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Suppression of wave scattering and the realization of transparency effects in engineered optical media and
surfaces have attracted great attention in the past recent years. In this work the problem of transparency is
considered for optical wave propagation in a nonlinear dielectric medium with second-order χ (2) susceptibility.
Because of nonlinear interaction, a reference signal wave at carrier frequency ω1 can exchange power, thus
being amplified or attenuated, when phase-matching conditions are satisfied and frequency conversion takes
place. Therefore, rather generally the medium is not transparent to the signal wave because of “scattering”
in the frequency domain. Here we show that broadband transparency, corresponding to the full absence of
frequency conversion in spite of phase matching, can be observed for the signal wave in the process of sum
frequency generation whenever the effective susceptibility χ (2) along the nonlinear medium is tailored following
a suitable spatial apodization profile and the power level of the pump wave is properly tuned. While broadband
transparency is observed under such conditions, the nonlinear medium is not invisible owing to an additional
effective dispersion for the signal wave introduced by the nonlinear interaction.
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I. INTRODUCTION

In the past decade considerable research efforts have
been devoted to developing synthetic materials appropriately
engineered to mold the flow of light in unprecedented ways,
opening the way to several important applications. A notewor-
thy example is provided by the possibility to suppress wave
reflection and scattering from inhomogeneities or surfaces in
engineered optical media (see, for instance, [1–7] and refer-
ence therein). Optical waves propagating in linear but inhomo-
geneous media generally experience reflection and scattering
when the material properties rapidly change over a distance
of the order of the optical wavelength [8]. In one-dimensional
purely dielectric systems, wave scattering suppression can be
achieved by tailoring the optical refractive index to realize
reflectionless potentials. For continuous media, the synthesis
of reflectionless potentials was investigated in a pioneering
work by Kay and Moses in 1956 [9], and then studied in great
detail in the context of the inverse scattering theory [10,11] and
supersymmetric quantum mechanics [12], with applications
to, e.g., broadband omnidirectional antireflection coatings
[13] and transparent optical intersections [14]. Exploiting the
imaginary part of the dielectric permittivity ε (i.e., absorption)
in addition to its real part, unidirectional antireflection can be
also realized [7]. In the electromagnetic domain, the full access
to four quadrants of the real ε − μ plane by means of subwave-
length structured metamaterials [15,16], in connection with
methods inspired by transformation optics [17], has widely
extended the possibilities of controlling and suppressing wave
scattering, with the demonstration of amazing phenomena like
metamaterial cloaking and invisibility (for recent reviews in
this broad research field see, for instance, [5,16,18]).

In this work we consider the problem of transparency of
optical waves that propagate in a nonlinear dielectric medium
with second-order χ (2) susceptibility. Because of nonlinear
interaction, waves at different carrier frequencies can exchange
power and, when phase-matching conditions are satisfied,
frequency conversion generally occurs [19]. In such a medium

“scattering” can be viewed in the “frequency” domain rather
than in the spatial one. It is well known that nonlinear
interaction of light waves in a quadratic nonlinear crystal
can be exploited to properly control the spectral transmission
(both in amplitude and phase) of a given reference wave at
carrier frequency ω1 (signal wave). For example, in a suitably
designed optical parametric amplifier it was shown [20] that
a narrow transparency window for the signal wave can be
opened, leading to superluminal group velocities. Such a
narrow transparency effect, associated to superluminal prop-
agation, basically reproduced the gain-assisted transparent
pulse propagation experiment by Wang et al. [21] in atomic
vapors and shares certain similarities with electromagnetically
induced transparency (EIT). The transparency windows that
can be opened in a parametric down-conversion process as
well as in EIT media, however, is rather narrow. An open
question is whether broadband transparency can be realized
in a nonlinear optical interaction process. Here we show
that, while broadband transparency cannot be observed in
parametric amplification, it can arise (theoretically with an in-
finite bandwidth) in an up-conversion process, namely in sum
frequency generation (SFG) [19] Fig. 1(a). To observe broad-
band transparency in SFG, the effective susceptibility χ (2)

along the nonlinear crystal has to be suitably apodized, which
can be realized using well-established quasi-phase-matching
(QPM) methods [22,23]. While broadband transparency is
observed under such conditions, the nonlinear medium is not
invisible, since the nonlinear interaction introduces an effective
additional dispersion (phase delay) for the signal wave that
can be detected by nonlinear-induced pulse distortion in a
transmission experiment.

II. SUM FREQUENCY GENERATION: BASIC EQUATIONS
AND THE DRIVEN TWO-LEVEL ATOM ANALOG

A. Model

We consider parametric interaction of three co-propagating
waves with carrier frequencies ω1 (signal wave), ω2
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FIG. 1. (a) Schematic of sum frequency generation (SFG) in a
nonlinear χ (2) crystal with a periodic QPM grating. A weak signal
field at frequency ω1 interacts with a strong pump field at frequency
ω2 to generate a SFG wave at frequency ω3 = ω1 + ω2. L is the
crystal length; � is the QPM grating period. For first-order QPM
grating � = 2π/�k, where �k = |k3 − k2 − k1| is the wave-vector
mismatch of the three interacting waves. (b) Coherently driven two-
level atom analog of the SFG process. The Rabi frequency q(z) of the
exciting optical pulse, with carrier frequency detuned by 2δ from the
atomic transition resonance, corresponds to the apodization profile of
the QPM grating.

(pump wave), and ω3 = ω1 + ω2 (SFG wave) in a nonlinear
medium of length L with a second-order χ (2) nonlinearity,
which are phase matched via a QPM grating [Fig. 1(a)]. The
pump field at frequency ω2 is assumed to be a strong and
continuous-wave field, whereas the signal at carrier frequency
ω1 injected into the medium as well as the SFG wave are
assumed weak but arbitrarily broadband. In the effective
plane-wave approximation and taking into account material
dispersion, from Maxwell’s equations the electric field E(z,t)
is the medium found to satisfy the nonlinear and dispersive
wave equation (see, for instance, [24])

∂2E
∂z2

+
∫ ∞

−∞
dω k2(ω)Ẽ(z,ω) exp(−iωt) = μ0

∂2PNL

∂t2
, (1)

where Ẽ(z,ω) = (2π )−1
∫ ∞
−∞ dω E(z,t) exp(iωt) is the Fourier

transform of E(z,t), k(ω) = (ω/c0)
√

1 + χ̃ (ω) = (ω/c0)n(ω)
is the dispersion relation defined by the complex linear
susceptibility χ̃(ω) [or by the complex refractive index n(ω) =√

1 + χ̃ (ω)], c0 is the speed of light in vacuum, μ0 is the
vacuum magnetic permeability, and PNL is the nonlinear driv-
ing polarization term. For a quadratic medium and neglecting
dispersion and absorptive effects of second-order polarization,
one can take PNL(z,t) = ε0χ

(2)(z)E2(z,t), where χ (2) is the
spatially modulated nonlinear susceptibility that accounts for
the QPM grating. To study the process of SFG, the electric
field E(z,t) is assumed to be given by the superposition of three
wave trains with carrier frequencies ω1 (signal field), ω2 (pump
field), and ω3 = ω1 + ω2 (SFG field), copropagating along the
longitudinal z direction. Phase matching is accomplished by

a QPM grating, i.e., the susceptibility χ (2) is a quasiperiodic
function of z with period �

χ (2)(z) =
∞∑

n=−∞
χ (2)

n (z) exp(−2inπz/�), (2)

where the Fourier coefficients χ (2)
n (z) are slowly varying

functions of z over one period �. In practice, the slow
dependence of coefficients on z can be achieved by a + (−)
reversal of domains in the ferroelectric crystal with a local
period and local duty cycle that are slowly varying along the
z axis; methods to apodize the QPM grating are described
and demonstrated, for instance, in Ref. [22]. For first-order
QPM, the grating period � satisfies the condition � = 2π/�k,
where �k ≡ |k3 − k2 − k1| is the wave-vector mismatch of
interacting waves and kl = k(ωl) (l = 1,2,3). After setting

E(z,t) = 1
2 {A1(z,t) exp(−iω1t + ik1z)

+A2(z,t) exp(−iω2t + ik2z) (3)

+A3(z,t) exp(−iω3t + ik3z) + c.c.}, (4)

the evolution equations of the slowly- varying envelopes
Al(z,t) (l = 1,2,3) can be derived, in the limit of weak non-
linearity and quasimonochromatic wave trains, by a multiple-
scales asymptotic expansion analysis (see, for instance, [25]).
The resulting equations read [26]

2ik1
∂A1

∂z
= [

k2
1 − k2(ω1 + i∂t )

]
A1 − 2k2

1

n2
1

deffA
∗
2A3, (5a)

2ik2
∂A2

∂z
= [

k2
2 − k2(ω2 + i∂t )

]
A2 − 2k2

2

n2
2

deffA
∗
1A3, (5b)

2ik3
∂A3

∂z
= [

k2
3 − k2(ω3 + i∂t )

]
A3 − 2k2

3

n2
3

d∗
effA1A2, (5c)

where nl = n(ωl) (l = 1,2,3) are the refractive indices at the
three carrier wavelengths,

deff(z) ≡ 1
2χ (2)(z) exp(i�kz) = 1

2χ
(2)
1 (z) (6)

is the effective nonlinear interaction coefficient for first-order
QPM, and the overline denotes a spatial average over a few
modulation periods of the QPM grating. For a square-wave
+ (−) modulation of the ferroelectric domains with 50% duty
cycle and uniform period, one has

deff(z) = 2

π
d0W (z), (7)

where d0 is the nonlinear coefficient in the absence of the
grating and the real envelope W , with 0 � W (z) � 1, can be
tailored rather arbitrarily with the methods demonstrated in
Ref. [22], for example, by means of the domain cancellation
technique.

The linear operators on the right-hand side of Eqs. (5)
describe the linear dispersive and absorptive properties of the
medium at any order of approximation. In the following, we
will consider spectral regions of transparency for the medium,
so that we will neglect the imaginary part of k(ω). In addition,
we will assume a strong and continuous-wave pump field, so
that A2 can be taken to be constant (independent of space
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and time) in Eqs. (5a) and (5c). Under the no-pump-depletion
approximation, one can thus write

2ik1
∂A1

∂z
= [

k2
1 − k2(ω1 + i∂t )

]
A1 − 2k2

1

n2
1

deffA
∗
2A3, (8a)

2ik3
∂A3

∂z
= [

k2
3 − k2(ω3 + i∂t )

]
A3 − 2k2

3

n2
3

d∗
effA1A2. (8b)

B. Driven two-level atom analogy

The coupled equations (8a) and (8b) describing the SFG
process in the no-pump-depletion approximation, when writ-
ten for monochromatic waves, bear a close analogy to the
optical Bloch equations describing the dynamics of a two-level
atomic system driven by a near-resonant optical pulse. Such an
analogy, which is fruitful for the prediction of the transparency
effect presented in the next section, has been previously
discussed in the monochromatic case in Ref. [27] and applied
to efficient broadband SFG based on the analog of rapid
adiabatic passage using chirped QPM gratings [27,28]. Other
analogies between multistep frequency conversion processes
in nonlinear second-order optical media and coherent popula-
tion transfer in coherently driven multilevel atomic systems,
including stimulated Raman adiabatic passage, have been
highlighted in the recent literature as well [29,30].

To show the equivalence of Eqs. (8a) and (8b) with the
optical Bloch equations of a driven two-level atom [27,30],
let us consider a monochromatic signal wave with frequency
offset 
 from the reference frequency ω1. Since Eqs. (8a)
and (8b) are linear ones, the general case of an incident pulsed
wave is obtained by standard Fourier analysis starting from the
solution of the monochromatic case. After setting in Eqs. (8a)
and (8b)

A1(z,t) = u(z) exp[−i
t + iβ(
)z], (9a)

A2(z,t) = n1

n3

√
k3

k1
v(z) exp[−i
t + iβ(
)z], (9b)

with

β(
) ≡ −k2
1 − k2(ω1 + 
)

4k1
− k2

3 − k2(ω3 + 
)

4k3
, (10)

one obtains the following coupled equations for the amplitudes
u(z) and v(z):

i
du

dz
= −δu − q(z)v, (11a)

i
dv

dz
= δv − q∗(z)u, (11b)

where we have set

q(z) =
√

k1k3A
∗
2deff(z)

n1n3
, (12)

δ = δ(
) = k2
3 − k2(ω3 + 
)

4k3
− k2

1 − k2(ω1 + 
)

4k1
. (13)

Equations (11) are analogous to the optical Bloch equations for
a driven two-level atom describing the transition between the
two atomic levels induced by a nearly resonant optical pulse

with Rabi frequency q(z) and frequency detuning 2δ [Fig. 1(b)]
[27]. Note that the detuning δ, as given by Eq. (13), accounts
for material dispersion at any order. A simple expression of
δ(
) is obtained when group-velocity dispersion (and higher-
order dispersion effects) are negligible, and k2(ωl + 
) can be
expanded in power series up to first order in 
. After setting
k2(ωl + 
) � k2

l + 2kl(ωl)
/vgl , where vgl = (dk/dω)−1
ωl

is
the group velocity at the carrier frequency ωl , one simply
obtains

δ(
) � 


2

(
1

vg1
− 1

vg3

)
, (14)

where vg1 and vg3 are the group velocities of signal and SFG
waves, respectively. In the following analysis, we will assume
that the QPM grating is not chirped, so that the Rabi frequency
q(z) entering in Eqs. (11) can be assumed to be real.

As shown in the next section, the broadband transparency
effect predicted in this work is based on the two-level atom
analogy and existence of off-resonance Rabi pulses q(z), which
do not transfer population between the two atomic levels.
It should be noted that the two-level atom analogy can be
established for the SFG process, but not for other second-order
nonlinear interactions like parametric amplification involving
a down-conversion process. In the latter case, which was
considered in Refs. [20,26], the underlying equations for
idler and signal waves differ from Eqs. (11) because of
the replacement −q∗(z)u → q∗(z)u on the right-hand side
of Eq. (11b). The resulting coupled equations describe an
exponential (rather than oscillatory) behavior of interacting
waves, and are similar to coupled-mode equations found in
Bragg scattering theory of counterpropagating waves [20,26].
As a result, broadband transparency effects are prevented
in parametric amplification, where only narrow transparency
windows can be opened in the spectral gain curve and
associated to superluminal group velocities [20,26].

III. TRANSPARENCY IN SUM
FREQUENCY GENERATION

A. Theoretical analysis

The solution to Eqs. (11), from the input z = −L/2 to the
output z = L/2 planes of the nonlinear medium, can be written
in the general form(

u(L/2)
v(L/2)

)
=

(
M11(δ) M12(δ)
M21(δ) M22(δ)

)(
u(−L/2)
v(−L/2)

)
, (15)

where the transfer matrix M is unimodular with M11 =
M∗

22, M21 = −M∗
12, and |M11|2 + |M12|2 = 1. For signal

excitation at the input plane z = −L/2, i.e., for v(−L/2) = 0,
the spectral transmission of the signal wave is simply given by

t(
) =
(

u(L/2)

u(−L/2)

)
v(−L/2)=0

= M11. (16)

Note that t(
) can be factorized as

t(
) = t0(
) exp[iδ(
)L], (17)

where exp[iδ(
)L] is the spectral transmission (phase delay)
introduced by the medium in the absence of the nonlinearity,
i.e., for q(z) ≡ 0, and t0(
) accounts for the nonlinear
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interaction. Broadband transparency is realized provided that

M12(δ) = M21(δ) = 0, |M11(δ)| = |M22(δ)| = 1 (18)

for any detuning δ, i.e., |t0(
)| = 1 for any frequency offset 


of the carrier wave from the reference frequency ω1. This
means that for an arbitrary optical signal pulse propagating
into the nonlinear medium no SFG field is produced at the
output of the crystal in spite of phase matching. We note that
invisibility is a more stringent condition than transparency,
since it requires t0(
) = 1 for any frequency 
. If the nonlinear
medium is transparent but the phase of t0(
) is not flat, a
propagating signal pulse in the medium would suffer for an
additional phase delay arising from the nonlinear interaction,
resulting in pulse distortion as compared to the invisible regime
χ (2) = 0 of linear propagation.

A necessary condition for the observation of transparency
can be readily established as follows. Exact solution to the
Bloch equations (11) is available at exact resonance δ = 0 for
an arbitrary shape of the Rabi frequency q(z). In fact, for δ = 0
one simply has M11 = cosA, where

A =
∫ L/2

−L/2
q(z)dz (19)

is the “area” of the driving pulse in the quantum mechanical
analogy. Hence transparency at δ = 0 requires

A = Nπ (20)

with N integer. Equation (20) provides a necessary condition
for broadband transparency, since it ensures transparency at
resonance δ = 
 = 0. However, for a general profile q(z)
transparency is not found far from resonance, i.e., for δ �= 0,
especially if there is a non-neglibile group-velocity mismatch
between signal and sum-frequency waves [see Eq. (14)].
For example, let us consider the simplest case W (z) = 1,
corresponding to a nonapodized (uniform) QPM grating,
so that q(z) = q0 constant in the range −L/2 < z < L/2.
According to Eq. (20), transparency at resonance δ = 0
requires q0 = Nπ/L. However, for δ �= 0 the transmittance
in not unity. In fact, after a simple calculation one finds

|t0(δ)|2 = cos2
(√

q2
0 + δ2L

) + δ2

δ2 + q2
0

sin2
(√

q2
0 + δ2L

)
.

(21)

The question thus arises whether there exist special profiles
q(z) such that |t0(δ)|2 = 1 for any value of the detuning δ. In
the theory of driven two-level atoms, it is known [31] that for
q(z) of the form

q(z) = q0

cosh(αz)
, (22)

transparency at any value of detuning δ can be realized
whenever the condition (20) on the area is satisfied. The
parameter α entering in Eq. (22) can be taken arbitrarily,
and its inverse 1/α basically determines the characteristic
length of nonlinear interaction. For such a profile of q(z), exact
solution for the optical Bloch equations (11) can be obtained in
terms of hypergeometric functions [31], and the transparency
at special values of the amplitudes q0 satisfying the area
condition (20) can be explained in terms of supersymmetric

quantum mechanics [32]. Assuming a medium length L such
that cosh(αL/2) 	 1, the nonlinear correction t0(
) to the
transmission coefficient t can be obtained in a closed form and
reads explicitly

t0(
) = 
(1/2 + i�)
(1/2 + i�)


(1/2 + i� − A/π )
(1/2 + i� + A/π )
, (23)

where we have set

� ≡ δ(
)

α
� 


2α

(
1

vg1
− 1

vg3

)
, (24)

A = πq0/α is the area [defined by Eq. (19) with L → ∞],
and 
(x) is the Gamma function. From Eq. (23) the spectral
transmittance T (
) = |t(
)|2 = |t0(
)|2 for the signal wave
can be calculated, which reads

T (
) = 1 − sin2 A
cosh2(π�)

, (25)

where � = �(
) is given by Eq. (24). Note that broadband
transparency T = 1 is obtained provided that A = Nπ with
N integer, according to Eq. (20). Once the normalized spatial
profile W (z) of the QPM grating is designed according to
W (z) = 1/ cosh(αz), from Eqs. (7) and (12) it follows that
the transparency condition A = Nπ is met for special values
of the pump amplitude A2. In terms of the intensity I2 =
(1/2)ε0c0n2|A2|2 of the strong pump wave, the transparency
condition is satisfied provided that I2 = NItr , where N is an
integer number and Itr is the transparency pump intensity given
by

Itr = 1

32

ε0c0n1n2n3λ1λ3α
2

d2
0

. (26)

For a pump intensity I2 = NItr , the nonlinear medium
is broadband transparent, i.e., no SFG wave is generated
at the output of the crystal for any arbitrarily broadband
incident signal pulse. In fact, once the area condition (20) is
satisfied the transparency bandwidth is in principle infinite
according to Eq. (25). In practice, however, deviations of
the profile of the effective susceptibility from the ideal sech
shape or pump intensity deviations from the transparency
value result in the appearance of a spectral region around
the phase-matching condition where the transmittance is not
unitary. For example, if the pump intensity I2 is close to but
slightly detuned from the transparency value Itr , according
to Eq. (25) transparency is not observed in a spectral region
with a bandwidth �
 determined by the condition π |�| ∼ 1,
i.e., by the group-velocity mismatch and interaction length
�
 ∼ (2α/π )|1/vg1 − 1/vg3|−1 [see Eq. (24)].

It should be noted that, even though the transparency
condition is met, the nonlinearity of the medium is not invisible
since the phase of t0(
), as given by Eq. (23), is not flat. For
example, in the simplest case N = 1, i.e., for A = π , one has

t0(
) = δ + iα/2

δ − iα/2
= exp[iφ(
)], (27)

with

φ(
) = 2 arctan

(
α

2δ(
)

)
� 2 arctan

[
αvg1vg3


(vg3 − vg1)

]
. (28)
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The additional phase delay φ(
) leads to an effective non-
linear induced contribution to the linear material dispersion,
and can be detected in pulse transmission experiments, as
discussed in the next subsection.

B. Numerical results

To illustrate the phenomenon of SFG transparency and
to provide some design parameters, let us consider as an
example nonlinear frequency conversion in a periodically
poled lithium niobate (PPLN) crystal pumped at the wave-
length λ2 = 810 nm and probed with a weak signal field at
λ1 = 1.55 μm. The SFG wave corresponds to the wavelength
λ3 = 532 nm. We assume extraordinary wave propagation,
corresponding to a nonlinear coefficient d0 = d33 � 27 pm/V.
The temperature-dependent dispersion relation k = k(ω) =
n(ω)ω/c0 for extraordinary waves in lithium niobate is
determined using Sellmeier equations from Ref. [33]. At 25 ◦C,
one can estimate n1 = 2.1381, n2 = 2.1748, n3 = 2.2343,
the group velocities vg1 � 0.4581c0, vg3 � 0.4069c0, and a
first-order QPM grating with period � = 2π/�k = 7.38 μm,
which is accessible with current poling technology. As an
example, Fig. 2 shows the numerically computed transmittance
(modulus square of t0) and phase delay (phase of t0) versus
wavelength in a L = 2.4 cm long PPLN crystal for α = 5 cm−1
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FIG. 2. Numerically computed (a) spectral transmittance, and
(b) phase delay for the signal wave in a 2.5-cm-long PPLN crystal with
cosh−1(αz)-apodized profile for α = 5 cm−1 and for increasing values
of the pump intensity I2. Curve 1: I2 = 0.5Itr ; curve 2: I2 = Itr ;
curve 3: I2 = 1.3Itr ; curve 4: I2 = 2Itr ; curve 5: I2 = 2.6Itr . The
pump intensity at transparency is Itr � 24.37 MW/cm2.

and for increasing values of the pump intensity I2. The intensity
at transparency is given by Itr � 24.37 MW/cm2 according to
Eq. (26). Note that, for a noninteger value of the normalized
pump intensity I2/Itr , SFG is observed in a wavelength range
of the signal wave corresponding to phase matching of the
nonlinear interaction. This is shown by curves 1, 3, and 5
in Fig. 2(a), where the spectral transmittance shows a dip
near the wavelength of perfect phase matching. The central
wavelength of the dip and its width are determined by the
phase-matching condition in the nonlinear interaction, i.e., by
the QPM grating period, the decay length 1/α of the QPM
grating, and the material dispersion. As the ratio I2/Itr is an
integer number (curves 2 and 4 in Fig. 2), there is no SFG wave,
i.e., the medium is transparent for the signal wave according to
the theoretical analysis. Nevertheless, a wavelength-dependent
phase delay is accumulated in the nonlinear interaction [see
Fig. 2(b)], corresponding to an additional nonlinear-induced
dispersion term for the signal field. In an experiment, the
effect of the nonlinear-induced dispersion at the transparency
regime can be detected by comparing the propagation of a
short optical pulse along the medium with the pump field
switched off and on. This is illustrated in Fig. 3, which shows
the numerically computed propagation of a Gaussian input
signal pulse A2(−L/2,t) ∝ exp[−(t/τp)2] along the 2.4-cm-
long PPLN crystal when the pump intensity is tuned at the
transparency value I2 = Itr (curve 1) and when it is switched
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FIG. 3. Numerically computed propagation of a Gaussian signal
pulse at carrier wavelength λ1 = 1.55 μm in a 2.5-cm-long PPLN
crystal with cosh−1(αz)-apodized profile for α = 5 cm−1 and for
a FWHM pulse width (a) �τp = 23.5 ps, and (b) �τp = 589 fs.
Curve 1 shows the transmitted pulse intensity distribution of the
signal field for a continuous-wave pump intensity I2 = Itr � 24.37
MW/cm2, whereas curve 2 is the transmitted pulse distribution of the
signal waveform when the pump field is switched off (I2 = 0, linear
propagation regime). The thin dotted curve [almost overlapped with
curve 2 in (a)] is the pulse intensity distribution of the weak Gaussian
signal pulse at the input plane of the crystal.
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off I2 = 0 (curve 2). The pulse duration �τp, defined as the
full width at half maximum of the field intensity, is related to
τp by the relation �τp = √

2 ln2τp. For a relatively long input
pulse [Fig. 3(a), �τp � 23.5 ps], the linear dispersion of the
medium is negligible, and the nonlinear-induced dispersion is
responsible for a time delay of the transmitted pulse, given by
the group delay τd = d(φ/d
) = 2(vg1 − vg3)/(αvg1vg3) �
3.6 ps. For shorter pulses [Fig. 3(b), �τp � 589 fs], the
linear dispersion of the medium is non-negligible [curve 2
in Fig. 3(b)], and the additional dispersion introduced by the
nonlinear interaction at I2 = Itr is responsible for strong pulse
reshaping. In particular, one can observe pulse splitting with a
long pulse tail [curve 1 in Fig. 3(b)].

IV. CONCLUSIONS AND OUTLOOK

Optical waves propagating in a linear but inhomogeneous
medium generally show reflection and scattering when the
material properties rapidly change over a distance of the order
of the optical wavelength [8]. However, proper tailoring of the
dielectric permittivity can suppress scattering and the medium
thus appears to be transparent [7,9,13]. A different kind of
“scattering” can occur in the frequency domain when the
optical waves propagate in a nonlinear χ (2) medium. When
phase-matching conditions are met, efficient frequency con-
version can occur, and an optical wave at a reference frequency
(signal field) can be amplified or attenuated owing to frequency

conversion. Here we have investigated the possibility to
realize optical transparency in the process of sum frequency
generation in a second-order nonlinear crystal. By exploiting
the quantum-optical analogy between the process of SFG in the
undepleted pump approximation and the coherent excitation of
a two-level atom by a near-resonant pulse with tailored shape
and pulse area, we have shown that broadband transparency
can be realized in the nonlinear crystal with an engineered
QPM grating. Such a result could be of interest in the nonlinear
control of material transparency and is expected to motivate
further theoretical and experimental studies in the field of
transparency and invisibility in nonlinear media. A few natural
extensions to the present study can be envisaged. For example,
is it possible to engineer the nonlinear interaction to realize
one-way transparency? Also, can one tailor the nonlinearity
of the medium to make it invisible? One possibility might be
to engineer the material properties to allow for an imaginary
part of the nonlinear susceptibility [34], i.e., to explore the
full domain of complex nonlinear susceptibility. In this case,
transferring the recent proposal by Horsley and co-workers [7]
of spatial Kramers-Kronig relations for linear susceptibilities
to the nonlinear ones, it would be possible to realize one-way
transparency and nonlinear invisibility. Other extensions of
the present study might be the analysis of transparency and
invisibility in two-dimensional QPM gratings, in nonlinear
interactions with phase-matched counterpropagating waves
[35], and in frequency wave mixing based on third-order
nonlinear media.
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