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We propose and examine the use of biphoton pairs, such as those created in parametric down-conversion or
four-wave mixing, to enhance the precision and the resolution of measuring optical displacements by position-
sensitive detection. We show that the precision of measuring a small optical beam displacement with this method
can be significantly enhanced by the correlation between the two photons, given the same optical mode. The
improvement is largest if the correlations between the photons are strong, and falls off as the biphoton correlation
weakens. More surprisingly, we find that the smallest resolvable parameter of a simple split detector scales as
the inverse of the number of biphotons for small biphoton number (“Heisenberg scaling”), because the Fisher
information diverges as the parameter to be estimated decreases in value. One usually sees this scaling only for
systems with many entangled degrees of freedom. We discuss the transition for the split-detection scheme to the
standard quantum limit scaling for imperfect correlations as the biphoton number is increased. An analysis of an
N-pixel detector is also given to investigate the benefit of using a higher resolution detector. The physical limit
of these metrology schemes is determined by the uncertainty in the birth zone of the biphoton in the nonlinear

crystal.
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I. INTRODUCTION

Measurements of the deflection or displacement of optical
beams are useful in a wide range of experiments and
applications; for example, optical beam deflections enable
precision atomic force microscopy measurements with fairly
modest experimental equipment [1]. In recent years, a variety
of these methods have been developed using classical states
of light. In particular, a number of schemes utilizing weak
value amplification have been successful in measuring optical
angular deflections as small as hundreds of femtoradians and
linear displacements as small as tens of femtometers [2], and
have allowed for ultraprecise measurements to be made in
relatively noisy environments [3]. For a review of weak value
theory and experimental results see Ref. [4].

It is well established that nonclassical states of light are
capable of improving the precision of optical measurements
(see, e.g., [5,6]). However, the vast majority of these quantum
enhancements are in measurements having to do with phase
or temporal properties of light, as opposed to spatial ones.
An interesting series of both theory and experimental works
[7-10] have shown that squeezed states of light can be used
to improve the sensitivity of split-detection displacement mea-
surements by reducing the variance of the detected signal. This
has been observed experimentally in both one-dimensional [8]
and two-dimensional [9] displacements.

In this paper we consider an alternative scheme for using
quantum correlations to enhance the measurement of a spatial
deflection or displacement. By using spatially entangled
biphoton pairs, such as those created using parametric down-
conversion [11-13], we show it is possible to substantially
reduce noise while using a simple experimental setup. Namely,
we find that correlations between photons in each pair allow
for the average position of both photons to be determined
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more precisely than the individual positions of each photon.
With a judicious choice of measurement scheme, this allows
for an enhancement in the determination of a small dis-
placement parameter. We note that fundamental measurement
limits and the validity of Heisenberg’s uncertainty relation
using schemes with entangled probes and detectors were
considered previously by Di Lorenzo [14] and Bullock and
Busch [15]. They find that it is possible to improve the
sensitivity of a measurement using entanglement, which is
in agreement with our analysis of a specific measurement
scheme here. It is also interesting to consider that while
continuous momentum and position correlations as quantum
resources are relatively new in metrology, they have been
at the center of our understanding of entanglement from
a very early point in the development of quantum theory.
In particular, they were considered in the seminal work by
Einstein, Podolsky, and Rosen [16], and entangled pairs of the
form we consider in this paper may properly be thought of as
“EPR pairs.”

The paper is organized as follows: In Sec. IT we discuss the
entangled biphoton quantum state, and correlated position-
position probability distribution which is used throughout the
paper, along with a brief description of a possible experimental
implementation. Generic enhancements over schemes using
coherent states with the same mode are also discussed [17].
In Secs. I A and IIB we extend the treatment to cover the
reasonable cases of split-detection and N-pixel detectors,
respectively. In particular, these sections demonstrate the
enhancement over uncorrelated photons and the robustness
of measurements to pixelation of the detection scheme.
Section II C discusses the case of very strong spatial corre-
lation, and how this affects the scaling of the measurement
resolution with the number of independent events. This also
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FIG. 1. Schematic for a biphoton displacement measurement.
Photons from a laser source are converted into correlated pairs in
a colinear type-II spontaneous parametric down-conversion (SPDC)
process (i.e., one in which two photons of orthogonal polarization
are generated), for example, with a BBO crystal. Uncorrelated short
wavelength photons (green solid line) are filtered out, while the
horizontally polarized (red line) and vertically polarized (blue line)
photons pass through to a movable mirror. The shift d of the mirror
from the origin displaces the optical beam, and is the small, unknown
parameter being measured with this apparatus. Each photon in the
pair is detected separately at a position-sensitive detector placed
at the output ports of a polarizing beam splitter (PBS). By using
coincidences between each detector it is possible to discard spurious
events caused by lossy optics or imperfections in the PBS.

provides insight into the limits of the measurement scheme. In
Sec. III we give our concluding remarks.

II. BIPHOTON DISPLACEMENT MEASUREMENT

As a simple, concrete model of a biphoton state exhibiting
spatial correlations useful for displacement measurements, we
consider the setup in Fig. 1, which uses spontaneous parametric
down-conversion (SPDC) to generate the desired state. In
SPDC, single “pump” photons are converted into two photons
(typically referred to as the “signal” and “idler” modes), which
are entangled due to constraints set by conservation of energy
and conservation of momentum.

The transverse state of biphotons created in SPDC can be
approximated in the position basis as [11]

/ dxidxa|x,x2) (x| Y (d))

1 _ 2
= / dxidx; exp —M
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( (x1 + x2 — 2d)?
x exp | ———M——~—
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where d is the transverse displacement being measured, and
x1 and x; are the transverse position variables for each of the
two photons, o is the pump beam waist, and € is a parameter
which describes the spatial correlation between the photons.
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FIG. 2. The probability distribution (2) as a function of x; and x,.
Clockwise from the upper left we have increasing correlation with
€/o =1,0.75,0.5, and 0.1. As expected, x; and x, are increasingly
anticorrelated with decreasing €.

The probability distribution follows simply from taking the
norm squared of this state,

1 —(x1 — x)?
plxixald) = exp( = )
o€ 20
. — 24y
X exp —O +x1 — 2d)” ’ 2)
2¢2

which is visualized in Fig. 2. Note that an entangled pair of
photons is necessary here to produce the correlated position
distribution (2). If one uses some classical resources like
coherent states, such a correlated distribution cannot be
generated with this particular setup, since the PBS is a
linear optical element and the photons at the two outputs
are uncorrelated if the input photons are in a coherent state.
However, the results in this paper depend on this distribution
only, rather than the specific optical physics or measurement
scheme. Since we will work in this fixed basis throughout
this paper, the results of our analysis applies equally to any
quantum or classical system which produces the distribution
(2), i.e., for a judicious choice of measurement scheme it
should be possible to replicate our results here using classically
correlated beams.

For this profile, correlations set the constraint that if a
photon is measured at position xi, the probability distribution
of the second photon is peaked at the position x, = 2d — x.
In other words, the position of each photon is mirrored about
the point x = d up to a small uncertainty set by the parameter
€. Hence, the smallness of € determines the “strength” of the
entanglement.

In this paper we will use Fisher information [18] as the
metric used to determine the overall measurement sensitivity
for our biphoton distribution in various detector arrangements.
From statistics, Fisher information is a measure of how
sensitively the distribution depends on the parameter d. The
Fisher information per photon pair is simply calculated (for
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perfect detector resolution) as

oo oo
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Note that the overall width of the input Gaussian profile o
does not appear in this result. Comparing with (2) we see this
amounts to a statement that the sensitivity of our measurement
is not determined by the individual photon positions but rather
the sum of their positions. This is in stark contrast to the case
of uncorrelated photons, where only the mode profile width o
determines the Fisher information, Zo(d) = 4/02. The result
(3) can also be recovered using the quantum Fisher information
given by [19]

To(d) = 4((Ba¥|0ar) — 1(0aW [¥) ). “4)

Since the state of biphoton (1) has no d-dependent relative
phases, it can be proven that the quantum Fisher information
Io(d) is equal to the classical Fisher information (3) in this
case (see Appendix B for the proof).

The Cramer-Rao lower bound [18] defines a relationship
between the Fisher information and the variance of a statistical
estimator d s

n 1
Var(d) > ——. 5
d) = @ )
Using the Cramer-Rao lower bound to determine the minimum
variance per biphoton pair and setting the minimum resolvable
parameter dy,, equal to the square root of the variance, for v
independent measurements we have
€
dmin ~ ﬁ, (6)
for an efficient estimator (i.e., an estimator which saturates
the Cramer-Rao lower bound). Note that in this case each
biphoton pair is an independent event, so there are 2v total
photons in a given experimental run. In the limite — o, Eq. (2)
is separable, and the distribution is identical to that of two
uncorrelated photons. Hence, any advantage over the case of
unentangled probes comes from a distribution with € < o.
For a given input beam width o, the enhancement in Fisher
information due to entanglement is then

) o?
Tod) €’ @
0

where the comparison is between entangled biphotons and
uncorrelated pairs of photons. For a comparison with single
uncorrelated photons one can simply insert a factor of two due
to the linearity of Fisher information (we note the uncorrelated
position variance of a single photon is Var[x] = o02/2 in
this notation). Sample split-detection signals highlighting the
advantage of entanglement are shown in Fig. 3.

The exact relation of o and € can be further controlled
by the placement of lenses before the polarizing beam splitter.
Quantum mechanics dictates that the small variance of x; + x»
implies that the transverse wave-number sum of the photons,
ky.1 + k2, has a large variance, since they obey an uncer-
tainty principle, oy, 0or, > 1/4 [11]. The smallest variance
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FIG. 3. Net signal for biphotons after 10 000 independent events
for split detection. The net signal here is analogous to the net steps
from the origin in a random walk, with the probabilities of two
steps backward, two steps forward, and zero steps per trial given
by Eq. (12). The solid blue signal represents uncorrelated photon
pairs, while the red dashed line represents entangled photons with
e/o =0.01.

€ of x| + x; is determined by the pump beam width at the
nonlinear crystal, and the smallest variance o of x; — x; is
given by opin = \/9wA, /107, where w is the width of the
crystal, and A, is the wavelength of the pump beam [11].

With the exception of results from expansions requiring
€/o < 1, one can simply replace ¢ with o in expressions
throughout this work for generalization to uncorrelated pairs
of photons. Equation (7) also provides a useful way to compare
resources between the entangled and classical experiments.
Because Fisher information scales linearly with independent
events, if we can achieve a given measurement precision
with v entangled photons, the classical equivalent will require
2v(0? /€?) independent photons to achieve the same precision.

The average position of the two photons d = (x| + x»)/2
is an efficient estimator for the parameter d, which is easily
verified by direct calculation of the variance,

E[d] = d, (®)

R €2
E[d*] = 77 d>. 9)
Hence, the variance per photon pair is €2 /4 and saturates the
Cramer-Rao lower bound. Interestingly, if one could reduce
the value of € to arbitrarily low values, d,;, would become
arbitrarily small for even a single biphoton pair. In the specific
case of SPDC production, uncertainty in the birth zone of pairs
leads to some minimum €.
We can also understand the effect of the detection scheme
by considering the marginal probability distribution obtained
by integrating over either x; or x; in Eq. (2),

(x|d) = # (M) (10)
px - 71(62+02) eXp 62+O-2 ’
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where subscripts have been dropped due to the symmetry of
the distribution (2). The Fisher information for the marginal
distribution of each single photon if its twin is not measured
is then

4
In(d) = P

(1D
where the subscript m in Z,(d) indicates that it is the Fisher
information of marginal distribution.

Unlike Eq. (3), the information is bounded in the limit
¢ — 0, and in the limit € — o we recover the same result
as for uncorrelated photons drawn from the full distribution
(2). Clearly the enhanced measurement sensitivity is not due
only to the correlation between photons, but also the ability to
detect the correlations for each event.

A. Split detection

The preceding results provide insight into the maximum
achievable precision for a detector with perfect (i.e., con-
tinuous) position resolution. Here we show that biphoton
correlations can provide a benefit with a relatively simple split-
detection scheme as well. In a split-detection experiment one
creates a detector out of two pixels and then uses the difference
in counts between the two pixels to indicate the magnitude
and direction of an optical beam shift. A proposed setup is
given in Fig. 1. There, two split detectors are used together
with a polarizing beam splitter (PBS), so that only events
are counted where there is a coincidence detection event, so
photons are simultaneously detected in both split detectors as
coincidences, and other (background) events are discounted.
For the presentation in the rest of the paper, we will discuss
the results of a single split detector, which is theoretically
the same, but not as technically easy to implement since both
photons of a biphoton pair can both land on the same side of the
detector. To translate between the setups, both photons landing
on the left (—) or right (4) side of the single-detector setup
corresponds to the ++ or —— two-detector events, whereas
one photon landing left and the other right, corresponds to the
two-detector —4- or +— events. The corresponding net signal
is then the average of the split-detector signals. In Sec. IIB
we will extend this discussion to the more general case of a
position-sensitive detector with N pixels.

For the case of split detection with a single detector,
we introduce the probabilities P(—2|d), P(0|d), and P(2|d),
which are the probabilities of two photons landing on the left
half of the detector, one photon on each half of the detector,
and two photons on the right half of the detector, respectively:

0 0
P(—2|d)=/ / dxdx; p(x1,x3|d),
PQId) = / / dx1dxp(er.xald),
0 0
PO|d) = 1 — P(=2|d) — P2|d). (12)

We ignore gaps between pixels throughout this work. These
integrals do not have closed form solutions, so we consider the
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limit d < €, where the probabilities can be expressed as

PE2ld) ~ - 4 arctan (£ — ) 24 2
A~ — + —arctan | — — — _—
4 2n 200 2e (02 + €2)

€ (o

1 1
PQO|d) ~ 37 arctan (2— — —> (13)

o 2¢

The resulting Fisher information for this discrete distribution
is

16

I(d) ~ .
@ (€2 + 0?7 + 2arctan (£ — £)]

(14)

Now, let us compute the correlation in the biphotons. A
typical measure for the correlation between two variables X
and Y is the correlation coefficient defined as

. Cov[X,Y]
- J/Var[X]Var[Y]

From the joint distribution of a biphoton pair, Eq. (2), it can
be derived that the correlation coefficient between the positions
of two entangled photons is

15)

62—0’2

This yields an explicit relation between the Fisher information
Z(d) and the correlation coefficient &:
16

(€2 + 02)(w + 2arcsiné)’

By setting £ = 0 (i.e., ¢ = o) in Eq. (16), we find the Fisher
information for uncorrelated photon pairs under split detection,

16 8

(€2 4+ 02) = o2

§= (16)

I(d) ~

a7

Zo(d) ~ (18)
which is smaller than the perfect resolution case (3) by a factor
of 2/m. The increase (or decrease) in Fisher information due
to entanglement is determined by the correlation coefficient:

WAC)) N T
To(d) w4 2arcsiné’

This equation characterizes the relation between the boost
in Fisher information and the correlation of the entangled
photons. It shows that when & < 0, the Fisher information Z(d)
will be larger than that without correlation Zy(d). This implies
an advantage of using biphotons with negative correlation
(i.e., spatially anticorrelated biphotons) in split detection. It
is widely known that correlation can enhance the precision of
parameter estimation in the quantum metrology community.
Equation (19) can be perceived as a counterpart of that in the
split-detection scheme.

Meanwhile, Eq. (19) also shows that when & > 0, Z(d)
becomes smaller than Zy(d) instead. This contrast with the case
of negative correlations implies that different types of correla-
tions can have different effects on the Fisher information, and
not all types of correlation in the biphotons are favorable to
the performance of split detection, even when the “strength”
of the correlation is the same.

An important topic in quantum metrology is identifying
and characterizing useful quantum resources for enhancing
the sensitivity of measurements. The above analysis shows

19)
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FIG. 4. A comparison of the Fisher information (in arbitrary
units) due to biphoton pairs incident on detectors with different
numbers of pixels N, using the numerical value 0 = 1 andd = 0.05.
For each curve, the information for uncorrelated photons is given by
the value of the curve for € /o = 1. The dotted black line represents
perfect spatial resolution calculated by Eq. (3), the solid blue curve
represents split detection (N = 2), the red dashed curve represents
a 10-pixel detector, and the case of 50 pixels is given by the purple
dot-dashed curve.

that the correlation coefficient between photons of a biphoton
pair determines the gain in the Fisher information for detecting
a beam displacement. This provides an explicit criterion for
identifying useful correlation for split detection with our setup.

In the limiting case & — —1 (i.e., € — 0), the Fisher
information can be extremely large, which is in accordance
with Fig. 4, while in the limiting case £ — 1 (i.e., 0 — 0),
the Fisher information decreases to only half of that of
uncorrelated photons. Note that in the limit ¢ — 0, we need
d — 0 as well, otherwise the assumption d <« ¢ will be
violated.

We now investigate the maximum likelihood estimator for
split detection. To begin, we introduce the binary random
values X; and X, which can take on the value O or 1, and
are mutually exclusive (i.e., only one of them can take on
the value 1 for a given event). X; represents the outcome
where two photons land on the positive half of the detector
and X, represents both landing on the negative half. The
relevant joint probabilities reduce to quantities we have already
calculated above, namely P(X; = 1,X, = 0|d) = P(2|d) and
P(X; =0,X, = 1]|d) = P(—2|d) so we are able to directly
calculate the variance of the scaled split-detection estimator,

2 2
a:,/wm — X))

Computing the variance yields precisely the inverse of Eq. (14)
and so saturates the Cramer-Rao lower bound. Hence, the split-
detection estimator is efficient for measuring the displacement
of biphoton pairs.

(20)

B. N-pixel detector

For the case of a position-sensing detector with N pixels, we
may proceed similarly to the case of split detection above. We
will slightly change notation for convenience, with P;; being
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the probability of one photon each landing on pixels i and
pixel j (with the case of i = j being the case of both photons
on the same pixel), and the dependence on the parameter d
is implied, as opposed to the explicit conditional probability
notation used above. We note that similar calculations have
been performed for the cases of weak value amplification and
uncorrelated Gaussian beams [20,21]. If the pixels have a width
A, the probabilities may be calculated as

iA A
P; i =/ dxl/ dxz p(x1,x2|d)
@i—-hHA (-ha

iA i
+/ dxz/ dxip(x1,x2]d),
(i-DA (-DaA

where the case of i = j is equal to the first term alone. If we
label the bins from 1 to N, the joint probability distribution
for a single event can be written as

2n

p(X11,X12,...1d) =P PE> (22)

where the random variables X;; are again binary with mutually
exclusive outcomes for a single event. The indices (i, j) are
also subject to the constraint i < j to avoid double-counting
outcomes. After some calculations analogous to the split-
detection case, one finds the Fisher information per biphoton
event is equal to

N

Results for the Fisher information due to our distribution
incident on a 10-pixel and 50-pixel detector compared to split
detection (two pixels) and to perfect spatial resolution are
shown in Fig. 4. For these computations we use a detector
width of 100, and hence a pixel width of 100 /N, where N
is the number of pixels. In general, it is possible to improve
the resolution by using nonhomogeneous pixel widths, but for
simplicity we will not treat that case here.

(23)

C. Scaling with independent events

From the above analysis [e.g., Egs. (3)—(6)], it is clear that
for nonzero € the minimum resolvable parameter scales as
v~1/2 for v independent events (i.e., the usual shot-noise limit),
with the enhancement appearing as a prefactor, as expected.
However, taking the above treatment for the split detection in
the limit e — 0 yields interesting results (keeping in mind that
€ does have a minimum value it can take [see the discussion
following Eq. (7)]). For simplicity we rewrite Eq. (2) as

) 2
p(x1,x20d) = |/ — exp (—M)S(xl +x, — 2d).
To 20

(24)

The Fisher information for this probability distribution is
infinite, implying that the statistical noise is completely
suppressed and the estimation process becomes deterministic
for the case of perfect spatial resolution, in agreement with
Eq. (3). One can verify this by noting that the variance of
the estimator d = (x| + x»)/2 is exactly zero. For the case of
split detection, we can exactly solve the integrals in Eq. (12).
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Without loss of generality, we assume d > 0;

PQ2ld) = erf(@),

P(=2|d) = 0,
PO|d) = 1 — PQ2|d). 25)

We note that these probabilities form a Bernoulli distribution
(see,e.g., [18,22]) with P(2|d) as the probability of a “success”
and 1 — P(2|d) as the probability of a “failure.” It follows
immediately from the properties of a Bernoulli experiment
with v total trials for very small d:

8 v

d) ~ ——.
@) o%d

(26)

Interestingly, the information increases as the parameter
d becomes smaller, and diverges as d — 0. This can be
understood intuitively from Eq. (25), noting the outcome with
one photon incident on each half of the detector is certain for
the case of d = 0. Therefore, events where two photons land
on the same side of the detector give a great deal of information
about the parameter’s value being different from 0.

Equation (26) clarifies the boost in measurement precision
of a small parameter due to extremely strong correlations.
Comparing the case of uncorrelated photons under split detec-
tion (18), we note that the enhancement from entanglement can
become arbitrarily large for an arbitrarily small parameter d.

Another interesting enhancement to the measurement is
the increase of the resolution. The resolution is the minimal
resolvable parameter by the measurement with a given signal-
to-noise ratio (SNR) R. Since the Fisher information is the
inverse of the minimum variance of the estimate, the resolution
is related to the Fisher information via the SNR,

dmin
R < ——— dmin I(dmin)v (27)
v/ min Var[d]

where the minimization before Var[c?] is over all possible
unbiased estimators, and the second equality results from the
definition of Fisher information. A standard choice for the
minimum SNR required to resolve a parameter is unity. Hence,
by substituting Eq. (26) into Eq. (27), the minimum resolvable

d turns out to be
[mo? 1
dmin ARV R (28)
8 v

Equation (28) implies that the resolution reaches the
Heisenberg-limited scaling when € — 0.

This is an interesting result. As is widely known, the
standard quantum limit for the resolution scales as p1,
Typical enhancements over this scaling require large numbers
of entangled quantum resources, e.g., squeezed states of
light, in order for the resolution to reach the Heisenberg-
limited scaling [10]. This contrasts with our setup, which
only requires pairs of entangled photons, so there must be
some substantially different mechanism from that of the other
schemes for increasing the scaling of the resolution, as we now
discuss.
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It can be seen from the definition of SNR (27) that the key of
improving the resolution is to increase the Fisher information.
In most cases, the SNR is linear with the minimal resolvable
parameter, so a large N entangled photon state is used in order
to increase the scaling of the Fisher information with respect to
the number of photons, which results in an improved scaling
of the measurement resolution. This is how the resolution
in many optical metrology schemes is improved by using
quantum resources like squeezed states.

However, in our protocol, when the parameter d is de-
creased, the Fisher information increases. This changes the
scaling of the Fisher information with respect to d, and
similarly makes the SNR nonlinear with d. Hence, even though
the scaling of the Fisher information with respect to the number
of photons is unchanged, the resolution still can be significantly
enhanced, and reach the Heisenberg-limited scaling as shown
by Eq. (28).

The above analysis also implies that the measurement
precision, which is characterized by the minimum variance
of the estimate, is not always equivalent to the resolution
of the parameter to be measured, although they look quite
similar and are sometimes used interchangeably to quantify
the metrological performance. If the Fisher information is
independent of the parameter, these two measures for the
measurement are equivalent, for a given SNR; but if the
Fisher information has dependence on the parameter, they
can be rather different, as they are in the present case. As
our analysis of the biphoton displacement scheme for € — 0
shows, the measurement precision is characterized by the
Fisher information (26) which scales proportionally to v,
as we would expect for a classical experiment. However,
the minimum resolvable parameter (28) yields Heisenberg
scaling proportional to v=!. This is fundamentally due to the
dependence of the Fisher information on the parameter d.

D. Small v scaling

In practice, because one cannot physically create a spatial
profile which exactly has one photon hit a detector determinis-
tically at one point conditional on the measurement of another
entangled photon (i.e., € = 0), the preceding analysis with
delta function correlations is overly optimistic.

As a simple model to consider more realistic imperfections,
suppose the probabilities of “success” and “failure” may
instead be expanded as

P(“success”|d) ~ a + Bd,
P(“failure”|d) ~ | —a — fd, (29)

with constant & and 8 for some small but nonzero «; o here is
effectively a noise term indicating the probability of a success
even when the parameter is zero, while 8 determines the degree
to which a change in the parameter correspondingly changes
the probability of success. Comparing with Eq. (13), we see
we can determine « and B simply by matching terms of the
same order in d. The Fisher information of this probability
distribution with respect to d is

B

D~ T —a = pd)

(30)
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FIG. 5. The number of events needed to achieve an SNR of 1
under split detection as a function of the parameter d (in arbitrary
units) for different values of €/o. From top to bottom the curves
represent €/ =1 (i.e., uncorrelated), 0.5, 0.1, 0.05, and O (i.e.,
perfect correlations). As expected from Eq. (33), Heisenberg scaling
can only be observed for numbers of events much less than o/e,
e.g., the €/ = 0.01 curve only matches the Heisenberg curve for
v <~ 100.

Then the minimum resolvable parameter dy,;, can be derived
from Eq. (27) as

i 1 — 20+ /(1 —2a)? + 4a(l — a)v
min — 25]} ’

€29

where v > 1 is assumed. As in Sec. II C, we see the Fisher
information is proportional to v as we would expect for any
experiment of v independent events, but the dependence of
the Fisher information on the parameter leads to interesting
behavior in the scaling of the minimum resolvable parameter.

The scaling of dp,, gradually transitions from v=! to v=1/2
as « increases from zero. Therefore, the Heisenberg-limited
scaling v~ is the limiting scaling of the resolution when o <
1. Hence, the condition to approximately achieve Heisenberg
scaling is

1

— 32
a K w (32)

or equivalently for the case of € K o,

v o (33)
When v increases to beyond this regime, the resolution of
the measurement will scale as v~'/2. This has been confirmed
numerically, shown in Fig. 5. Note this result also implies that
when we introduce any imperfection at all, the scaling will
always be standard quantum limit in the asymptotic limit of
large v (but with a small prefactor). This conclusions applies
generically to added dephasing imperfections in Heisenberg
scaling schemes [23-25].

It is straightforward to show that an N-pixel detection
scheme also reaches Heisenberg scaling in the limit of very
strong entanglement. In the same notation as Sec. 1B, we
expand the probabilities to first order in d,

Pij = a;; + Bijd. (34)
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Inserting these probabilities into Eq. (23), we see immediately
that if even a single term in the sum satisfies a;; = 0, the Fisher
information in the limit of very small d scales as d ~' and hence
the minimum resolvable parameter scales as v=! for small v.

We stress that if one has higher resolution, as can be
achieved with more pixels, then the measurement precision can
be increased. Since the perfect detector limit of the entangled
biphoton case scales as the standard quantum limit (6) but with
a prefactor of €, we have the following ordering of precision
from greatest to least given a fixed number of photons:
(1) standard quantum limit scaling of the biphoton case with
a perfect resolution detector, (2) Heisenberg scaling of the
biphoton case with a split (two-pixel) detector, (3) standard
quantum limit scaling of independent photons with a perfect
resolution detector, and (4) standard quantum limit scaling
of independent photons with a split (biphoton) resolution
detector. This indicates that the scaling behavior is a secondary
consideration to the Fisher information.

III. DISCUSSION AND CONCLUSION

By using spatially entangled biphoton pairs, it is possible
to reduce the quantum noise intrinsic to optical metrology
schemes. While this is true in the case of split-detection,
which is a typical detector setup for optical displacement
measurements, we have shown that an even larger benefit can
be obtained as one improves spatial resolution. The ultimate
physical limitation for this method is the position uncertainty
in the birth zone of the biphoton. We have also seen that it is
possible to change the scaling in precision for split-detection
measurement between standard quantum limit and Heisenberg
if one uses entangled biphotons instead of independent photons
for the same mode profile, for a relatively small photon
number. This advantage comes from the fact that the sum
of the biphoton positions is determined more precisely than
for uncorrelated photons.

The detection and estimation scheme used in the paper
is to count the number of times that the biphoton arrives at
the left side, right side or at different sides of the detector
and then extract the information of the beam displacement
from the counts. We proposed an experiment using coincidence
counting and two split detectors to implement this theory. This
method is statistically optimal for this experimental setup. A
possible alternative approach is to consider the distribution of
each single photon, estimate the displacement from it, and then
average the estimates from the two photons. This approach also
utilizes the correlation of the entangled photons, since the two
estimates are correlated by the photon correlation. This second
approach is analyzed in detail in Appendix A, and we show
the estimation precision can also reach the Cramér-Rao bound,
and therefore matches the precision of split detection detailed
in the main text.
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APPENDIX A: ESTIMATION FROM MARGINAL
DISTRIBUTIONS

In this Appendix, we study an alternative approach for
estimating the displacement of biphoton beam using split
detection. We consider the maximum likelihood estimation
for the marginal distribution of each photon in a biphoton pair
under split detection and average the two estimates. We show
here this procedure can also attain the Cramér-Rao bound when
the estimates of the marginal distributions are evenly averaged.

According to Eq. (2), the marginal distribution of either
photon in a biphoton pair is

2
px|d) = \/ mexp <—

where the subscripts 1,2 are dropped since the marginal
distributions for the two photons are the same due to the
symmetry of p(x;,x2|d).

For split detection, the probability to find either photon
of a biphoton pair at the left or right side of the detector is,
respectively,

0 1 V2d
R )
1 2
2 Vr@er+er)

V2d
(1 + erf(—az - ))

1 n 2 d
2 (o2 +€2) "’

where the approximation assumes d < v/ o2 + €2.
The Fisher information for the marginal distribution of
either photon is

2
2(d — x) >’ (Al)

o2 4 €2

X

N =

+o00
P+ =/ pxld)dx =
0

X

(A2)

B 8
T (ot +e?)
The subscript m in Z,,(d) indicates it is the Fisher information

of marginal distribution.
For the maximum likelihood estimation (MLE),

(A3)

m

N_d;lnp_ + Nyd;lnp, =0, (A4)

where N_ and N, are the numbers of the photons that arrive
at the left or right side of the detector, respectively, so the
estimator for the marginal distribution is

J— [m(0c2+€2) Ny — N_
N 8 Niy+N_~

When there are N pairs of biphotons in total, N = N, +
N_, and the distribution of N, N_ is

(A5)

N
p(N4 N_) = ( )pf*p’v. (A6)
Ny
The variances of N,, N_ and the covariance between them
can be obtained:

Var[N+] = Npyp-, Cov[Ny,N_]=—Npyp_, (A7)
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so the variance of d is

70?4+ €?)

Var[d] = T (Var[N, ] + Var[N_] — 2Cov[N,,N_])
2 2
~ % (A8)

The inverse of Var[d] is exactly the Fisher information (A3)
(scaled by N), so it verifies that the estimator d reaches the
Cramér-Rao bound.

Since we have two photons from a biphoton pair, we can
do some average of the estimates from these two photons.
We denote the estimators of the two photons are d; and
d>, respectively, each satisfying the distribution (A1). If we
average them with some weights «; and «;, then the total
estimator is

dot = a1dy +0rdy, @y +ay = 1. (A9)

The variance of this total estimator is
Var[di,] = a}Var[d,] + o3 Var[as] + 2a10,Cov(d; ,ds].
(A10)

We hgveA obtained the Var[dAlyz] above, and the covariance
Covld,,d>] is

Covld,d>] = E[d d>] — E[d,|E[d>]
= E[d\dy] — d°, (A1)

where we have used the fact E[d,] = E[d>] = d. From here
we must calculate E[c?lciz].

From the joint spatial distribution (2), we can work
out the joint distribution for the split-detection results,
which can be denoted as p; 4, p+—, p—+, p——. Then p__ =
P(-2|d), p++ = P(2|d), and p,_ + p_, = P(0|d), which
were defined in Eq. (12), and

P+ =P+ + P =Dy T Dy,
p-=p—+pi=p_+pi,

according to the definition of marginal distribution and the
symmetry of the biphoton distribution.
E[d,d,] can be expanded as

(A12)

N A w(o? +€?)
E[did>] = WIE[(NS) —~ NN — NP
7(6? + €?)
= WE[(NJrJr +N(- =N —N_)

X(Npy +N_y =Ny = N_)], (A13)

where N, is the number of times that both photons of a
biphoton pair hit the right side of the detector, and similarly for
Ni_, N_y, N__. The joint probability distribution for N, .,
N,_, N_,, N__ is a multinomial distribution,

P(N44, Ny ,N_y N__)

N! New Noo N_, N__

= NN IN NP P P e (AL
s0,
E[N;;] = Npij,
E[N;jNij] = N(N — Dpijpirj + Npijdijiry,  (Al5)
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where i, j,i’,j/ = + or —. Therefore,

7(c? + €2)

Eldidy] = =5 IN(N = D(P4s + p-—p—y = P--)

X (P4+ + P-4 — P4— — P—)

+ NP4+ — P4— — P—+ + p—2)]
w0 4€?) 5
= T[(N — D(p+ —p-)

+2(p++ + p—) — 1],

where Eq. (A12) has been used at the second equality.

The (p; — p_)? term can be dropped in Eq. (A16) because
it is proportional to d? according to (A2), and the —d? term
can also be dropped in Eq. (A11) for the same reason, so,

(Al6)

A w(o? + €?)
Covld,,d2] = T[2(P++ +p-)—1]. (A1)
It can be derived by direct calculation that
1 n arcsin & d 2
Pre =47 "o 702+ €
1 n arcsin & d 2 (A1S)
P——=3 27 m(o? +€2)’
Thus,
2, .2 :
Covld,,d,] = w_ (A19)

4N
The result of Var[c?tm] is therefore,

R 2 2 4
Var[di] = W‘S—;f) (0112 + a3 + —onen arcsin é)
2, .2 5
= M[] - 20{1012(] - = arcsiné)],
8N bid
(A20)

where we have used o] + ar = 1.

What is the minimum value of Var[d,,]? Since % arcsin§ —
1 < 0, Var[d,] is minimized when « ¢, is maximized. Using
o) +ar = 1, we have ajan < }‘. The equality holds when
o] =ap = % So, the minimum variance of c?mt is

2 2 1 1
%(5 + ;arcsin&). (A21)

This coincides with the Fisher information Z(d) in Eq. (17)
of the main manuscript. It implies that the optimal precision of
split detection of biphotons can be attained via estimation from
the two marginal distributions followed by properly averaging
the two estimates.

Var [ﬁtol]min ~

APPENDIX B: FISHER INFORMATION:
QUANTUM VS CLASSICAL

In this Appendix, we study when the quantum Fisher
information of a parameter-dependent state can be achieved
by projective measurements. Suppose the state of interest is
|Y4). If we want to estimate d by performing a projective
measurement on this state, along some d-independent basis
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{le1), ...,les)}, where n is the dimension of the system, we
can expand the state |1;) along that basis as

Wa) =Y /Pre ™ lex), (B1)
k=1

where py, 6r, k =1, ...,n depend on d. Then the probability
of obtaining the kth result is py, and the classical Fisher
information of estimating d by such a projective measurement
is

n 2
To = Z (94 px) '

1 Pk

(B2)

The quantum Fisher information of |y,) is the maximum
Fisher information of estimating d over all possible POVMs
(not only projective measurements) on |¥,), and it can be
obtained as

Zo = 4((a¥aldara) — 1{¥aldava) ).

Substituting Eq. (B1) into (B3), the quantum Fisher informa-
tion of [{ry) is

(B3)

2

| dapi
IQ =4<Z + i/ Pr046k
=1 2/ Pk

)

n
Z Pr0abr
k=1

. dapr .
vak( + l\/pk8d9k>
=1 2«/ Pk

" ape) d ’
d Pk
=D A S pe@ath)? -
=1 P k=1

(B4)
Hence,
n n 2
To—Tc=4| Y pi@ab)’ — | D pidabi (BS)
k=1 k=1
Applying the Cauchy-Schwartz inequality,
n 2 n
> pedate| <D pre@a6)*: (B6)
k=1 k=1
the equality holds only when
e/ Pk =/ Pk9abk, Yk, (B7)

where c is a constant. So, when Zy = Zc, the solution to 6y
is 6y = cd + y,, where y; is a constant independent of d for
each k. In this case,

ei9k — eicdei]/k. (BS)
Note that ¢/“? is a global phase of |v,) which can be dropped,
and e'"* is a phase independent of d. Therefore, the quantum
Fisher information is equal to the classical Fisher information
only when the state has no parameter-dependent relative phases
in the basis of the measurement.
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