ �− �− �− �+ �− �− �−

�− �+ �− �− �− �+ �− �−

�− �− �+ �+ �− �− �+ �+

IV. PROBABILISTIC CONTROLLED
ENTANGLED-STATE GATES

Taking subsets of Table II, we may implement probabalistic
quantum gates. For example, take |�+〉AB as input. Table III
shows how, by varying just the control state and holding the
heralding condition fixed, any desired state can be selected
from the possible output states. The same can be done using
any other Bell input state.

As one example of symmetry-based Bell-state process-
ing, the multiport implements probabilistic CNOT gates for
entangled states. Take |�±〉 states as input and control, but
|�±〉 states as output, with positive states of either type
corresponding to |0〉 and negative states to |1〉 in all cases.
(So the bit is determined by the polarization-interchange
symmetry, not by the particular state that happens to be
carrying the symmetry.) Attention is then restricted to the
top-left quadrant in Table II under condition s, yielding a CNOT

truth table. For multiple processing steps through multiple
gates, the roles of |�±〉 and |�±〉 flip in alternate clock
steps: output |�±〉 states at one step will become input for
the next step, with |�±〉 states then being output at that next
step. In alternate steps, the bottom-left quadrant in Table II
would be used. The success probability for this four-photon
gate is about 5%, not far below the lower end of the success
probability range for the proposed two-photon probabilistic
gates (∼ 1

6 to 1
2 ) [16–22]. Instead of encoding qubits into the

state symmetry, the Bell states can also be viewed as qudits
in a four-dimensional Hilbert space. The multiport then would
act as a four-photon, two-qudit gate.

TABLE III. �+ can be converted to any desired output Bell state.
Here the s condition is assumed.

Control
Input state Output

�+ �+ �+

�+ �− �−

�+ �+ �+

�+ �− �−
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FIG. 3. (a) The multiport produces the Abelian four-group mul-
tiplication table. (b) Cyclic Z2 subgroups describe reflections about
axes shown in (c).

V. GROUP STRUCTURE

The device turns two ingoing states into one output state.
When the s condition is used, this imposes an Abelian-group
structure on the states. (For the o condition, the same structure
appears, with �± and �± interchanged.) The resulting group
multiplication table in Fig. 3(a) has rows and columns labeling
input and control states; output occupies the interior. This is the
Klein four-group [23], V , which is a direct sum of two cyclic
groups, V = Z2 ⊕ Z2 [Fig. 3(b)]. The action of this group
is not difficult to understand: consider the two-dimensional
space with one axis labeled + and − (right and left) and the
other � and � (up and down). Bell states are then at corners
of a rectangle, and the Z2 groups reflect the axes [Fig. 3(c)].
If input states are restricted to {|�+〉,|�+〉}, then a single Z2

group arises.
This raises interesting possibilities. Postselection intro-

duces effective “interactions” between photons with states
acting on each other via mathematical groups. The triangular
device is suited for this, with two sides to use for the input of
the two ingoing states and the third side for the group product
output. Because all vertices are taken to be identical, it is
clear that only Abelian groups can occur here: interchanging
which state enters which side can have no effect on the
outcome. However, when using different complex reflectances
at different vertices, the symmetry of the device is broken; as
a result, changing the order of multiplication of the states
(which state is applied to which side of the triangle) will
now affect the outcome. In the latter case any groups that
arise would be expected to be non-Abelian. In addition, it
remains to be investigated whether larger groups could be
obtained from larger sets of input states and from multiports
with more than three vertices. In any case, the ability to
engineer groups of states opens new avenues of investigation
of optically implemented group representations for quantum
information processing, such as group-based strategies for
quantum cryptography or group-based security mechanisms
for quantum key distribution.

As one example of why a group approach may be useful,
consider information processing with d-state logic. Imagine
that possible input and output states form a faithful represen-
tation in Hilbert space of a group G of order d. The full range
of operations possible in this set of states (the transformation
of any of the d inputs to any of the d outputs) would require
a total of d operations. But suppose that the group is of rank
r , with a set of generators g1, . . . ,gr . This means that any
element g ∈ G can be written in the form g = g

n1
1 · g

n2
2 · . . . gnr

r

for some appropriate set of integers n1, . . . ,nr . This is the
case for the Klein group, for example, where the four-element
group is generated by the two generators of the Z2 subgroups.
Similarly, a set of states lying in a plane and related by a
discrete rotation group of any rank can always be spanned by
powers of just a single generator. Therefore d-state logic can
be carried out in a group representation in Hilbert space with
only r types of basic logic units. In the directionally unbiased
scheme presented here, different logic units would correspond
to triangular (or more general polygonal) units with the vertex
parameters possibly set to different values or with different
control states. In the case where r is much smaller than d, then
very high-order logic systems can be implemented with a small
number of different logic units. This increased parsimony is
illustrated by the construction in Secs. III and IV, where four
different operations on a given target state are carried out by a
single triangular controlled logic unit.

As mentioned in Sec. I, new possibilities may be raised
for quantum cryptographic schemes as well. For example,
there is also a connection between the approach inthis paper
and a group-theory-related quantum key distribution protocol
that has already been proposed. This is the quantum enigma
scheme [24,25], which is based on quantum data locking: a
small amount of transmitted information can unlock a much
larger trove of data to a user, while keeping the data secure
from unapproved agents. This is done by using a set of N × N

unitary matrices [i.e., elements of the group U (N )] to rotate
between a collection of mutually unbiased bases. A randomly
chosen element in this set is applied to an initial state. An
eavesdropper cannot access the information in the transmitted
state without knowing what unitary transformation is needed
to rotate it back to its original basis. Rather than sending
the entire unitary matrix, only a discrete label identifying
the matrix needs to be securely transmitted. The approach
in the current paper constructs discrete group transformations,
which can be embedded into the continuous groups U (N )
and, so, can be viewed as a physical implementation of the
quantum enigma transformations for low N . Returning to the
example of the Klein group, the four Bell states are related by
a discrete subgroup of the unitary group U (2) acting on the
two-dimensional complex space spanned by the basis |H 〉 and
|V 〉. To be useful for the enigma procedure, the current setup
must be generalized by using more complex input and output
states, in order to allow larger subsets of higher U (N ) groups
to appear.

VI. GENERALIZATIONS AND FURTHER DIRECTIONS

The triangular geometry can be replaced by any regular
n-sided polygon, such as the four-port in Fig. 4. This enlarges
the symmetry group of the device and allows the imposition of
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FIG. 4. Directionally unbiased four-port. Generalizations to any
number of ports �3 are possible.

other, more complex group structures on the input and output
states. This will, in turn, expand the potential capacity for in-
formation processing applications. Using arbitrary polygonal
units allows the implementation of scattering experiments on
undirected graphs with nodes of arbitrary valence.

For n-ports with n > 3, if d is not an integer multiple
of the wavelength, then paths between ports separated by
different distances will gain different phase shifts and different
amplitude losses (due to the different numbers of intervening
beam splitters crossed). The phase shifts can cause possible
interference effects within the multiport. As a result, the
off-diagonal terms in U are no longer all equal. This effect
will be unavoidable for finite pulses with a nonzero frequency
spread. However, if d is an integer multiple of the central
wavelength of the pulse, then the effect will again be small
if the coherence time is long or, in other words, if the spread
of wavelengths away from the central value is small. Even
for long τcoh this will eventually become significant if the
multiport is made sufficiently large [in the sense of having
a large number of input (output) ports], but if the details of
the pulse are known, then the effect on U can be calculated.
The overall symmetries of the multiport under reflection and
rotation will still be maintained, but the output will depend on
the distance between the input and the output ports, as reflected
by the change in the off-diagonal entries in U .

In this paper a single triangular unit has been considered
in isolation. When they are connected in networks, new
possibilities arise. For example, quantum walks on lattices
with different symmetries and with vertices having easily
controllable properties can be constructed in a simple manner.
The fact that all of the elements of the basic polygonal
multiport can be put onto a single optical chip means that
large networks can be be readily constructed, with fewer
alignment and stability problems than would occur using
tabletop arrangements of discrete beam splitters and mirrors.
Different polygons can be joined together in the same network
(for example, triangular, square, and pentagonal multiports)
in order to experimentally study more complex systems or
behavioral changes in the system due to transition from one
symmetry type to another. Scattering systems in undirected
graphs can then be studied experimentally, including graphs
with different valences at different nodes.

Variation of the system’s parameters can also be introduced.
Reflectances and mirror unit phase shifts may differ at each
corner, allowing tailoring of a range of output qutrits from
the same input state by parameter tuning. In two-dimensional
networks of such units, this parameter tuning allows the
introduction of controlled spatial bias into quantum walks,
which is useful for algorithmic applications [26]. Further,
parameters can be varied while a walk is in progress, allowing
investigations of time-dependent quantum walks.

VII. CONCLUSIONS

In this paper, linear-optical unbiased multiports have been
introduced. Symmetry arguments and path tracing show
that, despite its simplicity, this system has a number of
unusual properties and applications. These devices allow
simple implementations of optical scattering experiments
on graphs, information processing directly in Bell states or
other more complicated state sets, and information processing
in optically implemented group structures. Some tentative
possible directions have been raised for applications of a
group-based approach to optical cryptography and information
processing.

It should also be noted that the current directionally
unbiased framework differs in several important ways from
all linear-optical information processing schemes that fall
into the Knill-Laflamme-Milburn (KLM) [20] framework. For
example, KLM-based schemes always consider only output
states with at most a single photon in each output mode. Those
output states with multiple photons in the same mode are
considered to be signals that the desired operation has failed,
and so they are discarded. In contrast, in the scheme described
in this paper constructive use is made of the possibility
that multiple photons may leave the device in the same
mode. Similarly, in KLM-type setups, the input and output
ports are always distinct from each other, with the photons
always traveling in a single direction through the network.
The introduction of directionally unbiased propagation in our
scheme allows the merging of input and output ports, which
can greatly decrease the complexity of an optical network;
for example, the number of beam splitters in general scales
quadratically in N for KLM networks, where N is the number
of photons or, equivalently, the number of input or output ports.
In the present case, the unbiased N -port setup can process N

photons through N input or output ports with just N beam
splitters and N mirrors; it therefore scales only linearly with
N . For large N , this drop in scaling from quadratic to linear is
an enormous savings of resources.

A rich range of further possibilities remains to be explored,
such as optical implementation of three-state logic using qutrits
on triangular multiports or of higher-state logic on larger
polygonal multiports.
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FIG. 5. Paths of length up to N = 10 that enter port A and then exit at the same port.

APPENDIX A: PATHS AND AMPLITUDES THROUGH
THE DEVICE

Here, the paths of length N � 10 that start at A and exit
the system are tabulated, along with their amplitudes. A few

other properties of the transition matrix U are also given, for
completeness.

The possible paths are given in the tables in Figs. 5–7. In
each line, the path is given in symbolic form, with r , t , and
M , respectively, representing reflection or transmission at a

B

A

A

A

A

B

B

B

A to B
Path Sequence Amplitude

rt

ttMrr

rrMrtMtt

ttMtrMtt

N

2

4

6

6

i/2

i/4

- i/8

i/8

Key: = mirror,      = transmission,     = reflection

rrMtrMrr - i/8
A

B6

A to B
Sequence Amplitude

ttMrtMrtMtt

N

8
+i/16

rrMtrMtrMtt +i/16
ttMrtMtrMrr

- i/16
rrMrtMrtMrr
ttMtrMrtMrr

10
ttMrtMtrMtrMtt
ttMrtMrtMrtMrr
rrMtrMrtMrtMtt
rrMtrMrtMtrMrr
rrMtrMtrMrtMrr
rrMrtMrtMtrMtt
rrMrtMtrMrtMtt
ttMtrMtrMrtMtt
ttMtrMtrMtrMrr
ttMtrMrtMtrMtt

- i/16
+i/16

- i/32
+i/32
+i/32
- i/32
- i/32
+i/32
+i/32
- i/32
+i/32
- i/32

rrMrtMtrMtrMrr - i/32

(a) (b)

FIG. 6. Paths of length up to N = 10 that enter port A and then exit at port B.
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FIG. 7. Paths of length up to N = 8 that enter port A and then exit at port C.

beam splitter and reflection at a mirror. Drawings of the paths
after N = 6 are not included because they start becoming too
cumbersome. The sequences of reflections and transmissions
are ordered from left (first one applied) to right (last). Although
it is assumed that the input is at A, there is no loss of generality:
the paths for input at the other ports can immediately be
obtained from these by cyclic permutation. We assume 50:50
beam splitters, with factors of i for BS reflections and a total
reflection coefficient −i at each mirror unit.

Summing the entire infinite series of paths leads to the
transition matrix U given in the text. U has one eigenvector
with eigenvalue +i, given by

1√
3

⎛
⎝1

1
1

⎞
⎠ = 1√

3
(|A〉 + |B〉 + |C〉), (A1)

where |A〉, |B〉, and |C〉 are defined in the text. The remaining
two eigenvectors are degenerate, with eigenvalue −i, and may
be taken to be any two of the three linearly dependent vectors

1√
2

⎛
⎝ 1

−1
0

⎞
⎠ = 1√

2
(|A〉 − |B〉), (A2)

1√
2

⎛
⎝ 1

0
−1

⎞
⎠ = 1√

2
(|A〉 − |C〉), (A3)

1√
2

⎛
⎝ 0

1
−1

⎞
⎠ = 1√

2
(|B〉 − |C〉). (A4)

The eigenstates are therefore those that are either antisymmet-
ric about any pair of ports or completely symmetric about all

three ports. It may also be noted that U 2 = −I , where I is the
3 × 3 identity matrix.

The probability of exiting at a given time is given by adding
the amplitudes of the indistinguishable paths that exit at the
same port, then adding the probabilities of the different ports.
For even N (N > 2), the instantaneous exit probability at time
t = NT is 6/N2, so that the cumulative probability of exiting
by time NT is

1

2
+ 3

2

N/2∑
n=2

1

n2
.

Exit probabilities at odd N vanish.

APPENDIX B: SAMPLE CALCULATION FOR
PROCESSING OF BELL STATES

Here, an example is given of the calculations done to
compile Table II. Suppose that the input state is |�+〉AB and
the control state is |�+〉AC . Then the action of the multiport is

|�+〉AB ⊗ |�+〉AC → (U ⊗ U )|�+〉AB ⊗ (U ⊗ U )|�+〉AC,

(B1)

where a few lines of algebra starting from Eqs. (5) and (6) in
the text give

(U ⊗ U )|�+〉AB

= − 1
9 {2

√
2(|H 〉A|V 〉A + |H 〉B |V 〉B − 2|H 〉C |V 〉C)

− 5|�+〉AB − 2(|�+〉AC + |�+〉BC)}, (B2)
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with a similar result for U |�+〉AB . Taking the product
(U ⊗ U |�+〉AB) ⊗ (U ⊗ U |�+〉AC) gives

1
81 {−8

√
2|H 〉A|V 〉A|�+〉BC + 29|�+〉AC |�+〉AB + . . . },

(B3)

where the dropped terms are those that do not have a single
photon at B and a single photon at C. Note that

|�+〉AB |�+〉AC = 1
2 {

√
2|2H 〉A|V 〉B |V 〉C

+
√

2|2V 〉A|H 〉B |H 〉C
+|H 〉A|V 〉A(|V 〉B |H 〉C + |H 〉B |V 〉C)},

(B4)

where, for example, |2H 〉A is the state with two horizontally
polarized photons at A. Using this, the outgoing state becomes

1

81

{
13

√
2|H 〉A|V 〉A|�+〉BC + 29√

2
[|2H 〉A|V 〉B |V 〉C

+|2V 〉A|H 〉B |H 〉C] + . . .

}
. (B5)

By projecting onto the part with opposite polarizations at A

(the first term), the state |�+〉BC is picked out, while projecting
onto the portion with the same polarizations at A (second and
third terms) picks out the state

1√
2

[|V 〉B |V 〉C + |H 〉B |H 〉C] = |�+〉BC. (B6)

Repeating the same procedure for all possible products of
input and control states then fills out the entries in Table II.
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