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Spontaneous emission of a two-level atom with an arbitrarily polarized electric dipole
in front of a flat dielectric surface
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We investigate spontaneous emission of a two-level atom with an arbitrarily polarized electric dipole in front
of a flat dielectric surface. We treat the general case where the atomic dipole matrix element is a complex vector,
that is, the atomic dipole can rotate with time in space. We calculate the rates of spontaneous emission into
evanescent and radiation modes. We systematically study the angular densities of the rates in the space of wave
vectors for the field modes. We show that the asymmetry of the angular density of the spontaneous emission rate
under central inversion in the space of in-plane wave vectors occurs when the ellipticity vector of the atomic
dipole polarization overlaps with the ellipticity vector of the field mode polarization.
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I. INTRODUCTION

The study of individual neutral atoms in the vicinities of
material surfaces has a long history [1–5] and has attracted a lot
of interest over decades [6–23]. The possibility to control and
manipulate individual atoms near surfaces can find applica-
tions for quantum information [24–26] and atom chips [27,28].
Cold atoms can be used as a probe that is very sensitive to
surface-induced perturbations [29]. Many applications require
a deep understanding and an effective control of spontaneous
emission of atoms near to material objects.

It is well known that the spontaneous emission rate of an
atom is modified by the presence of an interface [8–19]. Such
a modification has been demonstrated experimentally [8]. A
semiclassical approach to the problem of surface-modified
radiative properties has been presented [9]. A quantum-
mechanical linear-response formalism has been developed for
an atom close to an arbitrary interface [10–12]. An alternative
approach based on mode expansion has been used for an atom
near a perfect conductor [13]. The Green function approach
has been applied to a multilayered dielectric [14]. A quantum
treatment for the internal dynamics of a multilevel atom near
a multilayered dielectric medium has been performed [15].
Spontaneous radiative decay of translational levels of an atom
in front of a semi-infinite dielectric has been studied [16]. In the
previous treatments [9–18], it was assumed that the induced
dipole of the atom is linearly polarized, that is, the dipole
matrix element vector of the atom is a real vector oriented along
a given direction is space. In this condition, the rate of spon-
taneous emission into evanescent modes is always symmetric
with respect to central inversion in the plane of the interface.

In a realistic quantum emitter, the dipole can be elliptically
polarized, that is, the dipole matrix element vector can be
a complex vector. For example, in an alkali-metal atom, the
dipole matrix element vector dM ′M for the transition between
the Zeeman levels with the magnetic quantum numbers M ′ and
M is a real vector, aligned along the quantization axis z, for the
π transitions, where M ′ = M , but is a complex vector, lying
in the xy plane, for the σ± transitions, where M ′ = M ± 1.

When the dipole matrix element vector is a circularly polarized
complex vector, the dipole of the emitter is not aligned along
a fixed direction but rotates with time in space. It has recently
been shown that spontaneous emission and scattering from
an atom with a circular dipole in front of a nanofiber can
be asymmetric with respect to the opposite axial propagation
directions [30–35]. These directional effects are the signatures
of spin-orbit coupling of light [36–40] carrying transverse spin
angular momentum [39,41]. They are due to the existence of
a nonzero longitudinal component of the nanofiber guided
field, which is in phase quadrature with respect to the radial
transverse component. The possibility of directional emission
from an atom into propagating radiation modes of a nanofiber
and the possibility of generation of a lateral force on the atom
have been pointed out [34].

Spontaneous emission of an atom is similar to the emission
of a dipolelike particle. Spontaneous emission of a two-level
atom and radiation of a classical oscillating dipole have identi-
cal radiation patterns, identical rate enhancement factors, and
very similar decay rates [18]. A radiating dipole can, in general,
oscillate in all three dimensions with relative phases. Recently,
emission of particles with circularly polarized dipoles began to
attract much attention [19,42–49]. It has been shown that the
near-field interference of a circularly polarized dipole coupled
to a dielectric or metal leads to unidirectional excitation of
guided modes or surface plasmon polariton modes [19,42–47].
This effect has been experimentally demonstrated by shining
circularly polarized light onto a nanoslit [42,44] or closely
spaced subwavelength apertures [43] in a metal film and
by exciting a nanoparticle on a dielectric interface with a
tightly focused vector light beam [19,47]. The generation of
lateral forces by spin-orbit coupling of light [39] scattered off
a particle at an interface between two dielectric media has
been demonstrated [48,49]. In order to enhance the selective
coupling of light to plasmonic and dielectric waveguides on
the nanoscale, a variety of complex nanoantenna designs
have been proposed and experimentally demonstrated [50–57].
Despite recent interest in spin-orbit coupling of light scattered
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off particles [19,44–49], a systematic study of the radiation
pattern of a circularly polarized dipole in front of an interface
is absent. We note that the theory of Ref. [18] is valid only for
linearly polarized dipoles and must be modified to be used for
circularly polarized dipoles [19,47].

Spontaneous emission of a two-level atom and radiation
of a classical oscillating dipole are similar but different
phenomena. A two-level atom is a quantum system. The dipole
moment of the atom is coupled to the field parametrically.
Meanwhile, the dipole moment of a classical oscillating dipole
is coupled directly to the field. A quantum atom does not obey
the classical equations of motion when the atomic state is far
from the ground state. The initial conditions for spontaneous
emission are that the field is in the vacuum state and the atom
is in the excited state. The spontaneous emission is initiated by
the vacuum field fluctuations. The expression for the damping
rate of a classical oscillating dipole is different from that for
the spontaneous emission rate of a two-level atom. In order to
get a full understanding of spontaneous emission, the quantum
model must be used.

In view of the recent results and insights, it is necessary
to develop a systematic theory for spontaneous emission of a
two-level atom with an arbitrarily polarized dipole in front of a
flat dielectric surface. We construct such a theory in this paper.
We calculate the rates of spontaneous emission into evanescent
and radiation modes, and study the angular densities of the
rates in the space of wave vectors for the field modes. We
focus on the case where the ellipticity of the atomic dipole is
not zero, that is, the case where the dipole of the atom rotates
with time in space.

The paper is organized as follows. In Sec. II we describe
the model and present the expressions for the modes of the
field and for the Hamiltonian of the atom-field interaction.
In Sec. III we calculate the rates of spontaneous emission
into evanescent and radiation modes, and study the angular
densities of the rates in the space of wave vectors. In
Sec. IV we present the results of numerical calculations. Our
conclusions are given in Sec. V.

II. MODEL DESCRIPTION

We consider a space with one interface [see Fig. 1(a)].
We use a Cartesian coordinate system {x,y,z}. The half-space
x < 0 is occupied by a nondispersive nonabsorbing dielectric
medium (medium 1). The half-space x > 0 is occupied by
vacuum (medium 2). We examine an atom, with an upper
energy level e and a lower energy level g, located at a fixed
point on the x axis in the half-space x > 0. The energies of the
levels e and g are denoted by �ωe and �ωg , respectively.

We use the formalism of Ref. [58] to describe the quantum
radiation field in the space with one interface. We label the
modes of the field by the index α = (ωKqj ), where ω is the
mode frequency, K = (0,Ky,Kz) is the projection of the wave
vector onto the dielectric surface yz plane, q = s,p is the mode
polarization index, and j = 1,2 stands for the medium of the
input of the mode. For each mode α = (ωKqj ), the condition
K � knj must be satisfied. Here, k = ω/c is the wave number
in free space, n1 > 1 is the refractive index of the dielectric,
and n2 = 1 is the refractive index of the vacuum. We neglect
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φ

interface

medium 2: vacuum

medium 1: dielectric

(a)

 evan q1 
  K > k

 rad q1 
 K < k

 rad q2 
 K < k

(b) Single-input modes

(c) Single-output modes
 evan q1 
  K > k

 rad q2 
 K < k

 rad q1 
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FIG. 1. (a) Atom in front of the flat surface of a semi-infinite
dielectric medium. The half-space x < 0 is occupied by a dielectric
(medium 1). The half-space x > 0 is occupied by vacuum (medium
2). The atom lies on the x axis in the half-space x > 0. The axes
y and z lie in the interface. The in-plane wave vector K lies in
the interface yz plane. (b) Representation of single-input modes.
(c) Representation of single-output modes. In (b) and (c), the input
and output parts of the modes are shown by the solid red and dashed
blue arrows, respectively.

the dependence of the dielectric refractive index n1 on the
frequency and the wave number.

The mode functions are given, for x < 0, by [58]

UωKs1(x) = (
eiβ1x + e−iβ1xrs

12

)
s,

UωKp1(x) = eiβ1xp1+ + e−iβ1xr
p

12p1−,
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UωKs2(x) = e−iβ1xt s21s,

UωKp2(x) = e−iβ1xt
p

21p1−, (1)

and, for x > 0, by

UωKs1(x) = eiβ2xt s12s,

UωKp1(x) = eiβ2xt
p

12p2+,

UωKs2(x) = (
e−iβ2x + eiβ2xrs

21

)
s,

UωKp2(x) = e−iβ2xp2− + eiβ2xr
p

21p2+. (2)

In Eqs. (1) and (2), the quantity βi = (k2n2
i − K2)1/2, with

Re βi � 0 and Im βi � 0, is the magnitude of the x component
of the wave vector in medium i = 1,2. The quantities rs

ii ′ =
(βi − βi ′ )/(βi + βi ′) and t sii ′ = 2βi/(βi + βi ′) are the reflection
and transmission Fresnel coefficients for a transverse electric
(TE) mode, while the quantities r

p

ii ′ = (βin
2
i ′ − βi ′n

2
i )/(βin

2
i ′ +

βi ′n
2
i ) and t

p

ii ′ = 2nini ′βi/(βin
2
i ′ + βi ′n

2
i ) are the reflection and

transmission Fresnel coefficients for a transverse magnetic
(TM) mode. The vector s = [K̂ × x̂] is the polarization vector
for the electric field in a TE mode, while the vectors pi+ =
(K x̂ − βiK̂)/kni and pi− = (K x̂ + βiK̂)/kni are, respec-
tively, the polarization vectors for the right- and left-moving
components of the electric field in a TM mode in medium
i. Here, the notation V̂ = V/V stands for the unit vector of
an arbitrary vector V, with V ≡ |V| = √|Vx |2 + |Vy |2 + |Vz|2
being the length of the vector V. It is clear from Eqs. (1) and (2)
that each mode α = (ωKqj ) has a single input in medium j

[see Fig. 1(b)]. The set of the modes α is a complete and
orthogonal basis for the field.

Note that a light beam propagating from the dielectric to
the interface may be totally reflected because n1 > n2 = 1.
This phenomenon occurs for the modes α = (ωKqj ) with
j = 1 and k < K � kn1. For such a mode, the magnitude
of the x component of the wave vector in medium 2 is
β2 = i

√
K2 − k2, an imaginary number. This mode does not

propagate in the x direction in the vacuum side of the interface
but decays exponentially. Such a mode is an evanescent mode.
We note that, in the case of the p evanescent mode, that is
the mode α = (ωKp1) with k < K � kn1, the vector p2+
for the polarization of the field in the half-space x > 0 is
a complex vector. The modes with 0 � K � k are called
radiation modes. For convenience, we use the indices μ and ν

to label the evanescent and radiation modes, respectively, that
is, we use the notations μ = (ωKq1) with k < K � kn1 and
ν = (ωKqj ) with 0 � K � k.

The total quantized electric field is given by [58]

E(r,t) = i
∑

α

k

4π

√
�

πε0βj

eiK·RUα(x)aαe−iωt + H.c., (3)

where aα is the photon annihilation operator for the
mode α, R = (0,y,z) is the projection of the position
vector r = (x,y,z) onto the interface plane, and

∑
α =∑

qj

∫ ∞
0 dω

∫ knj

0 K dK
∫ 2π

0 dφ is the generalized summation
over the modes. Here, φ is the azimuthal angle of the vector
K with respect to the y axis in the yz plane. The commutation
rule for the photon operators is [aα,a

†
α′ ] = δ(ω − ω′)δ(Ky −

K ′
y)δ(Kz − K ′

z)δqq ′δjj ′ . When dispersion in the region around
the frequencies of interest is negligible, the mode functions

Uα satisfy the relation
∫ ∞
−∞ dx n2(x)U∗

ωKqj (x) · Uω′Kq ′j ′ (x) =
2πc2(βj/ω)δ(ω − ω′)δqq ′δjj ′ . Here, n(x) = n1 for x < 0, and
n(x) = n2 for x > 0. Hence, we can show that the energy of the
field is ε0

∫
dr n2(x)|E(r)|2 = ∑

α �ω(a†
αaα + aαa†

α)/2. Here,∫
dr = ∫ ∞

−∞ dx
∫ ∞
−∞ dy

∫ ∞
−∞ dz is the integral over the whole

space.
We now present the Hamiltonian for the atom-field inter-

action. In the dipole and rotating-wave approximations and in
the interaction picture, the atom-field interaction Hamiltonian
is

Hint = −i�
∑

α

Gασ †aαe−i(ω−ω0)t + H.c., (4)

where σ † = |e〉〈g| describes the atomic transition from the
lower level g to the upper level e, ω0 = ωe − ωg is the angular
frequency of the transition, and

Gα = k

4π
√

πε0�βj

eiK·R(UωKqj · deg) (5)

is the coefficient of coupling between the atom and the mode
α = (ωKqj ). In expression (5), deg = 〈e|D|g〉 is the matrix
element of the dipole moment operator D of the atom. In
general, deg can be a complex vector.

The time reverse of the mode α = (ωKqj ) is also a mode
of the field. We introduce the label α̃ = (ω, − K,q,j̃ ) for the
time reverse of the mode α = (ωKqj ). The mode function of
the mode α̃ is given by Uα̃ = U∗

α . It is clear that the mode α̃

has a single output coming from the interface into medium
j [see Fig. 1(c)]. Like the set of the modes α, the set of the
modes α̃ is a complete and orthogonal basis for the field.
We can use the basis formed by the modes α̃ instead of the
basis formed by the modes α. We note that an evanescent
mode α = (ωKqj ) with j = 1 and k < K � kn1 has a single
input and a single output in the dielectric. Thus, we have
(ωKqj ) = (ωKqj̃ ) when j = 1 and k < K � kn1. In other
words, there is no difference between single-input evanescent
modes and single-output evanescent modes [see the left panels
of Figs. 1(b) and 1(c)].

III. SPONTANEOUS EMISSION RATE

We use the mode expansion approach and the Weisskopf-
Wigner formalism [59] to derive the microscopic dynamical
equations for spontaneous radiative decay of the atom. We first
study the time evolution of an arbitrary atomic operatorO. The
Heisenberg equation for this operator is

Ȯ =
∑

α

(Gα[σ †,O]aαe−i(ω−ω0)t + G∗
αa†

α[O,σ ]ei(ω−ω0)t ). (6)

Meanwhile, the Heisenberg equation for the photon anni-
hilation operator aα is ȧα = G∗

ασei(ω−ω0)t . Integrating this
equation, we find

aα(t) = aα(t0) + G∗
α

∫ t

t0

dt ′ σ (t ′)ei(ω−ω0)t ′ . (7)

Here, t0 is the initial time. For convenience, we take t0 = 0.
We consider the situation where the field is initially in the

vacuum state. We assume that the evolution time t − t0 and the
characteristic atomic lifetime τ are large as compared to the
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characteristic optical period T . Since the continuum of the field
modes is broadband, the correlation time of the field bath is
short as compared to the atomic lifetime τ . Hence, the Markov
approximation σ (t ′) = σ (t) can be applied to describe the back
action of the second term in Eq. (7) on the atom [59]. Under the
condition t − t0 	 T , we calculate the integral with respect
to t ′ in the limit t − t0 → ∞. We set aside the imaginary
part of the integral, which describes the frequency shift. Such
a shift is usually small. We can effectively account for it by
incorporating it into the atomic frequency and the surface-atom
potential. With the above approximations, we obtain

aα(t) = aα(t0) + πG∗
ασ (t)δ(ω − ω0). (8)

Inserting Eq. (8) into (6) yields the Heisenberg-Langevin
equation

Ȯ = γ

2
([σ †,O]σ + σ †[O,σ ]) + ξO. (9)

Here,

γ = 2π
∑

α

|Gα|2δ(ω − ω0) (10)

is the rate of spontaneous emission and ξO is the noise operator.
We emphasize that Eq. (9) can be applied to any atomic
operators. Due to the presence of the function δ(ω − ω0), all
the parameters needed for the calculation of the decay rate are
to be estimated at the frequency ω = ω0. We will adopt this
convention in what follows.

In the half-space x > 0, where the atom is restricted to, the
rate of spontaneous emission γ can be decomposed as

γ = γevan + γrad, (11)

where

γevan = 2π
∑

q=s,p

∫ k0n1

k0

K dK

∫ 2π

0
|Gω0Kq1|2 dφ (12)

is the rate of spontaneous emission into evanescent modes and

γrad = 2π
∑

q=s,p

∑
j=1,2

∫ k0

0
K dK

∫ 2π

0
|Gω0Kqj |2 dφ (13)

is the rate of spontaneous emission into radiation modes.
In the particular case where the atom is in free space, that

is, where n1 = n2 = 1, we have γevan = 0 and γ = γrad = γ0.
Here,

γ0 = ω3
0d

2
eg

3πε0�c3
(14)

is the natural linewidth of the two-level atom [59].
In the remaining part of this paper, we analyze the

consequences of expressions (10)–(13). We note that these
expressions, apart from a normalization constant equal to
γ0, can be obtained by using the model of an arbitrarily
polarized classical oscillating dipole. Consequently, the results
of the remaining part of this paper can be used not only for
spontaneous emission of a two-level atom with an arbitrarily
polarized dipole, but also for the rate enhancement factor
and the radiation pattern of an arbitrarily polarized classical
oscillating dipole. We emphasize that expression (14) cannot
be derived by using the classical formalism. In addition, Eq. (9)

stands for a two-level atom but not for a classical oscillating
dipole. This equation describes not only the decay of the atomic
level population inversion, but also the decay of the atomic
coherence.

A. Spontaneous emission into evanescent modes

The rate of spontaneous emission from the atom at a
position x > 0 into evanescent modes is

γevan = γ s
evan + γ p

evan, (15)

where the notation

γ q
evan = 2π

∫ k0n1

k0

K dK

∫ 2π

0
|Gω0Kq1|2 dφ (16)

with q = s,p stands for the rate of spontaneous emission into
the q-type evanescent modes.

We introduce the notation κ = K/k0, where k0 = ω0/c,
for the normalized magnitude of the in-plane component K
of the wave vector. In addition, we introduce the notation
ξ =

√
|1 − κ2| for the normalized magnitude of the out-of-

plane component β2x̂ of the wave vector in the half-space
x > 0. In the case of evanescent modes, we have β2 = ik0ξ ,

1 � κ � n1, and 0 � ξ = √
κ2 − 1 �

√
n2

1 − 1. In this case,
the parameter ξ determines the penetration length � = 1/k0ξ

of the evanescent mode in the half-space x > 0. We change
the integration variable of the first integral in Eq. (16) from K

to ξ . Then, we obtain

γevan = γ0

∫ √
n2

1−1

0
ξ dξ

∫ 2π

0
Fevan(ξ,φ) dφ,

γ q
evan = γ0

∫ √
n2

1−1

0
ξ dξ

∫ 2π

0
Fq

evan(ξ,φ) dφ,

(17)

where

Fevan = F s
evan + Fp

evan, (18)

with

F s
evan = 3

4πξ
Tse

−2ξk0x[|uy |2 sin2 φ + |uz|2 cos2 φ

− Re (u∗
yuz) sin 2φ] (19)

and

Fp
evan = 3

4πξ
Tpe−2ξk0x[|ux |2(1 + ξ 2) + |uy |2ξ 2 cos2 φ

+ |uz|2ξ 2 sin2 φ + Re (u∗
yuz)ξ

2 sin 2φ

+ 2ξ
√

1 + ξ 2 Im (u∗
xuy cos φ + u∗

xuz sin φ)]. (20)

Here, ux , uy , and uz are the Cartesian-coordinate components
of the unit vector u = deg/deg for the polarization of the dipole
matrix element deg . In Eqs. (19) and (20), we have introduced
the parameters Ts ≡ (ξ/2η)|t s12|2 and Tp ≡ (ξ/2η)|tp12|2, which
are proportional to the transmittivity of light coming from
medium 1 to medium 2. Here, we have used the notations t s12 =
2η/(η + iξ ), t

p

12 = 2n1η/(η + in2
1ξ ), and η ≡

√
n2

1 − κ2 =√
n2

1 − 1 − ξ 2. The explicit expressions for Ts and Tp in terms
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of ξ are given as

Ts =
2ξ

√
n2

1 − 1 − ξ 2

n2
1 − 1

,

Tp = 2n2
1

n2
1 − 1

ξ

√
n2

1 − 1 − ξ 2

(n2
1 + 1)ξ 2 + 1

. (21)

In the half-space x > 0, the wave vector of an evanescent
mode is (β2,Ky,Kz), where β2 = ik0ξ . The parameters ξ and
κ =

√
1 + ξ 2 and the angle φ characterize the components of

the complex wave vector (β2,Ky,Kz) of an evanescent mode
in the half-space x > 0 via the relations β2/k0 = iξ , Ky/k0 =
κy = κ cos φ, and Kz/k0 = κz = κ sin φ.

The functions F s
evan and F

p
evan are, respectively, the angular

densities of the spontaneous emission rates into the TE
evanescent modes μ = (ω0Ks1) and the TM evanescent modes
μ = (ω0Kp1), with k0 < K � k0n1, in the wave-vector space.
The function Fevan is the angular density of the spontaneous
emission rate into both s and p types of evanescent modes. In
the limit κ → 1, that is, K → k0, we have

lim
κ→1

Fevan = 3

2π

1√
n2

1 − 1

[
n2

1|ux |2 + |uy |2 sin2 φ

+ |uz|2 cos2 φ − Re (u∗
yuz) sin 2φ

]
. (22)

In the limit κ → κmax = n1, that is, K → Kmax = k0n1, the
rate density Fevan for evanescent modes tends to zero, that is,
we have limκ→κmax Fevan = 0.

In the half-space x < 0, the wave vector of an evanescent
mode is (β1,Ky,Kz), where β1 = k0η. Let θ be the angle
between the axis x and the wave vector (β1,Ky,Kz) of
the evanescent mode in the dielectric medium. This an-
gle is determined by the formulas n1 sin θ = κ =

√
1 + ξ 2

and n1 cos θ = −η for θ ∈ [π/2,π − arcsin(1/n1)]. We find
Fevan(ξ,φ)ξ dξ dφ = −Pevan(θ,φ) sin θ dθ dφ, where

Pevan = n1ηFevan = −n2
1 cos θFevan (23)

is the angular distribution of spontaneous emission into
evanescent modes with respect to the spherical angles θ and
φ. The explicit expression for Pevan can be easily obtained
by substituting Eq. (18) together with Eqs. (19) and (20) into
Eq. (23). In the particular case where the dipole polarization
vector u is real, this expression reduces to the result for the
far-field limit of the radiation pattern in the forbidden zone of
the dielectric [18].

As already pointed out in the previous section, an evanes-
cent mode μ = (ω0Kq1) with k0 < K � k0n1 has a single
input and a single output in the dielectric. Consequently, there
is no difference between single-input evanescent modes and
single-output evanescent modes.

The propagation direction of the evanescent mode in
the interface plane yz is characterized by the vector K =
(0,Ky,Kz). The transformation K → −K is done by the
transformation φ → φ + π . We observe that all the terms in
expression (19) are associated with the coefficients sin2 φ,
cos2 φ, and sin 2φ, which do not vary with respect to the
transformation φ → φ + π . Thus, the rate density F s

evan has
the same value for the s evanescent modes with the opposite

in-plane wave vectors K and −K. Meanwhile, the terms in the
last line of expression (20) contain the coefficients cos φ and
sin φ, which change their sign when we replace φ by φ + π .
This means that the rate density F

p
evan may take different values

for the p evanescent modes with the opposite in-plane wave
vectors K and −K. This asymmetry in spontaneous emission
occurs when either Im (u∗

xuy) or Im (u∗
xuz) is not zero, that

is, when the atomic dipole polarization vector u is a complex
vector and has a nonzero projection onto the axis x. The fact
that u is a complex vector means that the direction of the mean
dipole 〈D(t)〉 = deg〈uσ †eiω0t + u∗σe−iω0t 〉 of the atom rotates
with time in space. The asymmetry of spontaneous emission
into evanescent modes with respect to central inversion in the
interface plane is a consequence of the interference between
the emission from the out-of-plane dipole component ux and
the emission from the in-plane dipole components uy and uz

where ux has a phase lag with respect to uy or uz. When the
dipole polarization vector u is a real vector, the rate density
Fevan for evanescent modes is symmetric with respect to central
inversion in the interface plane. It is interesting to note that,
according to Eq. (22), in the limit κ → 1, the rate density Fevan

is symmetric with respect to central inversion in the interface
plane for an arbitrary dipole polarization vector u.

It is clear from Eqs. (19) and (20) that the difference
�Fevan ≡ Fevan(ξ,φ) − Fevan(ξ,φ + π ) between the rate den-
sities of spontaneous emission into the evanescent modes with
the opposite in-plane wave vectors K and −K is

�Fevan = 3

π

√
1 + ξ 2 Tpe−2ξk0x

× Im (u∗
xuy cos φ + u∗

xuz sin φ). (24)

We note that the sign (plus or minus) of the rate density
difference �Fevan for evanescent modes depends on the dipole
polarization vector u and the azimuthal angle φ of the in-plane
wave vector K in the yz plane. However, the sign of �Fevan

does not depend on the atom-interface distance x and the
evanescent-mode penetration parameter ξ . When the dipole
polarization vector u is a real vector, the rate density difference
for evanescent modes with opposite in-plane wave vectors is
�Fevan = 0.

The asymmetry degree of the angular density Fevan under
central inversion in the interface plane is characterized by
the factor ζFevan = �Fevan/F

sum
evan, where F sum

evan ≡ Fevan(ξ,φ) +
Fevan(ξ,φ + π ). It is clear that the asymmetry factor ζFevan

depends on ξ and φ. However, ζFevan does not depend on the
distance x.

We can easily show that

�Fevan = 3

8π

√
n2

1 − 1 − ξ 2
[u∗ × u] · [U∗

ω0Kp1 × Uω0Kp1].

(25)
We note that the vector i[u∗ × u] is the ellipticity vector
of the atomic dipole polarization. Meanwhile, the vector
−i[U∗

ω0Kp1 × Uω0Kp1] is proportional to the ellipticity vector
of the local electric polarization of the TM evanescent mode
μ = (ω0Kp1) with K > k0 at the position of the atom.
Equation (25) indicates that the difference �Fevan is a result
of the overlap between the ellipticity vector of the atomic
dipole polarization and the ellipticity vector of the local electric
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polarization of the TM evanescent mode μ = (ω0Kp1) with
K > k0. The electric part of the other evanescent mode, that is,
the TE mode μ = (ω0Ks1) with K > k0, is linearly polarized
in the half-space x > 0. This mode does not contribute to
�Fevan.

Consider a light field with the electric component E =
(Ee−iωt + c.c.)/2, where E = Eε is the envelope of the
positive-frequency component, with E being the amplitude
and ε being the polarization vector. It is known that the
local electric spin density S of the light field is related to the
ellipticity vector −i[ε∗ × ε] = Im [ε∗ × ε] of the local electric
polarization via the formula

S = ε0

4ω
Im[E∗ × E] = ε0

4ω
|E |2Im[ε∗ × ε]. (26)

It follows from Eqs. (25) and (26) that

�Fevan = 3ω0

2πε0

√
n2

1 − 1 − ξ 2
i[u∗ × u] · Sω0Kp1, (27)

where Sω0Kp1 is the local electric spin density of the field
in the TM evanescent mode μ = (ω0Kp1) with the in-plane
wave number K > k0 and the positive-frequency-component
envelope Eω0Kp1 = Uω0Kp1. In the half-space x > 0, where
the atom is located, the electric polarization vector of the TM
evanescent mode μ = (ωKp1) with K > k is

εωKp1 = κ x̂ − iξK̂√
κ2 + ξ 2

. (28)

The ellipticity vector of the electric polarization of the field is
found to be

Im[ε∗
ωKp1 × εωKp1] = 2

ξ
√

1 + ξ 2

1 + 2ξ 2
[K̂ × x̂], (29)

which leads to the local electric spin density

SωKp1 = ε0

ω

2n2
1

n2
1 − 1

n2
1 − 1 − ξ 2

(n2
1 + 1)ξ 2 + 1

ξ
√

1 + ξ 2 e−2ξkx[K̂ × x̂].

(30)
We note that [K̂ × x̂] = ŷ sin φ − ẑ cos φ.

It follows from Eqs. (28) and (29) that the ellipticity of the
local electric polarization of the TM evanescent mode μ =
(ωKp1) with K > k arises as a consequence of the fact that
field in the TM evanescent mode has a longitudinal component
that is aligned along the in-plane wave vector K. The phase
of this component is shifted by π/2 from the phase of the
transverse component that is aligned along the axis x.

Equation (30) shows that the local electric spin density
vector SωKp1 is perpendicular to the in-plane wave vector K
and the axis x. In addition, a reverse of the vector K leads to a
reverse of the vector SωKp1. This is a signature of the so-called
spin-orbit interaction of light [36–40]. Thus, the difference
between the rates of spontaneous emission into the evanescent
modes with the opposite in-plane propagation directions K and
−K is a consequence of spin-orbit coupling of light.

We observe from Eqs. (27) and (30) that the local electric
spin density Sω0Kp1 of the TM evanescent mode μ = (ω0Kp1)
with K > k0 and, consequently, the rate difference �Fevan

for evanescent modes with opposite in-plane propagation
directions reduce exponentially with increasing distance x

from the atom to the dielectric surface. For x = 0, the
magnitudes of Sω0Kp1 and �Fevan achieve their maximum
values, which depend on ξ . In the limit ξ → 0, that is, κ → 1,
we have Sω0Kp1 = 0 and, hence, �Fevan = 0.

In order to get deep insight into the underlying physics
of asymmetry between the rates of spontaneous emission
into opposite in-plane propagation directions, we perform the
following general tensor analysis: It is clear that the rate γα

of spontaneous emission into a mode α with the mode profile
function e(α) is proportional to the quantity |deg · e(α)|2, that is,

γα = Nα|deg · e(α)|2, (31)

where Nα is a parameter that does not depend on the relative
orientation between deg and e(α). It follows from Eq. (A8) of
the Appendix that we can decompose the rate γα as

γα = γ (0)
α + γ (1)

α + γ (2)
α , (32)

where

γ (0)
α = Nα

3
|deg|2|e(α)|2, (33a)

γ (1)
α = Nα

2
[d∗

eg × deg] · [e(α)∗ × e(α)], (33b)

γ (2)
α = Nα{d∗

eg ⊗ deg}2 · {e(α)∗ ⊗ e(α)}2. (33c)

In Eq. (33c), the notation {A∗ ⊗ A}2 stands for the tensor
product of rank 2 of the complex vectors A∗ and A. The
quantities γ (0)

α , γ (1)
α , and γ (2)

α are called the scalar, vector, and
tensor components of the rate γα , respectively.

According to Eq. (33a), the scalar component γ (0)
α of the

spontaneous emission rate does not depend on the orientations
and circulations of the atomic dipole matrix element vector
deg as well as the orientations and circulations of the field
mode profile vector e(α). This component is the spontaneous
emission rate averaged over the orientation of the dipole matrix
element vector deg in space.

According to Eq. (33b), the vector component γ (1)
α of the

spontaneous emission rate depends on the overlap between
the vectors i[d∗

eg × deg] and −i[e(α)∗ × e(α)], which are pro-
portional to the ellipticity vector of the atomic electric dipole
polarization and the ellipticity vector of the electric field po-
larization, respectively. The vector i[d∗

eg × deg] characterizes
an effective magnetic dipole produced by the rotation of the
electric dipole, and is responsible for the vector polarizability
of the atom. The vector −i[e(α)∗ × e(α)] characterizes an
effective magnetic field and is responsible for the local electric
spin density of light. The vector component γ (1)

α of the rate
can be considered as a result of the interaction between the
effective magnetic dipole and the effective magnetic field.
Due to spin-orbit coupling of light [36–40], a reverse of the
propagation direction leads to a reverse of the spin density of
light and, consequently, to a reverse of the vector component
γ (1)

α of the spontaneous emission rate.
According to Eq. (33c), the tensor component γ (2)

α of the
spontaneous emission rate depends on the scalar product of
the irreducible tensors {d∗

eg ⊗ deg}2 and {e(α)∗ ⊗ e(α)}2 for the
atomic dipole and the field mode profile, respectively. The
tensor {d∗

eg ⊗ deg}2 is responsible for the tensor polarizability
of the atom. In general, {e(α)∗ ⊗ e(α)}2 and, hence γ (2)

α depend

043828-6



SPONTANEOUS EMISSION OF A TWO-LEVEL ATOM WITH . . . PHYSICAL REVIEW A 93, 043828 (2016)

on the azimuthal angle φ of the in-plane wave vector K
in the yz plane. We can show that, for the evanescent
modes, in the half-space x > 0, the tensor {e(α)∗ ⊗ e(α)}2

and, hence, the tensor component γ (2)
α of the rate γα do not

change when we reverse the direction of the in-plane wave
vector K.

We now calculate the rates of spontaneous emission into
evanescent modes propagating into separate sides of a plane
containing the axis x, on which the atom is located. Without
loss of generality, we choose the plane xy. The rates γ (+)

evan
and γ (−)

evan of spontaneous emission into evanescent modes
propagating into the +z and −z sides, respectively, are given
by

γ (+)
evan = γ0

∫ √
n2

1−1

0
ξ dξ

∫ π

0
Fevan(ξ,φ) dφ,

γ (−)
evan = γ0

∫ √
n2

1−1

0
ξ dξ

∫ 2π

π

Fevan(ξ,φ) dφ. (34)

We find

γ (+)
evan = γevan

2
+ �evan

2
,

γ (−)
evan = γevan

2
− �evan

2
,

(35)

where

γevan = 3

4
γ0

∫ √
n2

1−1

0
{(1 − |ux |2)Ts(ξ )

+ [|ux |2(2 + ξ 2) + ξ 2]Tp(ξ )}e−2ξk0xdξ (36)

is the rate of spontaneous emission into evanescent modes in
all directions [10,11,18] and

�evan = 6

π
γ0 Im (u∗

xuz)
∫ √

n2
1−1

0
ξ
√

1 + ξ 2 Tp(ξ )e−2ξk0x dξ

(37)

is the difference between the rate components γ (+)
evan and γ (−)

evan
for the opposite sides +z and −z, respectively. It is clear
from Eq. (37) that the rate difference �evan depends on the
imaginary part of the cross term u∗

xuz, that is, on the ellipticity
of the polarization of the atomic dipole vector in the xz

plane. Meanwhile, Eq. (36) shows that the rate γevan for all
evanescent modes does not depend on the ellipticity of the
dipole polarization. We note that the sign (plus or minus) of the
rate difference �evan for evanescent modes is determined by the
sign of Im (u∗

xuz) and, hence, does not depend on the distance
x. In the limit x → ∞, we have γevan → 0 and �evan → 0.
When the dipole polarization vector u is a real vector, the rate
difference for evanescent modes propagating into the opposite
sides +z and −z is �evan = 0.

The asymmetry between the rates γ (+)
evan and γ (−)

evan for the
+z and −z sides, respectively, is characterized by the factor
ζevan = �evan/γevan. It is interesting to note that, unlike the
asymmetry factor ζFevan for the angular rate densities Fevan(ξ,φ)
and Fevan(ξ,φ + π ), the asymmetry factor ζevan for the side
rates γ (+)

evan and γ (−)
evan depends on the distance x. The reason

is that, according to Eqs. (37) and (36), the difference �evan

between and the sum γevan of the side rates γ (+)
evan and γ (−)

evan are

given by different integrals over the variable ξ . The kernels of
these integrals are different from each other although they
contain a common exponential factor e−2ξk0x . Due to the
integration over ξ , the x dependence of �evan is different
from that of γevan. Consequently, the asymmetry factor ζevan =
�evan/γevan for the side rates γ (+)

evan and γ (−)
evan is a function of the

distance x.
In the particular case where the dipole matrix element vector

deg is perpendicular to the interface, we obtain [10,11,18]

γevan = γ ⊥
evan = 3

2
γ0

∫ √
n2

1−1

0
T⊥(ξ )e−2ξk0xdξ, (38)

and, in the particular case where the dipole matrix element
vector deg lies in the interface plane yz, we find [10,11,18]

γevan = γ ‖
evan = 3

4
γ0

∫ √
n2

1−1

0
T‖(ξ )e−2ξk0xdξ. (39)

Here, we have introduced the parameters T⊥ = (1 + ξ 2)Tp and
T‖ = Ts + ξ 2Tp, whose explicit expressions are

T⊥ = 2n2
1

n2
1 − 1

√
n2

1 − 1 − ξ 2

(n2
1 + 1)ξ 2 + 1

ξ (1 + ξ 2),

T‖ = 2

n2
1 − 1

[
1 + n2

1ξ
2

(n2
1 + 1)ξ 2 + 1

]
ξ

√
n2

1 − 1 − ξ 2. (40)

In both cases, we have �evan = 0.

B. Spontaneous emission into radiation modes

The rate of spontaneous emission from the atom at a
position x > 0 into radiation modes is

γrad =
∑

q=s,p

∑
j=1,2

γ
qj

rad, (41)

where the notation

γ
qj

rad = 2π

∫ k0

0
K dK

∫ 2π

0

∣∣Gω0Kqj

∣∣2
dφ (42)

with q = s,p and j = 1,2 stands for the rate of spontaneous
emission into the qj -type radiation modes.

We again use the notation κ = K/k0 for the normalized
magnitude of the in-plane component K of the wave vector
and the notation ξ =

√
|1 − κ2| for the normalized magnitude

of the out-of-plane component β2x̂ of the wave vector in the
half-space x > 0. For radiation modes, we have β2 = k0ξ , 0 �
κ � 1, and 0 � ξ = √

1 − κ2 � 1. We change the integration
variable of the first integral in Eq. (42) from K to ξ . Then, we
obtain

γrad = γ0

∫ 1

0
ξ dξ

∫ 2π

0
Frad(ξ,φ) dφ,

γ
qj

rad = γ0

∫ 1

0
ξ dξ

∫ 2π

0
F

qj

rad(ξ,φ) dφ,

(43)

where

Frad =
∑

q=s,p

∑
j=1,2

F
qj

rad, (44)
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with

F s1
rad = 3

8πξ

(
1 − r2

s

)
[|uy |2 sin2 φ + |uz|2 cos2 φ

− Re (u∗
yuz) sin 2φ], (45)

F s2
rad = 3

8πξ

[
1 + r2

s + 2rs cos(2ξk0x)
]
[|uy |2 sin2 φ

+ |uz|2 cos2 φ − Re (u∗
yuz) sin 2φ], (46)

F
p1
rad = 3

8πξ

{(
1 − r2

p

)
[|ux |2(1 − ξ 2) + |uy |2ξ 2 cos2 φ

+ |uz|2ξ 2 sin2 φ + Re (u∗
yuz)ξ

2 sin 2φ]

− 2
(
1 − r2

p

)
ξ
√

1 − ξ 2 Re (u∗
xuy cos φ + u∗

xuz sin φ)
}
,

(47)

and

F
p2
rad = 3

8πξ

{(
1 + r2

p

)
[|ux |2(1 − ξ 2) + |uy |2ξ 2 cos2 φ

+ |uz|2ξ 2 sin2 φ + Re (u∗
yuz)ξ

2 sin 2φ]

+ 2
(
1 − r2

p

)
ξ
√

1 − ξ 2 Re (u∗
xuy cos φ + u∗

xuz sin φ)
}

+ 3

4πξ
rp{cos(2ξk0x)[|ux |2(1 − ξ 2) − |uy |2ξ 2 cos2 φ

− |uz|2ξ 2 sin2 φ − Re (u∗
yuz)ξ

2 sin 2φ]

+ 2ξ
√

1 − ξ 2 sin(2ξk0x)

× Im (u∗
xuy cos φ + u∗

xuz sin φ)}. (48)

Here, we have introduced the notations rs ≡ rs
21 = (ξ −

η)/(ξ + η) and rp ≡ r
p

21 = (n2
1ξ − η)/(n2

1ξ + η) for the reflec-
tion coefficients of light coming from medium 2 to medium 1,

where η ≡
√

n2
1 − κ2 =

√
n2

1 − 1 + ξ 2. The explicit expres-
sions for the reflection coefficients rs and rp are given in terms
of ξ as

rs =
ξ −

√
n2

1 − 1 + ξ 2

ξ +
√

n2
1 − 1 + ξ 2

,

rp =
n2

1ξ −
√

n2
1 − 1 + ξ 2

n2
1ξ +

√
n2

1 − 1 + ξ 2
. (49)

In the half-space x > 0, the wave vector of a radiation mode
is (β2,Ky,Kz), where β2 = k0ξ . The parameters ξ and κ =√

1 − ξ 2 and the angle φ characterize the components of the
wave vector (β2,Ky,Kz) of a radiation mode in the half-space
x > 0 via the relations β2/k0 = ξ , Ky/k0 = κy = κ cos φ, and
Kz/k0 = κz = κ sin φ.

The functions F
sj

rad and F
pj

rad are, respectively, the angular
densities of the spontaneous emission rates into the radiation
modes ν = (ω0Ksj ) and (ω0Kpj ), with 0 � K � k0, in the
wave-vector space. The function Frad is the angular density
of the spontaneous emission rate into both s and p types of

radiation modes. In the limit κ → 1, that is, K → k0, we have

lim
κ→1

Frad = 3

2π

1√
n2

1 − 1

[
n2

1|ux |2 + |uy |2 sin2 φ

+ |uz|2 cos2 φ − Re (u∗
yuz) sin 2φ

]
. (50)

Comparison between Eqs. (50) and (22) confirms that
limκ→1 Frad = limκ→1 Fevan.

We introduce the notations F s
rad = F s1

rad + F s2
rad and F

p

rad =
F

p1
rad + F

p2
rad , which are the angular densities of the spontaneous

emission rates into the radiation modes of the s and p types,
respectively. We find

F s
rad = 3

4πξ
[1 + rs cos(2ξk0x)][|uy |2 sin2 φ + |uz|2 cos2 φ

− Re (u∗
yuz) sin 2φ] (51)

and

F
p

rad = 3

4πξ
[|ux |2(1 − ξ 2) + |uy |2ξ 2 cos2 φ

+ |uz|2ξ 2 sin2 φ + Re (u∗
yuz)ξ

2 sin 2φ]

+ 3

4πξ
rp{cos(2ξk0x)[|ux |2(1 − ξ 2) − |uy |2ξ 2 cos2 φ

− |uz|2ξ 2 sin2 φ − Re (u∗
yuz)ξ

2 sin 2φ]

+ 2ξ
√

1−ξ 2 sin(2ξk0x) Im (u∗
xuy cos φ + u∗

xuz sin φ)}.
(52)

It is clear that Frad = F s
rad + F

p

rad.
The mode function Uα , given by Eqs. (1) and (2), describes

the mode α = (ωKqj ), which has a single input incident
from medium j to the interface. The function Uα̃ = U∗

α

describes the mode α̃ = (ω, − K,q,j̃ ), which has a single
output coming from the interface into medium j . The density

F
qj̃

rad of the rate of spontaneous emission into a single-output
mode (ωKqj̃ ) can be obtained from that for the single-input
mode (ω, − K,q,j ) by replacing the dipole polarization vector
u with its complex-conjugate vector u∗, that is, by applying
the transformation T = (u → u∗,φ → φ + π ) to F

qj

rad. The
transformation T does not change the rate density functions
F

sj

rad [see Eqs. (45) and (46)], F s
rad [see Eq. (51)], F

p

rad [see
Eq. (52)], and Frad. However, the transformation T reverses
the sign of the term in the last line of Eq. (47) and the term
in the third line of Eq. (48) for F

p1
rad and F

p2
rad , respectively.

These terms cancel each other and therefore do not appear
in the expressions for F

p

rad and Frad. Thus, the functions F
sj

rad,
F s

rad, F
p

rad, and Frad describe the distributions of the emission
rates not only for single-input modes, but also for single-output
modes.

We observe that all the terms in expression (51) are
associated with the coefficients sin2 φ, cos2 φ, and sin 2φ,
which do not vary with respect to the transformation φ →
φ + π . Hence, the rate density F s

rad for the TE radiation modes
has the same value for the opposite in-plane propagation
directions K and −K. Meanwhile, the terms in the last line of
expression (52) contain the coefficients cos φ and sin φ, which
change their sign when we replace φ by φ + π . Hence, the rate
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density F
p

rad for the TM radiation modes may take different
values for the opposite in-plane propagation directions K and
−K. This asymmetry in spontaneous emission occurs when
either Im (u∗

xuy) or Im (u∗
xuz) is not zero, that is, when the

atomic dipole polarization vector u is a complex vector in
a plane containing the axis x. As already mentioned, the
fact that u is a complex vector means that the direction
of the dipole of the atom rotates with time in space. The
asymmetry of spontaneous emission into radiation modes with
respect to central inversion in the interface plane appears as a
consequence of the interference between the emission from the
out-of-plane dipole component ux and the emission from the
in-plane dipole components uy and uz where ux has a phase
lag with respect to uy or uz. When the dipole polarization
vector u is a real vector, the rate density Frad for radiation
modes is symmetric with respect to central inversion in the
interface plane. We note that, according to Eq. (50), in the
limit κ → 1, the rate density Frad is symmetric with respect to
central inversion in the interface plane for an arbitrary dipole
polarization vector u.

It is clear from Eqs. (51) and (52) that the difference
�Frad ≡ Frad(ξ,φ) − Frad(ξ,φ + π ) between the rate densities
Frad(ξ,φ) and Frad(ξ,φ + π ) of spontaneous emission into the
radiation modes with the opposite in-plane wave vectors K
and −K is

�Frad = 3

π

√
1 − ξ 2 rp sin(2ξk0x)

× Im (u∗
xuy cos φ + u∗

xuz sin φ). (53)

We note that the sign (plus or minus) of the rate density
difference �Frad for radiation modes depends on not only
the dipole polarization vector u and the emission azimuthal
angle φ but also on the atom-interface distance x and the
out-of-plane wave-vector-component parameter ξ . When the
dipole polarization vector u is a real vector, the rate density
difference for radiation modes with opposite in-plane wave
vectors is �Frad = 0.

The asymmetry degree of the angular density Frad under
central inversion in the interface plane is characterized by
the factor ζFrad = �Frad/F

sum
rad , where F sum

rad ≡ Frad(ξ,φ) +
Frad(ξ,φ + π ). It is clear that the asymmetry factor ζFrad

depends on not only ξ and φ but also x.
We can easily show that

�Frad = 3

8πξ
[u∗ × u] · [U∗

ω0Kp2 × Uω0Kp2
]
. (54)

As already mentioned, the vector i[u∗ × u] is the ellipticity
vector of the atomic dipole polarization. Meanwhile, the vector
−i[U∗

ω0Kp2 × Uω0Kp2] is proportional to the ellipticity vector
of the electric polarization and, consequently, to the electric
spin density vector of the TM radiation mode ν = (ω0Kp2)
at the position of the atom. Equation (54) indicates that
the difference �Frad is a result of the overlap between the
ellipticity vector of the atomic dipole polarization and the
ellipticity vector of the local electric polarization of the TM
radiation mode ν = (ω0Kp2). The electric parts of the other
radiation modes, that is, the modes ν = (ω0Ks1), (ω0Ks2), and
(ω0Kp1), with K � k0, are linearly polarized in the half-space
x > 0. These modes do not contribute to �Frad.

Comparison between Eqs. (54) and (26) shows that

�Frad = 3ω0

2πε0ξ
i[u∗ × u] · Sω0Kp2, (55)

where Sω0Kp2 is the local electric spin density of the field in the
TM radiation mode ν = (ω0Kp2) with the positive-frequency-
component envelope Eω0Kp2 = Uω0Kp2. In the half-space x >

0, where the atom is located, the electric polarization vector of
the TM radiation mode ν = (ωKp2) is

εωKp2 = 1√
Z

[κ x̂ + ξK̂ + rpe2iξkx(κ x̂ − ξK̂)], (56)

where Z = 1 + r2
p + 2rp(1 − 2ξ 2) cos(2ξkx). The ellipticity

vector of the electric polarization of the mode is found to be

Im[ε∗
ωKp2 × εωKp2] = 4

Z
ξ
√

1 − ξ 2 rp sin(2ξkx)[K̂ × x̂],

(57)

which leads to the local electric spin density

SωKp2 = ε0

ω
ξ
√

1 − ξ 2
n2

1ξ −
√

n2
1 − 1 + ξ 2

n2
1ξ +

√
n2

1 − 1 + ξ 2
sin(2ξkx)[K̂ × x̂].

(58)

We note that [K̂ × x̂] = ŷ sin φ − ẑ cos φ.
It follows from Eqs. (56) and (57) that the ellipticity

of the local electric polarization of the TM radiation mode
ν = (ωKp2) arises as a consequence of the change of the
polarization vector from κ x̂ + ξK̂ to κ x̂ − ξK̂ due to the
reflection, the additional phase 2ξkx of the reflected beam
due to a round trip between the point x and the interface,
and the interference between the incident and reflected beams.
We note that the reflection leads to a change of the electric
polarization vector in the case where the electric component
of the field lies in the incidence plane, that is, the case of p

modes.
Equation (58) shows that the local electric spin density

vector SωKp2 is perpendicular to the in-plane wave vector K
and the axis x. In addition, a reverse of the vector K leads to
a reverse of the vector SωKp2. This is a signature of spin-orbit
coupling of light [36–40]. Thus, the difference between the
rates of spontaneous emission into the radiation modes with
the opposite in-plane propagation directions K and −K is a
consequence of spin-orbit coupling of light [36–40], like in
the case of evanescent modes.

We observe from Eqs. (58) and (55) that the local electric
spin density Sω0Kp2 of the TM radiation mode ν = (ω0Kp2)
and, consequently, the rate difference �Frad for radiation
modes with opposite in-plane propagation directions oscillate
as sin(2ξk0x) with increasing distance x from the atom to
the dielectric surface. For x = 0, we have Sω0Kp2 = 0 and,
hence, �Frad = 0. This result is in contrast to the result for the
case of evanescent modes, where the magnitudes of the spin
density Sω0Kp1 for the TM evanescent mode μ = (ω0Kp1)
with K > k0 and, hence, the rate difference �Fevan achieve
their maximum values at the interface. The explanation for
the fact that �Frad = 0 at x = 0 is simple. Indeed, at the
interface, the relative phase between the incident light and
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the reflected light is just the phase of the reflection coefficient
rp. This phase is equal to 0 or π when the incidence angle
θ = arccos(ξ ) is smaller or larger than the Brewster angle
θB = arctan(n1), respectively. Due to this fact, the ellipticity
of the local electric polarization of the TM radiation mode
ν = (ω0Kp2) and, hence, the rate density difference �Frad

vanishes at x = 0.
We now calculate the rates of spontaneous emission into

radiation modes propagating into separate sides of a plane
containing the axis x. To be specific, we choose again the plane
xy, as in the case of evanescent modes. The rates γ

(+)
rad and γ

(−)
rad

of spontaneous emission into radiation modes propagating into
the +z and −z sides, respectively, are given by

γ
(+)
rad = γ0

∫ 1

0
ξ dξ

∫ π

0
Frad(ξ,φ) dφ,

γ
(−)
rad = γ0

∫ 1

0
ξ dξ

∫ 2π

π

Frad(ξ,φ) dφ. (59)

We can show that

γ
(+)
rad = γrad

2
+ �rad

2
,

γ
(−)
rad = γrad

2
− �rad

2
,

(60)

where

γrad = γ0 + 3

4
γ0

∫ 1

0
{(1 − |ux |2)rs(ξ )

+ [|ux |2(2 − ξ 2) − ξ 2]rp(ξ )} cos(2ξk0x) dξ (61)

is the rate of spontaneous emission into radiation modes in all
directions [10,11,18] and

�rad = 6

π
γ0 Im (u∗

xuz)
∫ 1

0
ξ
√

1 − ξ 2 rp(ξ ) sin(2ξk0x) dξ

(62)

is the difference between the rate components γ
(+)
rad and γ

(−)
rad

for the opposite sides +z and −z, respectively. It is clear from
Eq. (62) that, like the rate difference �evan for evanescent
modes, the rate difference �rad for radiation modes depends
on the imaginary part of the cross term u∗

xuz, that is, on the
ellipticity of the polarization of the atomic dipole vector in the
xz plane. Meanwhile, Eq. (61) shows that, like the rate γevan

for evanescent modes, the rate γrad for radiation modes does
not depend on the ellipticity of the dipole polarization. We
note that the sign (plus or minus) of the rate difference �rad

for radiation modes depends on the distance x. In the limit
x → ∞, we have γrad → γ0 and �rad → 0. When the dipole
polarization vector u is a real vector, the rate difference for
radiation modes propagating into the opposite sides +z and
−z is �rad = 0.

The asymmetry between the rates γ
(+)
rad and γ

(−)
rad for the

+z and −z sides, respectively, is characterized by the factor
ζrad = �rad/γrad. It is clear that the asymmetry factor ζrad for
the side rates γ

(+)
rad and γ

(−)
rad reduces to zero in the limit x → ∞.

In the particular case where the dipole matrix element vector
deg is perpendicular to the interface, we obtain [10,11,18]

γrad = γ ⊥
rad = γ0 + 3

2
γ0

∫ 1

0
r⊥(ξ ) cos(2ξk0x)dξ (63)

and, in the particular case where the dipole matrix element
vector deg lies in the interface plane yz, we find [10,11,18]

γrad = γ
‖
rad = γ0 + 3

4
γ0

∫ 1

0
r‖(ξ ) cos(2ξk0x)dξ. (64)

Here, we have introduced the parameters r⊥ = (1 − ξ 2)rp and
r‖ = rs − ξ 2rp, whose explicit expressions are

r⊥ = (1 − ξ 2)
n2

1ξ −
√

n2
1 − 1 + ξ 2

n2
1ξ +

√
n2

1 − 1 + ξ 2
,

r‖ =
ξ −

√
n2

1 − 1 + ξ 2

ξ +
√

n2
1 − 1 + ξ 2

− ξ 2
n2

1ξ −
√

n2
1 − 1 + ξ 2

n2
1ξ +

√
n2

1 − 1 + ξ 2
. (65)

In both cases, we have �rad = 0. The terms that contain the
integrals in Eqs. (63) and (64) are the results of the interference
between the emitted and reflected fields.

In order to derive the rates γ (+) = γ (+)
evan + γ

(+)
rad and γ (−) =

γ (−)
evan + γ

(−)
rad of spontaneous emission into both evanescent and

radiation types of modes propagating into the +z and −z sides,
respectively, we sum up Eqs. (35) and (60). Then, we obtain

γ (+) = γ

2
+ �

2
,

γ (−) = γ

2
− �

2
,

(66)

where

γ = γ0 + 3

4
γ0

∫ √
n2

1−1

0
{(1 − |ux |2)Ts(ξ )

+ [|ux |2(2 + ξ 2) + ξ 2]Tp(ξ )}e−2ξk0xdξ

+ 3

4
γ0

∫ 1

0
{(1 − |ux |2)rs(ξ )

+ [|ux |2(2 − ξ 2) − ξ 2]rp(ξ )} cos(2ξk0x) dξ (67)

is the total rate of spontaneous emission [10,11,18] and

� = 6

π
γ0 Im (u∗

xuz)

[∫ √
n2

1−1

0
ξ
√

1 + ξ 2 Tp(ξ )e−2ξk0x dξ

+
∫ 1

0
ξ
√

1 − ξ 2 rp(ξ ) sin(2ξk0x) dξ

]
(68)

is the difference between the rate components γ (+) and γ (−) for
the opposite sides +z and −z, respectively. When the dipole
polarization vector u is a real vector, the difference between the
rates of spontaneous emission into the combined sets of both
evanescent and radiation types of modes propagating into the
opposite sides +z and −z is � = 0. The asymmetry between
the rates γ (+) and γ (−) of directional spontaneous emission
into both types of modes is characterized by the parameter
ζ = �/γ .
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C. Spontaneous emission into radiation modes with outputs
on a given side of the interface

The function Fevan, calculated in Sec. III A, is the density of
the rate of spontaneous emission into evanescent modes, which
have outputs in the dielectric. The function Frad, calculated in
Sec. III B, is the density of the rate of spontaneous emission
into radiation modes with outputs on both sides of the interface.
In this section, we consider the densities of the rates of
spontaneous emission into radiation modes with outputs on
a given side of the interface.

Let F mat
rad and F vac

rad be the angular densities of the rates of
spontaneous emission into the radiation modes with outputs in
the dielectric and the vacuum, respectively. The functions F mat

rad
and F vac

rad are determined as the results of the application of the
transformation T = (u → u∗,φ → φ + π ) to the functions
F

(1)
rad and F

(2)
rad , respectively. Here, we have introduced the

notations F
(1)
rad = F s1

rad + F
p1
rad and F

(2)
rad = F s2

rad + F
p2
rad for the

angular densities of the spontaneous emission rates into the
radiation modes with single inputs incident from medium 1
and medium 2 to the interface, respectively. When we perform
the above-described procedure, we get

F mat
rad = 3

8πξ

(
1 − r2

s

)
[|uy |2 sin2 φ + |uz|2 cos2 φ

− Re (u∗
yuz) sin 2φ]

+ 3

8πξ

{(
1 − r2

p

)
[|ux |2(1 − ξ 2) + |uy |2ξ 2 cos2 φ

+ |uz|2ξ 2 sin2 φ + Re (u∗
yuz)ξ

2 sin 2φ]

+ 2
(
1 − r2

p

)
ξ
√

1 − ξ 2 Re (u∗
xuy cos φ + u∗

xuz sin φ)
}

(69)

and

F vac
rad = 3

8πξ

[
1 + r2

s + 2rs cos(2ξk0x)
]
[|uy |2 sin2 φ

+ |uz|2 cos2 φ − Re (u∗
yuz) sin 2φ]

+ 3

8πξ

{(
1 + r2

p

)
[|ux |2(1 − ξ 2) + |uy |2ξ 2 cos2 φ

+ |uz|2ξ 2 sin2 φ + Re (u∗
yuz)ξ

2 sin 2φ]

− 2
(
1 − r2

p

)
ξ
√

1 − ξ 2 Re (u∗
xuy cos φ + u∗

xuz sin φ)
}

+ 3

4πξ
rp{cos(2ξk0x)[|ux |2(1 − ξ 2) − |uy |2ξ 2 cos2 φ

− |uz|2ξ 2 sin2 φ − Re (u∗
yuz)ξ

2 sin 2φ]

+ 2ξ
√

1 − ξ 2 sin(2ξk0x)

× Im (u∗
xuy cos φ + u∗

xuz sin φ)}. (70)

According to Eq. (69), the angular density F mat
rad of the

rate of spontaneous emission into the radiation modes with
outputs in the dielectric does not depend on the atom-interface
distance x.

The differences �F mat
rad ≡ F mat

rad (ξ,φ) − F mat
rad (ξ,φ + π ) and

�F vac
rad ≡ F vac

rad (ξ,φ) − F vac
rad (ξ,φ + π ) are found from Eqs. (69)

and (70) to be

�F mat
rad = 3

2π

√
1 − ξ 2

(
1 − r2

p

)
× Re (u∗

xuy cos φ + u∗
xuz sin φ) (71)

and

�F vac
rad = − 3

2π

√
1 − ξ 2

(
1 − r2

p

)
× Re (u∗

xuy cos φ + u∗
xuz sin φ)

+ 3

π

√
1 − ξ 2 rp sin(2ξk0x)

× Im (u∗
xuy cos φ + u∗

xuz sin φ). (72)

It is clear that �F mat
rad + �F vac

rad = �Frad, where �Frad is given
by Eq. (53).

According to Eq. (71), the difference �F mat
rad between

the rate densities of spontaneous emission into the radiation
modes outgoing into the dielectric with opposite in-plane wave
vectors does not depend on the atom-interface distance x.
This difference is associated with the coefficients Re (u∗

xuy)
and Re (u∗

xuz). It can be nonzero when the atomic dipole
polarization vector is a real vector tilted with respect to the
axis x and to the interface plane yz. Thus, �F mat

rad is just the
result of the geometric asymmetry of the orientation of the
dipole vector with respect to the interface plane.

Equation (72) shows that the difference �F vac
rad for the radia-

tion modes with outputs in the vacuum has two contributions:
one is associated with the coefficient 1 − r2

p and the other
one is associated with the coefficient rp. The first contribution
is equal to −�F mat

rad and is caused by the asymmetry of the
orientation of the dipole vector with respect to the interface
plane. The second contribution is equal to �Frad and is related
to spin-orbit coupling of light [36–40].

We introduce the notations γ
mat(+)
rad = γ0

∫ 1
0 ξ dξ

∫ π

0 F mat
rad dφ

and γ
mat(−)
rad = γ0

∫ 1
0 ξ dξ

∫ 2π

π
F mat

rad dφ for the rates of sponta-
neous emission into the radiation modes outgoing into the +z

and −z sides, respectively, of the dielectric half-space and,
similarly, the notations γ

vac(+)
rad = γ0

∫ 1
0 ξ dξ

∫ π

0 F vac
rad dφ and

γ
vac(−)
rad = γ0

∫ 1
0 ξ dξ

∫ 2π

π
F vac

rad dφ for the rates of spontaneous
emission into the radiation modes outgoing into the +z and
−z sides, respectively, of the vacuum half-space. We find

γ
mat(±)
rad = γ mat

rad

2
± �mat

rad

2
,

γ
vac(±)
rad = γ vac

rad

2
± �vac

rad

2
. (73)

Here, we have introduced the notations [18]

γ mat
rad = γ0

2
− 3

8
γ0

∫ 1

0

{
(1 − |ux |2)r2

s (ξ )

+ [|ux |2(2 − 3ξ 2) + ξ 2]r2
p(ξ )

}
dξ (74)

and

γ vac
rad = γ0

2
+ 3

8
γ0

∫ 1

0

{
(1 − |ux |2)r2

s (ξ )

+ [|ux |2(2 − 3ξ 2) + ξ 2]r2
p(ξ )

}
dξ
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+ 3

4
γ0

∫ 1

0

{
(1 − |ux |2)rs(ξ )

+ [|ux |2(2 − ξ 2) − ξ 2]rp(ξ )
}

cos(2ξk0x) dξ (75)

for the rates of spontaneous emission into the radiation modes
with outputs in the dielectric and the vacuum, respectively. We
have also introduced the notations

�mat
rad = 1

π
γ0 Re (u∗

xuz)

[
1 − 3

∫ 1

0
ξ
√

1 − ξ 2 r2
p(ξ )dξ

]
(76)

and

�vac
rad = − 1

π
γ0 Re (u∗

xuz)

[
1 − 3

∫ 1

0
ξ
√

1 − ξ 2r2
p(ξ )dξ

]

+ 6

π
γ0 Im (u∗

xuz)
∫ 1

0
ξ
√

1 − ξ 2 rp(ξ ) sin(2ξk0x) dξ

(77)

for the differences between the rate components for the oppo-
site sides ±z of the dielectric and the vacuum, respectively.
It is clear that γ

mat(±)
rad , γ mat

rad , and �mat
rad do not depend on the

atom-interface distance x [18], while γ
vac(±)
rad , γ vac

rad , and �vac
rad

oscillate with increasing x.
We now derive the radiation patterns of spontaneous

emission into radiation modes with outputs on a given side
of the interface in the far-field limit. For the radiation
modes with outputs in the half-space x < 0, the angle θ

between the wave vector (β1,Ky,Kz) and the axis x is given
by the formulas n1 sin θ = κ =

√
1 − ξ 2 and n1 cos θ = −η

for θ ∈ [π − arcsin(1/n1),π ]. For the radiation modes with
outputs in the half-space x > 0, the angle θ between the
wave vector (β2,Ky,Kz) and the axis x is given by the

Atom-interface distance x (nm)

γ ev
an

/γ
0, 
γ ra

d/γ
0, 

an
d 
γ/
γ 0

 

(a) (b) (c)

evanesent

radiation

total

u = x^ u = z^ u = θxz

^

u = εxz
^

FIG. 2. Rates γevan, γrad, and γ of spontaneous emission from a
two-level atom into evanescent modes (dashed blue lines), radiation
modes (dotted red lines), and both types of modes (solid black lines),
respectively, as functions of the atom-interface distance x. The atomic
dipole polarization vector u is equal to x̂ (a), ẑ (b), and θ̂xz ≡ (x̂ +
ẑ)/

√
2 or ε̂xz ≡ (x̂ + iẑ)/

√
2 (c). The rates are normalized to the

spontaneous emission rate γ0 of the atom in free space. The refractive
index of the medium is n1 = 1.45. The wavelength of the atomic
transition is λ0 = 852 nm.

formulas sin θ = κ =
√

1 − ξ 2 and cos θ = ξ for θ ∈ [0,π/2].
Then, we find F mat

rad (ξ,φ)ξ dξdφ = −P mat
rad (θ,φ) sin θ dθ dφ

and F vac
rad (ξ,φ)ξ dξ dφ = P vac

rad (θ,φ) sin θ dθ dφ, where

P mat
rad = n1ηF mat

rad = −n2
1 cos θF mat

rad ,

P vac
rad = ξF vac

rad = cos θF vac
rad . (78)

The functions P mat
rad and P vac

rad are the angular distributions of
spontaneous emission into radiation modes with respect to
the spherical angles θ and φ. In the particular case where the
dipole polarization vector u is real, the expressions for P mat

rad and
P vac

rad reduce to the results for the far-field limit of the radiation
patterns in the allowed region inside and the half-space outside
the dielectric medium, respectively [18].

(a)

κy

κz

(b)

F ev
an

F ra
d

x = 200 nmu = x^

κy κz

(c) (d)

(e) (f)

F ev
an

F ra
d

-1
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 0
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 0

 0.5
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 1 -1
 0
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 0.5

 1

FIG. 3. Angular densities Fevan (a) and Frad (b) of the rates
of spontaneous emission into evanescent and radiation modes,
respectively, as functions of κy and κz in the case where the dipole
polarization vector u is aligned along the axis x and the atom-interface
distance is x = 200 nm. Other parameters are as for Fig. 2. The
contour lines of the surface plots are shown to help visualization. The
bottom panel shows the one-dimensional profiles of Fevan and Frad. In
(c) and (e), κz = 0. In (d) and (f), κy = 0.
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IV. NUMERICAL RESULTS

We perform numerical calculations. For the wavelength
of the atomic transition, we use the value λ0 = 852 nm
corresponding to the D2 line of atomic cesium. For the
refractive index of the dielectric medium, we use the value
n1 = 1.45 corresponding to silica.

According to the previous section, the rates γevan, γrad,
and γ of spontaneous emission from a two-level atom into
evanescent modes, radiation modes, and both types of modes,
respectively, are determined by Eqs. (36), (61), and (67),
respectively. We plot in Fig. 2 the normalized rates γevan/γ0,
γrad/γ0, and γ /γ0 as functions of the atom-interface distance
x. Figures 2(a) and 2(b) correspond, respectively, to the cases
where the dipole polarization vector u is equal to x̂ and
ẑ. The results for the cases where u = θ̂xz ≡ (x̂ + ẑ)/

√
2

and u = ε̂xz ≡ (x̂ + iẑ)/
√

2 are the same and are shown in
Fig. 2(c). The solid black curves for the normalized total
rate γ /γ0 show not only the enhancement γ /γ0 > 1, but also
the inhibition γ /γ0 < 1 of spontaneous emission, depending
on the atom-interface distance x. Such changes are quantum
electrodynamic effects resulting from modifications of the

(a)

κy

κz

(b)

F ev
an

F ra
d

x = 200 nmu = z^

κy κz

(c) (d)

(e) (f)

F ev
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F ra
d
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 0
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 0
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 0

 0.3
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FIG. 4. Angular densities Fevan and Frad of the rates of sponta-
neous emission into evanescent and radiation modes, respectively,
in the case where the dipole polarization vector u is aligned along
the axis z and the atom-interface distance is x = 200 nm. Other
parameters are as for Fig. 3.

field mode structure in the presence of the dielectric [9–11].
The enhancement of the total rate of spontaneous emission
γ /γ0 > 1 is mainly due to the presence of emission into
evanescent modes. The maximum value of γ /γ0 is about 2.18,
achieved at x = 0 for u = x̂. We observe a rapid decrease of
γevan and oscillations of γrad and γ as x increases. The rapid
decrease of γevan is a consequence of the tight confinement
of evanescent modes in the direction +x. The oscillations of
γrad and γ are due to the interference between the emitted and
reflected fields. The period of oscillations is roughly equal
to one half of the wavelength λ0 of the atomic transition
[see Eqs. (61) and (67)]. The dotted red curves in Fig. 2
show that the interference is destructive, γrad/γ0 < 1, when the
atom is close to the interface, and may become constructive,
γrad/γ0 > 1, in some specific regions where the atom is not too
close to the interface. The inhibition of the total spontaneous
emission γ /γ0 < 1 may occur in some specific regions of
x. In the limit of large distance x, we have γevan → 0 and
γ → γrad → γ0.

According to the previous section, the angular densities
Fevan and Frad of the rates of spontaneous emission into
evanescent and radiation modes, respectively, are given by

(a)

κy

κz

(b)

F ev
an

F ra
d

κy κz

(c) (d)

(e) (f)
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d
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 0
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 0
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x = 200 nmu = θxz
^

FIG. 5. Angular densities Fevan and Frad of the rates of sponta-
neous emission into evanescent and radiation modes, respectively,
in the case where the dipole polarization vector is u = θ̂ xz ≡
(x̂ + ẑ)/

√
2 and the atom-interface distance is x = 200 nm. Other

parameters are as for Fig. 3.
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FIG. 6. Angular densities Fevan and Frad of the rates of sponta-
neous emission into evanescent and radiation modes, respectively,
in the case where the dipole polarization vector is u = ε̂xz ≡
(x̂ + iẑ)/

√
2 and the atom-interface distance is x = 200 nm. Other

parameters are as for Fig. 3.

Eqs. (18) and (44), respectively. We plot in Figs. 3–6 the
angular densities Fevan and Frad as functions of the components
κy and κz of the normalized in-plane wave vector κ =
(0,κy,κz) = K/k0 = (0,Ky,Kz)/k0. The dipole polarization
vector u is chosen to be equal to x̂ (Fig. 3), ẑ (Fig. 4), θ̂xz

(Fig. 5), and ε̂xz (Fig. 6). The distance from the atom to the
interface is x = 200 nm.

We observe that in the case of Fig. 3, where u is aligned
along the axis x, the angular densities Fevan and Frad are
cylindrically symmetric functions of κ . In the cases of Fig. 4,
where u is aligned along the axis z, and Fig. 5, where u
is aligned at a nonzero angle with respect to the axis x in
the xz plane, Fevan and Frad are not cylindrically symmetric
but are symmetric under the transformations κy → −κy and
κz → −κz. Thus, in the cases of Figs. 3–5, where u is a real
vector, Fevan and Frad are symmetric under the transformation
κ → −κ .

In the case of Fig. 6, where u is a complex vector, that
is, where the atomic dipole rotates with time (in the xz

plane), Fevan and Frad are symmetric under the transformation
κy → −κy [see Figs. 6(c) and 6(e)] but not symmetric under
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FIG. 7. Same as Fig. 6, but the distance from the atom to the
interface is x = 0.

the transformation κz → −κz [see Figs. 6(d) and 6(f)] and,
consequently, not symmetric under the transformation κ →
−κ . The asymmetry between the rates for the opposite in-plane
wave vectors K and −K results from the overlap between the
ellipticity vector of the dipole polarization of the atom and
the ellipticity vector of the local electric polarization of the
field mode. Figures 3–6 show that, in the limit κ → 1, the
angular densities Fevan and Frad approach the same limiting
values and there is no difference between the limiting values
of the rates for the modes with the opposite in-plane wave
vectors K and −K. These numerical results are in agreement
with the analytical results of the previous section.

In Figs. 7–10, we study in more detail the case u = ε̂xz. We
focus on this case in order to get insight into the asymmetry of
the angular distributions Fevan and Frad with respect to central
inversion in the interface plane. In order to see the effect of the
atom-interface distance x on the asymmetry of spontaneous
emission, we plot in Figs. 7 and 8 the angular densities of the
rates of spontaneous emission from an atom with the dipole
polarization vector u = ε̂xz at the distances x = 0 and 400 nm,
respectively. Other parameters are as for Fig. 6.

We observe from Fig. 7 that, when x = 0, the angu-
lar density Fevan of the rate of spontaneous emission into
evanescent modes is strongly asymmetric with respect to
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FIG. 8. Same as Fig. 6, but the distance from the atom to the
interface is x = 400 nm.

the transformation κz → −κz and, hence, the transformation
κ → −κ [see Figs. 7(a) and 7(d)], while the angular density
Frad of the rate of spontaneous emission into radiation modes
is symmetric [see Figs. 7(b) and 7(f)]. Comparison between
Figs. 8(a) and 7(a) shows that the density of the rate of
spontaneous emission into evanescent modes in the case of
Fig. 8(a), where x = 400 nm, reduces with increasing κ much
faster than that in the case of Fig. 7(a), where x = 0.

According to the previous section, the rates γ
(f )
evan, γ

(f )
rad , and

γ (f ) of spontaneous emission into evanescent modes, radiation
modes, and both types of modes, respectively, propagating
into the side f = +,− of the axis z, are determined by
Eqs. (35), (60), and (66), respectively. We plot in Fig. 9 the
rates γ

(f )
evan, γ

(f )
rad , and γ (f ) as functions of the atom-interface

distance x in the case of u = ε̂xz. Figure 9(a) shows that the
rates γ (+)

evan and γ (−)
evan of directional spontaneous emission into

evanescent modes quickly decrease to zero with increasing x

and the inequality γ (+)
evan > γ (−)

evan holds true for every x � 0.
Meanwhile, Fig. 9(b) shows that the rates γ

(+)
rad and γ

(−)
rad

of directional spontaneous emission into radiation modes
oscillate with increasing x and approach the value γ0/2 in

Atom-interface distance x (nm)

γ(
 f 

) /γ
0

γ(
 f 

) /γ
0

ev
an

γ(
 f 

) /γ
0

ra
d

f = +
f =  - (a)

(b)

(c)

FIG. 9. Rates γ (f )
evan (a), γ

(f )
rad (b), and γ (f ) (c) of spontaneous

emission into evanescent modes, radiation modes, and both types of
modes, respectively, propagating into the positive side f = + (solid
lines) or negative side f = − (dashed lines) of the axis z as functions
of the atom-interface distance x. The polarization vector of the
atomic dipole is u = ε̂xz. The rates are normalized to the spontaneous
emission rate γ0 of the atom in free space. Other parameters are as
for Fig. 2.

the limit x → +∞. We observe that the equality γ
(+)
rad = γ

(−)
rad

holds true for x = 0 and that both inequalities γ
(+)
rad > γ

(−)
rad and

γ
(+)
rad < γ

(−)
rad are possible depending on the distance x.

The asymmetries between the rates γ (+)
evan and γ (−)

evan, between
the rates γ

(+)
rad and γ

(−)
rad , and between the rates γ (+) and γ (−)

are, as already stated in the previous section, characterized
by the parameters ζevan = �evan/γevan, ζrad = �rad/γrad, and
ζ = �/γ , respectively. We plot in Fig. 10 the asymmetry

Atom-interface distance x (nm)

ζ evan

ζ rad

ζ

A
sy

m
m

et
ry

 p
ar

am
et

er
s

FIG. 10. Asymmetry parameters ζevan (dashed blue line), ζrad

(dotted red line), and ζ (solid black line) for the rates of directional
spontaneous emission into evanescent modes, radiation modes, and
both types of modes, respectively, as functions of the atom-interface
distance x. The polarization vector of the atomic dipole is u = ε̂xz.
Other parameters are as for Fig. 2. The short-dotted black line is for
the zero value of the asymmetry parameters and is a guide to the eye.

043828-15



FAM LE KIEN AND A. RAUSCHENBEUTEL PHYSICAL REVIEW A 93, 043828 (2016)

(a)

κy

κz

(b)

κy κz

(c) (d)

(e) (f)

x = 200 nmu = θxz
^

-1
 0

 1 -1
 0

 1
 0

 0.4

 0.8

-1
 0

 1 -1
 0

 1
 0

 0.1
 0.2
 0.3

F ra
dm
at

F ra
dva

c
F ra

dm
at

F ra
dva

c

FIG. 11. Angular densities F mat
rad (a) and F vac

rad (b) of the rates of
spontaneous emission into radiation modes with the outputs inside
and outside the dielectric, respectively, as functions of κy and κz in
the case of Fig. 5, where the dipole polarization vector is u = θ̂xz and
the atom-interface distance is x = 200 nm. Other parameters are as
for Fig. 2. The bottom panel shows the one-dimensional profiles of
F mat

rad and F vac
rad . In (c) and (e), κz = 0. In (d) and (f), κy = 0.

parameters ζevan, ζrad, and ζ as functions of the atom-interface
distance x in the case of u = ε̂xz. The dashed blue curve of the
figure shows that the asymmetry parameter ζevan for emission
into evanescent modes is positive and monotonically decreases
with increasing x. The dotted red and solid black curves of
the figure show that the asymmetry parameters ζrad and ζ

for emission into radiation modes and both types of modes,
respectively, oscillate with increasing x and can be positive
or negative depending on the distance x. For x = 0, we have
ζrad = 0 and ζevan > ζ > 0. In the limit of large x, we have
ζ � ζrad � 0. In this limit, ζevan is also small.

According to the previous section, the angular densities
F mat

rad and F vac
rad of the rates of spontaneous emission into

radiation modes outgoing into the dielectric and the vacuum,
respectively, are given by Eqs. (69) and (70), respectively.
Unlike the angular densities Fevan and Frad, the dielectric-side
component F mat

rad and the vacuum-side component F vac
rad of Frad

can be asymmetric with respect to central inversion in the
interface plane when the dipole polarization vector u is a real
vector tilted with respect to the axis x and to the interface plane

(a)

κy

κz

(b)

κy κz

(c) (d)

(e) (f)

x = 200 nmu = εxz
^

F ra
dm
at

F ra
dva

c
F ra

dm
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F ra
dva

c
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FIG. 12. Angular densities F mat
rad (a) and F vac

rad (b) of the rates of
spontaneous emission into radiation modes with the outputs inside
and outside the dielectric, respectively, in the case of Fig. 6, where the
dipole polarization vector is u = ε̂xz and the atom-interface distance
is x = 200 nm. Other parameters are as for Fig. 2. The bottom panel
shows the one-dimensional profiles of F mat

rad and F vac
rad . In (c) and (e),

κz = 0. In (d) and (f), κy = 0.

yz. In order to get insight into the asymmetry of the angular
densities F mat

rad and F vac
rad with respect to central inversion in

the interface plane, we present in Figs. 11–14 the results
of numerical calculations for these distribution functions and
their related rates in the cases of Fig. 5, where u = θ̂xz, and
Fig. 6, where u = ε̂xz.

We plot the angular densities F mat
rad and F vac

rad in Figs. 11
and 12 for the cases of u = θ̂xz and u = ε̂xz, respectively. We
observe from Fig. 11 that, in the case where u = θ̂xz, both F mat

rad
and F vac

rad are asymmetric with respect to the transformation
κ → −κ . This asymmetry of F mat

rad and F vac
rad is a consequence

of the asymmetry of the orientation of the dipole polarization
vector u with respect to the interface. We note that the dif-
ference F mat

rad (κy,κz) − F mat
rad (−κy, − κz), which characterizes

the asymmetry of F mat
rad , is exactly opposite to the difference

F vac
rad (κy,κz) − F vac

rad (−κy, − κz), which characterizes the asym-
metry of F vac

rad . Due to the cancellation of the asymmetry in
the sum, the density Frad = F mat

rad + F vac
rad is symmetric with

respect to the transformation κ → −κ [see Figs. 5(b), 5(e),
and 5(f)]. Figure 12 shows that, in the case where u = ε̂xz,
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u = θxz
^

FIG. 13. Rate γ mat
rad and its components γ

mat(±)
rad for radiation modes

with outputs in the dielectric (red curves) and rate γ vac
rad and its

components γ
vac(±)
rad for radiation modes with outputs in the vacuum

(blue curves) as functions of the atom-interface distance x. The
polarization vector of the atomic dipole is u = θ̂ xz. The rates are
normalized to the spontaneous emission rate γ0 of the atom in free
space. Other parameters are as for Fig. 2.

the distribution F mat
rad [see Figs. 12(a), 12(c), and 12(d)] is

symmetric and the distribution F vac
rad [see Figs. 12(b), 12(e),

and 12(f)] is asymmetric with respect to the transformation
κ → −κ . The asymmetry of F vac

rad in Fig. 12 is a consequence
of the overlap between the ellipticity vector of the atomic
dipole polarization and the ellipticity vector of the field mode
polarization. The symmetry of F mat

rad in Fig. 12 is a consequence
of the fact that we have Re (u∗

xuy) = Re (u∗
xuz) = 0 in the case

considered. When Re (u∗
xuy) or Re (u∗

xuz) is not zero, F mat
rad is

not symmetric with respect to the transformation κ → −κ .
We plot in Figs. 13 and 14 the rate γ mat

rad and its components
γ

mat(±)
rad for radiation modes with outputs in the dielectric

Atom-interface distance x (nm)

mat (+) and mat (-)

mat

vac (-)
vac (+)

vac

R
at

es
 γ

...
  /
γ 0

ra
d

u = εxz
^

FIG. 14. Rate γ mat
rad and its components γ

mat(±)
rad for radiation modes

with outputs in the dielectric (red curves) and rate γ vac
rad and its

components γ
vac(±)
rad for radiation modes with outputs in the vacuum

(blue curves) as functions of the atom-interface distance x. The
polarization vector of the atomic dipole is u = ε̂xz. The rates are
normalized to the spontaneous emission rate γ0 of the atom in free
space. Other parameters are as for Fig. 2.

κz

Fevan

κz

κy

κz

x = 50 nmu = θxz
^

Frad
mat

Frad
vac

(a)

(b)

(c)

FIG. 15. Angular densities Fevan (a), F mat
rad (b), and F vac

rad (c) of
the rates of spontaneous emission into evanescent modes, radiation
modes with outputs in the dielectric, and radiation modes with outputs
in the vacuum, respectively, in the case where the dipole polarization
vector is u = θ̂ xz and the atom-interface distance is x = 50 nm. Other
parameters are as for Fig. 2.

(red curves) and the rate γ vac
rad and its components γ

vac(±)
rad for

radiation modes with outputs in the vacuum (blue curves) as
functions of the atom-interface distance x. The polarization
vector of the atomic dipole is u = θ̂xz in the case of Fig. 13
and is u = ε̂xz in the case of Fig. 14. Figures 13 and 14 show
that γ mat

rad and γ
mat(±)
rad (red curves) do not depend on the distance
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κy

κz
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vac
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FIG. 16. Angular densities Fevan (a), F mat
rad (b), and F vac

rad (c) of
the rates of spontaneous emission into evanescent modes, radiation
modes with outputs in the dielectric, and radiation modes with outputs
in the vacuum, respectively, in the case where the dipole polarization
vector is u = ε̂xz and the atom-interface distance is x = 50 nm. Other
parameters are as for Fig. 2.

x while γ vac
rad and γ

vac(±)
rad (blue curves) vary nonmonotonically

with increasing x.
Comparison between Figs. 13 and 14 shows that we obtain

the same values for γ mat
rad (solid red curves) and the same values

for γ vac
rad (solid blue curves) in the two cases. The reason is

that the rates γ mat
rad = γ

mat(+)
rad + γ

mat(−)
rad and γ vac

rad = γ
vac(+)
rad +

γ
vac(−)
rad depend on |ux |2 but not on the cross terms of the type

(a) xy plane (b) xz plane

x = 50 nmu = θxz
^

Prad
mat Prad

vac

Pevan

FIG. 17. Radiation patterns Pevan (blue curves), P mat
rad (green

curves), and P vac
rad (cyan curves) for evanescent modes, radiation

modes with outputs in the dielectric, and radiation modes with outputs
in the vacuum, respectively, in the case where the dipole polarization
vector is u = θ̂ xz and the atom-interface distance is x = 50 nm. The
horizontal axis of the figure is the direction of the x axis. In (a), we
set φ = 0,π to calculate the patterns in the xy plane. In (b), we set
φ = ±π/2 to calculate the patterns in the xz plane. Other parameters
are as for Fig. 2.

u∗
juj ′ where j �= j ′ and j,j ′ = x,y,z [see Eqs. (74) and (75)].

We note the following interesting features: γ mat
rad � 0.4γ0 <

γ0/2, γ vac
rad < γ mat

rad and γ vac
rad > γ mat

rad for x < 195 nm and x >

195 nm, respectively, γ vac
rad > γ0/2 for x > 397 nm, and γ vac

rad
tends to approach the limiting value 1 − γ mat

rad ∼ 0.6γ0 in the
limit x → +∞.

Figure 13 shows that, in the case where u = θ̂xz, the
difference γ

mat(+)
rad − γ

mat(−)
rad (see the dashed and dotted red

curves) is a nonzero constant and is equal to the difference
γ

vac(−)
rad − γ

vac(+)
rad (see the dotted and dashed blue curves). This

difference is caused by the tilting of the dipole polarization
vector u with respect to the axis x and the interface plane yz

[see expression (76) and the first term in expression (77)].
Figure 14 shows that, in the case where u = ε̂xz, we have

γ
mat(+)
rad = γ

mat(−)
rad (see the dash-dotted red curve) and γ

vac(+)
rad �=

γ
vac(−)
rad (see the dashed and dotted blue curves). The difference

γ
vac(+)
rad − γ

vac(−)
rad can be positive or negative depending on the

distance x. This difference is caused by spin-orbit coupling of
light [see the second term in expression (77) and Eqs. (53)–
(55)].

The angular distributions of the rates of emission of a
dipolelike particle can be measured experimentally by direct
imaging the emission patterns in the back focal plane of a
high-numerical-aperture objective lens [47,60,61]. The images
are the contour plots of the angular densities of the rates of
emission. We show the color-filled contour plots of the angular
densities Fevan, F mat

rad , and F vac
rad in Figs. 15 and 16 for the

cases where u = θ̂xz and ε̂xz, respectively. The atom-interface
distance is chosen to be x = 50 nm. Figure 15 shows that, in the
case of u = θ̂xz, the function Fevan [see Fig. 15(a)] is symmetric
but the functions F mat

rad [see Fig. 15(b)] and F vac
rad [see Fig. 15(c)]

are not symmetric with respect to central inversion in the in-
terface plane. Figure 16 shows that, in the case of u = ε̂xz, the
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(a) xy plane (b) xz plane

x = 50 nmu = εxz
^

Prad
mat Prad

vac

Pevan

FIG. 18. Radiation patterns Pevan (blue curves), P mat
rad (green

curves), and P vac
rad (cyan curves) for evanescent modes, radiation

modes with outputs in the dielectric, and radiation modes with outputs
in the vacuum, respectively, in the case where the dipole polarization
vector is u = ε̂xz and the atom-interface distance is x = 50 nm. The
horizontal axis of the figure is the direction of the x axis. In (a), we
set φ = 0,π to calculate the patterns in the xy plane. In (b), we set
φ = ±π/2 to calculate the patterns in the xz plane. Other parameters
are as for Fig. 2.

function F mat
rad [see Fig. 16(b)] is symmetric but the functions

Fevan [see Fig. 16(a)] and F vac
rad [see Fig. 16(c)] are not sym-

metric with respect to central inversion in the interface plane.
In the far-field limit, the radiation patterns of emission

into evanescent modes, radiation modes with outputs in the
dielectric, and radiation modes with outputs in the vacuum
are described by the functions Pevan(θ,φ), P mat

rad (θ,φ), and
P vac

rad (θ,φ), respectively, We plot these functions in Figs. 17
and 18 for the cases where u = θ̂xz and ε̂xz, respectively.
The atom-interface distance is chosen to be x = 50 nm. The
horizontal axis of the figures is the direction of the x axis.
Figures 17(a) and 18(a) show that the radiation patterns in the
xy plane are symmetric with respect to the x axis. We observe
from Fig. 17(b) that, in the case where u = θ̂xz, the pattern
Pevan in the xz plane is symmetric with respect to the x axis
but the patterns P mat

rad and P vac
rad are not. Figure 18(b) shows

that, in the case where u = ε̂xz, the pattern P mat
rad in the xz

plane is symmetric with respect to the x axis but the patterns
Pevan and P vac

rad are not. These features are in agreement with
the analytical results presented in the previous section.

V. SUMMARY

We have studied spontaneous emission of a two-level
atom with an arbitrarily polarized electric dipole in front of
a flat dielectric surface. We have treated the general case
where the atomic dipole matrix element is a complex vector,
that is, the atomic dipole can rotate with time in space. In
order to get deep insight into the underlying physics, we
have employed a full quantum formalism for the atom and
the field, and have used the Hamiltonian method and the
mode expansion approach. We have calculated the rates of
spontaneous emission into evanescent and radiation modes.
We have examined the angular densities of the rates of

spontaneous emission in the space of wave vectors for the
field modes. We have confirmed that, like in other physical
systems [19,30–49], when the ellipticity of the atomic dipole
is not zero, the angular density of the spontaneous emission rate
of the atom may have different values for the modes with the
opposite in-plane (transverse) wave vectors. The asymmetry
of the angular density of the spontaneous emission rate under
central inversion in the space of transverse wave vectors is
a result of spin-orbit coupling of light and occurs when the
ellipticity vector of the atomic dipole polarization overlaps
with the ellipticity vector of the field mode polarization.

Since the ellipticity of the electric polarization of the TE
modes is zero, only the TM modes can contribute to the
asymmetry of spontaneous emission with respect to central
inversion in the interface plane. The ellipticity of the electric
polarization of the TM evanescent mode (ωKp1) arises as a
consequence of the fact that the field in this evanescent mode
has a longitudinal component whose phase is shifted by π/2
from that of the transverse component. Due to the fast decay
of the field in the evanescent modes, the difference between
the rates of spontaneous emission into evanescent modes
with opposite in-plane wave vectors decreases monotonically
with increasing distance from the atom to the interface. This
difference achieves its maximum value when the atom is
positioned on the surface of the dielectric. Meanwhile, the
ellipticity of the electric polarization of the TM radiation mode
(ωKp2) results from the interference between the incident and
reflected fields in this mode, which have different polarization
vectors and different phases. Due to the oscillatory behavior of
interference, the difference between the rates of spontaneous
emission into radiation modes with opposite in-plane wave
vectors oscillates with increasing distance from the atom to the
interface. This difference can be positive or negative depending
on the atom-interface distance x, and is zero for x = 0. The
lack of asymmetry for radiation modes under the in-plane
central inversion in the case of x = 0 is a consequence of the
fact that the relative phase between the incident and reflected
fields at x = 0 is just the phase of the reflection coefficient
and hence is equal to 0 or π . In addition, we have shown that
the ellipticity of the atomic dipole affects the angular density
of the rate of spontaneous emission into the radiation modes
outgoing into the vacuum but does not modify the angular
density of the rate of spontaneous emission into the radiation
modes outgoing into the dielectric.

The results of this paper can be used not only for
spontaneous emission of a two-level atom with an arbitrarily
polarized dipole, but also for the rate enhancement factor
and the radiation pattern of an arbitrarily polarized classical
oscillating dipole. These results can also be extended to the
case of a multilevel atom by summing up the contributions
from different transitions from each upper level. Due to
the competition between different types of transitions, the
directional dependence of the spontaneous emission rate of a
multilevel atom is, in general, weaker than that of a two-level
atom with a circularly polarized dipole.
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APPENDIX: TENSOR DECOMPOSITION

We use the Cartesian coordinate frame {x,y,z}. The
spherical tensor components Aq , with q = −1,0,1, of an
arbitrary complex vector A = {Ax,Ay,Az} are given by

A−1 = (Ax − iAy)/
√

2,

A0 = Az,

A1 = −(Ax + iAy)/
√

2. (A1)
The absolute length of the complex vector A is given
by |A| = √|Ax |2 + |Ay |2 + |Az|2. The compound
tensor components {A∗ ⊗ A}Kq , where K = 0,1,2 and
q = −K, . . . ,K , are given by

{A∗ ⊗ A}0,0 = −|A0|2 + |A1|2 + |A−1|2√
3

, (A2)

{A∗ ⊗ A}1,0 = |A1|2 − |A−1|2√
2

,

{A∗ ⊗ A}1,1 = −A0A
∗
−1 + A∗

0A1√
2

, (A3)

{A∗ ⊗ A}1,−1 = A0A
∗
1 + A∗

0A−1√
2

,

and

{A∗ ⊗ A}2,0 = 2|A0|2 − |A1|2 − |A−1|2√
6

,

{A∗ ⊗ A}2,1 = −A0A
∗
−1 − A∗

0A1√
2

,

{A∗ ⊗ A}2,−1 = −A0A
∗
1 − A∗

0A−1√
2

,

{A∗ ⊗ A}2,2 = −A1A
∗
−1,

{A∗ ⊗ A}2,−2 = −A−1A
∗
1. (A4)

The scalar product of arbitrary complex vectors A and B is
defined by

A · B = AxBx + AyBy + AzBz =
1∑

q=−1

(−1)qAqB−q . (A5)

We have the relation |A|2 = A∗ · A. The vector product of the
vectors A and B is defined by

[A × B] = (AyBz − AzBy)x̂ + (AzBx − AxBz)ŷ

+ (AxBy − AyBx)ẑ. (A6)

According to [62], we have

|A · B|2 =
∑

K=0,1,2

(−1)K{A∗ ⊗ A}K · {B∗ ⊗ B}K. (A7)

The above formula can be rewritten in the form

|A · B|2 = 1
3 |A|2|B|2 + 1

2 [A∗ × A] · [B∗ × B]

+{A∗ ⊗ A}2 · {B∗ ⊗ B}2. (A8)
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