
PHYSICAL REVIEW A 93, 043824 (2016)

Effect of surface roughness on the Goos-Hänchen shift
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By considering an optically denser medium with a flat surface, but with natural roughness instead of abstract
geometrical boundary, which leads to mathematical discontinuity on the boundary of two adjacent stratified
media, we have thus established the importance of considering physical surfaces; and thus we studied the
Goos-Hänchen (GH) effect by ray-optics description to shed light on parts of this effect that have remained
ambiguous. We replaced the very thin region of surface roughness by a continuous inhomogeneous intermediary
medium. Applying Fermat’s principle for the incident light ray, few fundamental questions about GH shift are
more convincingly addressed, which are in excellent agreement, even with the most details of the experimental
results.
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I. INTRODUCTION

The GH effect [1] has been the subject of many inves-
tigations since its discovery [2–14] and has been extended to
many areas of physics [15–19], and to a wide range of materials
[20–27]. Our effort in this work aims to add a bit of ray-optics
description to what have been obtained from wave theory about
the effect in one respect in which we think it is incomplete.
Based on the theory of Maxwell Garnett [28], a rough surface
separating two dielectric bulk media can be replaced by three
media composed of two different homogeneous media with
well-defined refraction indices and an equivalent intermediary
inhomogeneous medium with plane parallel boundaries. In
general, two intermediary-medium models can be used: (i) a
homogeneous-intermediary model and (ii) an inhomogeneous-
intermediary model. The first model requires an effective fixed
refractive index and the second model requires variability in
refractive index. Several theoretical models utilizing linear
variation of the refractive index have been carried out [29,30];
these models agree fairly well with experiments. In contrast to
earlier works, we assumed that the separating surface of the
two optically dense and less dense media is a natural surface
consisting of a random distribution of roughness, the deviation
of which relative to an average surface is best described using
the statistical distribution. This assumption leads to a nonlinear
behavior of the refractive index by transition from one medium
to the other, and consequently the obtained behavior of the GH
shift will approach more and more closely even with the most
details of the experimental results.

II. STATISTICAL ANALYSIS OF ROUGH SURFACE AND
EQUIVALENT REFRACTIVE INDEX

Roughness as an inseparable feature of almost all known
surfaces is a macroscopic deviation from flatness. However,
almost always, this deviation is random except for some
regular features, which have been deliberately introduced. The
statistical parameters to characterize the surface topography,
regardless of their sources and irrespective of the absolute
scale of the size involved, look very similar [31,32]. From
a statistical point of view, surface roughness profiles in one
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dimension resemble electrical recordings of white noise. Bear-
ing area curve (BAC) is a statistical method for the analysis
of surface topography [33]. From Fig. 1(a), BAC could be
found by considering the fraction of the random surface profile
intersected by an infinitesimally thin plane with thickness �z

positioned at height z and parallel to the x-y plane.
The procedure is repeated through a number of slices from

a lowermost plane at Zmin to an uppermost one at Zmax. To
evaluate the equivalent refractive index for roughness region,
we use the following process: First, we must determine the
probability density function of roughness, p(z). Next, we
obtain the BAC by integrating the height probability density
function, P (z), which corresponds to the presence of matter in
the height z and consequently the refractive index at that height.
For Gaussian height distributions, P (z) is the cumulative
probability function of classical statistics. Suppose that the
roughness is a function of two variables x and y. If the plane
of the chief ray of the incident beam (or the center of gravity of
the incident beam) is considered to be parallel to the x-z plane,
we obtain a graph from its intersection with the rough surface
in that plane, which gives a continuous random function as
z(x). Evidently, at an arbitrary plane, there will be numerous
different roughness profiles. For each z(x), we can assign
a continuous probability distribution function, p(z). As the
rough surface is scanned along the x axis at height z, p(z)
shows recording the value of height z during the scan. If data
approach a wide set of random phenomena, probability density
function approaches Gaussian distribution [34]. Therefore,
despite each x-z plane consisting of different profiles, we can
legitimately assume that each of these profiles is Gaussian.
Surely, the selection of any nonanalytical distribution, even
matched with reality, causes analytical discussion to get into
trouble. A normal statistical distribution in the region of
roughness with random variable z, mean μ, and variance σ 2,
with probability density function p(z), is shown as follows:

p(z) = 1

σ
√

2π
exp

[
− (z − μ)2

2σ 2

]
. (1)

Integrating the probability density function, we can write the
BAC as

P (z) =
∫ +∞

−∞
p(z)dz −

∫ z

−∞
p(z)dz. (2)
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FIG. 1. Graphical representation of the determination of a BAC.
(a) Hypothetical cross section of a flat surface with its roughnesses;
z is the distance perpendicular to the plane of the surface, �z is the
interval between two heights, H is the value of average height. (b)
p(z) is the probability density function of roughness. (c) P (z) is the
integral of the p(z) [33].

In the examination of a surface with random roughness, we
supposed that the uppermost roughness peak was located at
height Zmax and the lowermost valley was located at height
Zmin. Therefore, the average value of the height is equal
to the average value of the sum of Zmax and Zmin, which
we quite deliberately positioned at z = 0, hence, μ = 0, as
shown in Fig. 1(a). Then, the first integral in BAC is the
contribution of all height distribution in the roughness region
of the surface, which is normalized to unity. But, the region
of random roughness starting from Zmin, where the dense
matter completely exists and ends up at Zmax and does not
exist above it. Consequently, by replacing −∞ and +∞ for
the lower and upper limits of integration instead of Zmin and
Zmax, respectively, integration would conduce to insignificant
approximate value. The second term in the BAC of matter is
also the contribution of height, the value of which is less than
a certain z. Therefore, the result of the two integrals specifies
the amount of the presence of matter along the matter to the
desired height. Then, the BAC of matter becomes

P (z) = 1 −
∫ z

−∞
p(z)dz, = 1

2

[
1 − erf

(
z

σ
√

2

)]
. (3)
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FIG. 2. The behavior of the refractive index in an intermediary
inhomogeneous medium.

The bell-shaped probability density function and the BAC
obtained from error function are shown in Figs. 1(b) and 1(c).
In this work, the surface separating two different optical media
has been considered to be a natural surface of glass, which
separates glass as an optically dense medium from air as
a less dense one. In effect, an intermediary inhomogeneous
medium is made of binary mixture that has a coexistence
between glass and air. Now we can determine the equivalent
refractive index of an intermediary inhomogeneous medium,
but with gradual change of refractive index along z axis, which
varies from constant value ng , where there is clear glass to
na = 1, where there is clear air. Furthermore, we shall assume
that the refractive index is proportional to the presence of
matter or BAC, then, since n(Zmin) = ng , n(Zmax) = 1, Zmax =
−Zmin = H , and also error function is an odd function; we
obtain the exact relation for refractive index:

n(z) = (ng + 1)

2
− (ng − 1)

2

[erf
(

z

σ
√

2

)
erf

(
H

σ
√

2

)
]
. (4)

Figure 2 shows the behavior of the variable refractive index
for monochromatic light in an inhomogeneous medium.

III. RAY TRACING IN AN INTERMEDIARY MEDIUM

Based on what was obtained from the refractive index in an
inhomogeneous region as a function of height and Hamilton’s
principle, we try to determine the equations of motion for
a light ray through an inhomogeneous medium. Although,
it was known that there are some differences between the
penetration depth of the beam path and that of the ray path
into an inhomogeneous region [35]. By means of Hamilton’s
variational principle, we can formulate Lagrange’s equations
for ray optics and obtain the equation of ray path. Here the
Lagrangian can be expressed as a function of z(x), z′(x),
and x. From Hamilton’s principle, we derive Lagrange’s
equation as

d

dx

∂L(z,z′; x)

∂z′ − ∂L(z,z′; x)

∂z
= 0,z′ = dz

dx
. (5)

To obtain the optical equivalence of L(z,z′; x), according
to Fermat’s principle of the minimum optical path in an
inhomogeneous medium [36],∫ z2

z1

n(z)ds =
∫ z2

z1

n(z)
√

1 + z′2dx, (6)

we then obtain Lagrangian of the optical system as

L(z,z′; x) = n(z)
√

1 + z′2. (7)
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On substituting L(z,z′; x) into Lagrange’s equation, one finds

d

dx

[
n(z)

z′
√

1 + z′2

]
−

√
1 + z′2 dn(z)

dz
= 0. (8)

The first term on the left side of the above equation becomes

dn(z)

dx

z′
√

1 + z′2 + d(z′)
dx

n(z)√
1 + z′2 + n(z)z′ d

dx

1√
1 + z′2 , (9)

which after some manipulation leads to

dn
dz

n(z)
z′2 + d2z

dx2

1

1 + z′2 . (10)

This result can be combined with the second term of the left
side of Eq. (8) and yielding the following equation:

d2z

dx2
=

dn
dz

n(z)

[
1 +

(
dz

dx

)2]
. (11)

ds, which shows the infinitesimal increments of a ray path
in an inhomogeneous region, is related to its components in
Cartesian coordinate system, then

ds

dx
=

√
1 + z′2 = 1

sin θ (z)
= n(z)

ng sin θi

. (12)

On performing the substitution given by the preceding equa-
tion in Eq. (11), we finally obtain the ray path differential
equation as

d2z

dx2
=

(
dn2(z)

dz

)
2ng sin2 θi

, (13)

which is a second-order nonlinear differential equation. To
solve it, we used the Runge-Kutta method (RK4), which
determines the ray path in an inhomogeneous region. To do so,
we considered the incident rays from the dense homogeneous
region of the glass with refractive index ng at different angles
of oblique incidence into a medium with varying refractive
index. Since it turns out from numerical considerations
that the maximum value of the GH shift is—for a given
standard deviation—linearly proportional to the thickness of
the intermediary medium, we have depicted the ray path in an
intermediary region with the thickness of 0.8 μm, which was
chosen deliberately for comparison with some other previous
experimental results. Here, we have considered a Gaussian
height distribution with the standard deviation, which relates
to Zmin and Zmax as Zmax − Zmin = 4.21σ = 0.8 μm. This
amount of standard deviation covers more than 96 percent
of the roughness region. For BK7 glass with refractive index
ng = 1.52 at wavelength 625 nm, the critical angle is then
θcrit = 41.14◦, and Figs. 3(a) to 3(c) represent ray paths with
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FIG. 4. (a) The behavior of the GH shift and the penetration depth
and (b) the effect of the machining process of the natural surface on
the GH shift and the penetration depth for incidence angles between
28◦ � θi � 90◦.

different incident angles that are less than, equal to, and greater
than the critical angle, respectively.

As can be seen in Fig. 3(a), at an incidence angle less than
the critical angle; the ray passes through the inhomogeneous
region along a curved path. Also, the ray path traversed by
use of Snell’s law in the absence of an inhomogeneous region
is depicted for comparison. In Figs. 3(b) and 3(c), the ray
of light arriving at the inhomogeneous region, deviates from
the straight line and after traveling in a curved trajectory,
which does not intersect the border, bends toward the inci-
dent medium. Therefore, the emergent light ray undergoes
some displacement in comparison with what is predicted
by geometrical optics. What can be seen from Fig. 3(b)
is that for incidence at the critical angle, a ray suffers the
greatest penetration depth and GH shift. The GH shift and the
penetration depth, which are computed numerically as separate
functions of incident angles, are shown in Fig. 4(a). Also
the GH shift and the penetration depth for a linear variation
model of the refractive index and the penetration depth from
theoretical approach [37] is depicted in Fig. 4 for comparison.
As can be seen from Fig. 4, our numerical result for the GH
shift for an intermediary inhomogeneous medium with a linear
variation refractive index is in perfect agreement with what
was obtained in Ref. [30]. But, in contrast, is very different
from the one just obtained by observations, which reveals that
the pattern of the roughness profile seriously matters here.
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FIG. 3. Ray paths obtained numerically in an inhomogeneous region with different incident angles for BK7 glass with ng = 1.52 at
wavelength 625 nm: (a) for θi < θcrit, (b) at θi = θcrit = 41.14◦, and (c) at θcrit < θi ; (P.D.) stands for penetration depth.
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With respect to Fig. 4(a), as the incidence angle grows up
and nears the critical angle, it causes the GH shift to pick
up to a global maximum. Here, contrary to Artmann’s [2]
theoretical approximation and similar to what is obtained by
the Gaussian wave approximation of Horowitz and Tamir [6],
the GH shift in our model has a broader shoulder and also has
a limit when total reflection takes place. A further increase of
θi will cause the GH shift to fall sharply, and if this procedure
continues numerically, for all incidence angles within the
total reflection range, the GH shift at a relatively wide range
of incidence angles between 52◦ and 61◦ takes to reach a
minimum, thereafter the GH shift increases slowly and after
reaching a wide range maximum between 74◦ and 78◦, falls off
nearly to zero in this limit. A wide range of incidence angles
instead of being a single one as in the former cases, may
be an essential aspect of the numerical method that has been
applied. As we shall see later, these minimum and maximum
are not an artifact and can be deduced from a sound physical
basis. The main differences between our model and what was
observed experimentally in the behavior of the GH shift at the
metal-air interface [13], are the existence of the minimum and
the maximum and also, as it should be, the vanishing GH shift
at the intermediary-air interface at nearly grazing incidence.
Unlike the GH shift, the penetration depth of a ray path will
have a descending course from the greatest value at the critical
angle, P.D. � 2H , to zero at the end of grazing incidence.
After a closer numerical examination, however, it seems that
the minimum GH shift is related to the inflection point of the
refractive index profile of the inhomogeneous region around
the height z = 0. As can be seen in Fig. 2, the refractive index
at z = 0 reaches its extreme change and, consequently, the
change of the ray path at this region is severe and this, in
turn, causes bending a ray toward the incident medium to be
faster than other angles. A particularly attractive theoretical
feature of this effect is the fact that at the incidence angle
θhalf = 55.98◦, Fig. 3(c), which is in between the minimum
interval, the penetration depth is half the thickness of the
roughness region, which may be of great practical importance
for determining the statistical parameters of the surface. On the
other hand, it is worth noting that slow changes in the refractive
index around Zmin besides the grazing incidence of a ray causes
bending a ray toward the incident medium to be much more
slowly than other angles, which makes the GH shift increase
and reach a wide range maximum. This case is almost similar
to what happens to the incidence at the critical angle when a
ray path approaches the border line at Zmax. This is because the
angle of the incident ray and the normal to the intermediary-air
interface before reaching the border and that of the incident ray
relative to the glass-intermediary interface are the same, that
is grazing. However, the major difference in the former case
is that a light ray penetrates deeply through an intermediary
medium with variable refractive index to the borderline at Zmax

and then returns to the incident medium and in the latter one
a light ray travels along the interface surface with a relatively
constant refractive index and very low penetration and returns
to the incident medium. After passing this maximum range, the
curve in Fig. 4(a) is seen to decrease to zero. Thus, unlike the
classical model, which predicts that the GH shift will have an
indefinite value between zero to infinity, our model predicts a
zero GH shift. As can be expected and verified numerically, the

distance between the fixed global maximum at θcrit and the two
successive minimum and maximum would change depending
on the change in σ and H .

With respect to the changes in the profile of the glass
surface produced by the machining processes such as grinding
and polishing, we can now achieve a more precise result by
modifying our model. From the modeling point of view, we
simply suppose that the crests of the roughness cutting off
to a height Zcut after grinding and then another Gaussian
distribution can be produced by the polishing process but with
very small height distribution, which is centered at the height
Zcut. Thus, this can easily be explained in an approximate way
in terms of a combination of two normal distribution functions,
but with different standard deviations σ and σ ′, which σ =
10σ ′, chosen arbitrarily (Ref. [30], p. 8). Figure 4(b) depicts
the behavior of the GH shift and the penetration depth based
on the modified model and in the same range of incident angles
as before. As can be seen, the modified roughness distribution
causes successive minimum and maximum to appear in
addition to the former ones and immediately after θcrit, which
have the same physical basis as before and are located at angles
θcut and θmax, respectively. This characteristic feature observed
through direct experimental investigation [13] for both TE and
TM polarized light but was ignored by the authors and also
was unexpected in the aforementioned models. Another point
of the cardinal importance in Fig. 4(b) is that the location
of the θcut corresponds to the penetration depth by a curved
trajectory, which will reach the height Zcut, the inflection point
of the refractive index profile, and that is why we named
it θcut. Therefore, Fig. 4(b) contains two useful theoretical
and practical data concerning the center of the two roughness
distribution of the polished surface and that of the ground
surface, that is, at θcut and θhalf, respectively. As can be seen
in Fig. 4(b), this behavior is in good agreement with direct
experimental observation [13] even with its fine details. Figure
5 compares and gives another confirmation of the normalized
GH shift behavior for different relative refractive indices
ranging from ng = 1.02 to ng � 5 at the critical angle given
by the Horowitz and Tamir model for TE and TM polarization
with our proposed model based on the geometrical light ray
approach. Consequently, as observed from Figs. 4 and 5, our
proposed model predicts a finite value for the GH shift both at
the critical angle and at grazing incidence, which is consistent
with experimental observations [9,13]. Consequently, using
an insufficiently accurate model we have been able to describe
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obtained from the theoretical results of a Gaussian light beam for both
polarizations [6] and the dashed curve obtained from our geometrical
light ray approach.
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the detailed behavior of the GH shift in a good agreement with
the experimental observation. Finally, a comparison of the
results obtained for the GH shift associated with total internal
reflection is based on wave theory and our ray-optics model
is worth mentioning. Many different theoretical approaches
that come under the heading of Maxwell’s theory have been
presented so far which state that the total reflection does
not take place abruptly at the boundary surface. But that
due to the limited extent of the beam in its transverse
direction just before the total reflection occurs, the light energy
penetrates inhomogeneously and moves a short distance along
the boundary within the less dense medium with the phase
velocity va/

√
εg sin θi , where va and εg are the speed of light in

air and the permittivity constant of the glass, respectively [38].
Consequently, this leads to a shift of the center of gravity of the
totally reflected beam. On the other hand, however, what comes
from our model is that an incident light ray from the denser
medium enters into a very thin intermediary inhomogeneous
layer with variable speed depending on the path of the light ray,
and after traveling in a differentiable curved trajectory, which
does not enter into the air, returns to the incident medium.
The speed of the light rays in the intermediary region varies
with the position from the minimum value of vg at Zmin to the
maximum value of va at Zmax. One can compare the outputs
of the two approaches from Fig. 6, which depicts the situation.

IV. CONCLUSIONS

To sum up, using different approaches to study GH shift
would bring about various results, all aspects of which
would certainly be impossible to cover by only one broad
and comprehensive single theory or method. Utilizing ray
approach, and abandoning the abstract geometrical boundary

separating two different media and considering the roughness
of the glass surface and replacing it with an intermediary
inhomogeneous medium with graded refractive index, we
could describe the GH shift in a good agreement with other
models and experimental observations. At first, it is found
that regardless of an intermediary medium thickness, θcrit at
a good approximation is independent of an inhomogeneous
region thickness. However, the procedure outlined is entirely
confined to natural or artificial flat surfaces with Gaussian
distribution, but if we add another Gaussian distribution with
smaller standard deviation upon the cutoff former one, to
simulate the effects of the grinding and polishing of an
optical flat surface, the obtained pattern of the GH shift versus
incident angle becomes more and more similar to the observed
experimental one. Using this pattern and obtaining θcut and
θhalf, it is theoretically possible to determine the position of
the center of the polished and the ground distribution and also
the thickness of the rough region, which can be considered as a
method to determine statistical parameters and flatness quality
of a transparent medium surface.

We believe that this discussion will provide a comprehen-
sive understanding of the analytical behavior of the GH shift
and its limitation. Contrary to the former researches, the most
prominent features of this model are to clarify how and where
the axial incident ray returns to the incident medium for angles
equal to and greater than the critical angle and that the incident
ray, as it should be, does not enter into the forbidden medium
at all, since geometrical optics prohibits any penetration of
light into an optically less dense medium in this case. We
hope that this work will encourage formulating questions and
experiments and help us to widen our horizons and lead to
developing physically relevant insights, interpreting data, and
designing further experiments.
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