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Nonlinear all-optical switch based on a white-light cavity
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It is well known that there is a bottleneck for nonlinear all-optical switching, namely, the switching power and
the switching time cannot be lowered simultaneously. A lower switching power requires a resonator with a high
quality (Q) factor, but leads to a longer switching time. We propose to overcome this bottleneck by replacing
the nonlinear cavity in such an all-optical switch by a white-light cavity. This can be done by doping three-level
atoms in the ring resonator and applying incoherent pump and coherent driving fields on it. The white-light cavity
possesses broadband resonance in a linear region. Therefore, for the incident pulse, a broad range of frequency
components can take part in the nonlinear process, and so it requires lower power to achieve switching compared
to the conventional ring resonator. On the other hand, the refractive index of a white-light cavity has negative
dispersion, leading to a fast group velocity. This results in a shorter time to build up the resonant response,
yielding a short switching time.
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I. INTRODUCTION

In recent decades, the development of optical technol-
ogy [1] in the field of information transfer and storage has
led to a replacement of many electronic devices by optical
devices [2,3]. However in the field of information processing
the electronics technology still dominates. This is due to the
difficulties in replacing the electronic switch (or transistor) by a
photonic switch (or a phototransistor). In principle, all-optical
switches based on the optical nonlinearity of materials possess
unique advantages, such as lower loss and a fast response,
superior to those of electric switches [4]. Therefore it is
anticipated that an all-optical switch will be a key element for
future optical communications and optical computation [4].

Nonlinear optical switches are based on the nonlinear
optical properties of media which can change the output state
of the signal light through a controllable pump or the signal
light itself. This type of switch requires strong field intensity
to generate third-order nonlinearity. However, a switch driven
by a strong field cannot be used in a cascade system as the
system can become very unstable. To realize a lower-power
optical switch, a high-Q resonator can be used to amplify the
field in the resonator under weak field input.

Here we consider a fiber ring resonator because of its simple
structure and compatibility with the present fiber network.
Urquhart proposed the fiber ring cavity structure [5], which
has the advantage of enhancing nonlinearity, but the losses are
also increased. Subsequently the ring resonator [6] has been
widely applied in all kinds of optical switching structures [7,8].
In order to compensate the losses, Bananej and Li suggested
using an erbium-doped fiber (EDF) to make part of the ring
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to compensate the loss through the pump, and finally formed
an annular optical amplifier [9]. On this basis, Li proposed an
active double-coupled ring resonator (DCRR) [10] all-optical
switch, in which half of the fiber ring is made by a 980-nm-
laser-pumped erbium-doped fiber to form an erbium-doped
fiber amplifier (EDFA) [11]. This structure can further reduce
the device size, allowing high-density integration.

In this paper we adopt the ring resonator as an example
to give our suggestion which can break the bottleneck pre-
sented in all resonator-based nonlinear optical switches. The
bottleneck is that switching power and switching time cannot
be reduced simultaneously. In practice all-optical switches
must be low power, high speed, and low loss. Low threshold
switching power requires a high-Q cavity [12]. However the
time required to build up the resonant response (or decay of
the resonant response) in the ring resonator also depends on
its quality factor [13]. That means that, when the Q value of
the cavity is high, the time required to establish a steady state
is very long, leading to a low switching speed. Therefore we
want to provide a way to deal with this dilemma with the help
of a white-light cavity.

Unlike the conventional cavity possessing discrete resonant
frequencies, when the cavity is filled with a negative-dispersion
medium, it is possible to realize a continuous range of the
spectrum resonating at the same time. Such a special cavity
with broadband resonance is called a white-light cavity [14].
Initially white-light cavities were suggested in order to
achieve precision measurements such as gravitational wave
detection [15,16] and ring laser gyroscopes [17]. Usually high
sensitivity requires both high finesse and wide bandwidth
of the cavity, but high finesse leads to a narrow bandwidth
in a conventional cavity. So only a white-light cavity can
provide an effective way to increase the bandwidth and solve
this dilemma. Three-level � atomic systems with appropriate
driving fields applied can be used to get negative dispersion
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with a gain doublet and construct white-light cavity [18–22].
Among them, we proposed to realize a white-light cavity
through a Fabry-Pérot cavity filled with a gas of three-level
atoms applied by incoherent pump and coherent driving
fields [22].

In this paper, we combine a white-light ring cavity with a
nonlinear double-coupled ring resonator. This will allow the
switching power to be reduced and the switching speed to be
improved at the same time. When the two most important
performance parameters are not contradictory, low-power
ultrafast nonlinear all-optical switch in a double-coupled ring
resonator can be achieved.

The paper is organized as follows: In Sec. II, we introduce
the parameters and properties of the present double-coupled
nonlinear ring resonator all-optical switch. In Sec. III, we
improve the ring resonator by doping it with three-level atoms
to achieve a white-light cavity with appropriate pump and
driving fields. In Sec. IV, we analyze the performance of the
nonlinear optical switch based on a white-light cavity, i.e.,
the switching power and switching speed. The conclusion is
presented in Sec. V.

II. DOUBLE-COUPLED NONLINEAR RING RESONATOR
ALL-OPTICAL SWITCH

The configuration of the all-optical switch based on a
nonlinear ring cavity [11] is shown in Fig. 1. A ring fiber is
coupled with two straight waveguides through the couplers C1

and C2. We denote the reflection and transmission coefficients
of coupler Ci(i = 1,2) by ri and ti , respectively. They satisfy
the relationship r2

i + t2
i = 1. Half of the ring is made of

silica fiber of length l2, and the rest is erbium-doped fiber of
length l1. The total length of the ring resonator is l = l1 + l2.
The dissipation of the switch includes the insertion losses of
coupler Ci , γi , losses in the EDF and silica fiber, ηi , and
their absorption coefficients per unit length αi (i = 1,2). To
compensate these losses, the EDF is pumped by 980 nm light
through wavelength division multiplexing (WDM) with gain
G. The linear index of the fiber (both the EDF and silica

FIG. 1. Scheme of a nonlinear all-optical switch in a double-
coupled nonlinear ring resonator.

fiber) is n1 = 1.5, and the nonlinear refractive coefficients are
n21 (≈10−15 m2/W) for the EDF and n22 (≈10−20 m2/W) for
silica.

Typical values of the dissipation parameters are γ1 = γ2 =
0.05, η1 = 0.2, η2 = 0.005, α1 = 0.7 m−1, and α2 = 7 ×
10−5 m−1 [11] and the length of the ring is l = 3.1 × 10−5 m.
To compensate the dissipation, we tune the gain to the value
G = 1.392, so that√

G(1 − η1)(1 − η2)(1 − γ1)(1 − γ2)e−(α1l1+α2l2) ≈ 1, (1)

and the losses in the switch can be ignored.
When a continue wave (cw) signal with power Pin = |Ein|2

and frequency ω0 is launched into port A, the signal passes
through the couplers C1 and C2 successively, and is finally
output at port C with power Pt = |Et |2 and port B with
power Pr = |Er |2. Under the condition of Eq. (1) and ignoring
all losses, the reflection R, transmission T , and intracavity
amplification M of the switch can be simplified as

R(ω) =
∣∣∣∣ Er

Ein

∣∣∣∣
2

= r2
1 − 2r1r2 cos (ϕ) + r2

2

1 − 2r1r2 cos (ϕ) + r2
1 r2

2

, (2)

T (ω) =
∣∣∣∣ Et

Ein

∣∣∣∣
2

= 1 − R(ω), (3)

M(ω) =
∣∣∣∣ E2

Ein

∣∣∣∣
2

= T (ω)

t2
2

. (4)

Here ϕ is the single-pass phase shift in the ring, and is a
purely real value for this lossless case. It can be divided into
two parts: the linear part ϕ0 and the nonlinear part �ϕ, i.e.,
ϕ = ϕ0 + �ϕ. The linear part is given by

ϕ0 = ω0

c
n1l. (5)

As the nonlinear refractive index of the EDF (n21 ≈
10−15 m2/W), is much larger than that of the silica fiber
(n22 ≈ 10−20 m2/W), the nonlinear part can be expressed as

�ϕ = ω0n21l1

c

P2

S
+ ω0n22l2

c

P4

S
≈ ω0n21l1

c

P2

S

= ω0n21lMPin

2cS
, (6)

where P2(4) = |E2(4)|2 is the circulating clockwise power
for coupler C2 (C1). Please note P2 is the power without
nonlinearity. In the last step in Eq. (6), P2(�ϕ = 0) =
M(�ϕ = 0)Pin, according to Eq. (4), is used. Here S is the
effective cross section of the ring cavity. From now on, we set
n21 = 3.5 × 10−15 m2/W and S = 1.5 × 10−13 m2.

The wavelength of the signal is λ0 = 1550 nm
(ω0 = 2πc/λ0). As l = 20λ0 and n1 = 1.5, the linear phase
shift ϕ0 is an integral multiple of 2π and the resonance
condition is satisfied. We consider the case of r1 = r2 = rc

and rc → 1.
When the input power is relatively small, the nonlinear

effects can be ignored and, with ϕ = ϕ0 = 60π , we obtain

M(�ϕ = 0) = 1

1 − r2
c

, R(�ϕ = 0) = 0,

(7)
T (�ϕ = 0) = 1.
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The signal is extracted at port C with Pr = 0 and Pt = Pin.
This corresponds to the “off” state of the switch.

If the input power increases, the nonlinear effects become
important. We consider the case when the induced Kerr effect
is such that the resulting nonlinear phase shift is �ϕ = π . We
then obtain

R(�ϕ = π ) ≈ 1, T (�ϕ = π ) ≈ 0, (8)

i.e., the signal is extracted at port B with Pr = Pin and Pt = 0.
This refers to the “on” state of the switch. Therefore, the
switching condition for such a nonlinear switch is �ϕ = π .

In order to achieve �ϕ = π for single-frequency incident
light, the switching power should be [11]

P inc = λS

n21lM(�ϕ = 0)
= λS

n21lQT (�ϕ = 0)
= λS

n21lQ
,

(9)

where Q is the quality factor of the cavity [23], which satisfies

Q = |E2|2
|Et |2 = M

T
. (10)

We note that, on resonance, M is equal to Q, i.e., Q = M

(�ϕ = 0), because in this case |Et |2 = |Ein|2 and T = 1.
Another important performance parameter of the optical

switch is the switching time. The switching time τ depends
on both the material response time τf and the ring cavity
lifetime τc, i.e., τ = τc + τf . The response time of an EDF
at λ0 = 1550 nm is of the order of subnanoseconds [24]. In
contrast, the cavity lifetime τc is the time needed for the field
accumulation in the cavity, which is proportional to the quality
factor Q as [11]

τc = n1lQ

c
= n1l

λ0
Qτ0. with τ0 = λ0

c
. (11)

Usually τc � τf , and therefore the switching time is
determinated by the cavity lifetime τc only. In the above
equation τ0 is the period of the input field and is chosen as
the unit of time in this paper.

On comparing Eqs. (9) and (11), it is clear that decreasing
the switching power through a high-Q cavity results in
prolonging the switching time. It is difficult to reduce the
switching power and, at the same time, decrease the switching
time. This reciprocity between the switching power and the
switching time is a bottleneck of nonlinear all-optical switches.

We show in the next sections how it is possible to use a
white-light cavity to overcome this problem. However, before
discussing the role of white-light cavities, we present how
a driven three-level atomic system can lead to a white-light
cavity with a broadband resonance.

III. WHITE-LIGHT CAVITY

For a conventional cavity, there are discrete frequencies
which satisfy the resonance condition

Re(n1)
ωres

c
l = 2mπ, (m = 1,2, . . .). (12)

In order to realize broadband resonance, we need negative
dispersion for the index of refraction n1. In addition, the
imaginary part of n1 should also be eliminated to avoid
detuning.

FIG. 2. Level scheme of the doped three-level atom.

We follow our previous work [22] to realize the white-light
ring cavity. Three-level atoms with the configuration shown in
Fig. 2 are homogeneously doped inside the ring resonator.

The transition frequency ωab associated with the |a〉 ↔ |b〉
transition is chosen to be resonant with the ring resonator,
i.e., ωab = ω0. The transition |a〉 ↔ |b〉 interacts with the
signal field, and provides an alternative linear susceptibility χ .
This susceptibility is controllable through external fields. For
example, the coherent driving field with Rabi frequency 
μ is
coupled with the transition |a〉 ↔ |c〉 resonantly. In addition,
an incoherent field is used to pump the atoms from level |b〉
to level |a〉 with a pumping rate r . The decay rates from level
|a〉 to |b〉 and from level |a〉 to |c〉 are denoted by γ and γμ,
respectively. The decay rate from level |c〉 to |b〉 is ignored.

According to Refs. [22,25], the susceptibility of the doping
atoms can be expressed as

χ (ω)

= A
[(ωab − ω) − iγcb]

(
ρ(0)

aa − ρ
(0)
bb

) + 
μρ(0)
ca

[|
μ|2 − (ωab− ω)2 + γabγcb]+ i(ωab − ω)(γcb+ γab)
,

(13)

where A = Nd2
ab/ε0� with N being the number density of

doping atoms and dab being the dipole moment of the transition
|a〉 ↔ |b〉. For a weak signal field, the steady-state values of
ρ(0)

aa , ρ
(0)
bb , and ρ(0)

ca are obtained as follows:

ρ(0)
aa = 2r|
μ|2

2(2r + γ )|
μ|2 + rγμγca

, ρ
(0)
bb = γ

r
ρ(0)

aa ,

ρ(0)
ca = −i
∗

μ

(
1 − 2ρ(0)

aa − ρ
(0)
bb

)
γca

. (14)

The decay rates in Eq. (14) are defined as γμ = 0.2γ , γca =
(γ + γμ)/2, γab = (r + γ + γμ)/2, and γcb = r/2. For lower
density of the doping atoms, we set A = γ in Eq. (13).

When the pump is applied and its pumping rate is larger than
the decay rate, i.e., r > γ , the susceptibility will show negative
dispersion near ωab (=ω0). Furthermore the imaginary part
of the susceptibility is approximately equal to zero in the
presence of the coherent driving field 
μ. In Fig. 3, we plot
the susceptibility of such a three-level atom system with the
pumping rate r = 2γ and the driving field 
μ = 8γ .

In order to realize a white-light cavity, the parameters must
be optimized to satisfy the equation [15,22]

∂Re[n(ω)]/∂ω|ω=ωab
=−n(ωab)/ωab. (15)
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FIG. 3. Susceptibility as a function of the frequency of the
signal field for pumping rate r = 2γ with 
μ = 8γ . γ = 2π ×
4.6 MHz [26].

The linear index of the doped ring can be expressed as

n(ω) =
√

2.25 + χ (ω). (16)

Here 2.25 originates from the index of the ring fiber n1 =
1.5. Following the same procedure as adopted in Ref. [22], we
can obtain a condition involving the pumping rate r and the
driving field 
μW to realize broadband resonance.

To confirm the prediction, we calculate the reflection R and
intracavity amplification M as functions of frequency in Fig. 4
for the ring cavity doped with a three-level atom system with
ϕ(ω) = n(ω)lω/c in the linear region with n(ω) defined in
Eq. (16). As the index n(ω) is complex here, the amplification
M should be redefined as

M(ω) =
∣∣∣∣ t1e

iϕ(ω)/2

1 − r1r2eiϕ(ω)

∣∣∣∣
2

. (17)

From Fig. 4(a), it is clear that, when the pump and driving
field satisfy the white-light cavity condition, i.e., r = 4γ and

μW = 333.31γ , there is a wide band with a width of about
300γ in which the reflection is near 0, which means broadband
resonance. As a comparison, the reflection of a conventional
ring cavity without doping shows a valley shape at the exact
resonance ωab = ω0. The FWHM of the white-light cavity is
about 400γ while that of a conventional ring resonator is 120γ .

In Fig. 4(b), we plot the spectrum of the intracavity
amplification M . This also shows broadband resonance for
the white-light cavity. In addition, M(ωab) in the white-light
cavity is about 102, while M(ωab) in a conventional cavity is
100. They are nearly the same which means that their Q factors
are nearly the same. The reason why M(ωab) in the white-light
cavity is a little larger than that in a conventional cavity is that
there is a tiny negative imaginary part of χ near ωab in the
white-light cavity as shown in Fig. 3. As the white-light cavity
has a broadband resonance, if the wave packet is used as the
signal field, its broadband components can all be resonant
inside the ring and take part in the nonlinear process.

IV. NONLINEAR SWITCH BASED
ON WHITE-LIGHT CAVITY

In this section, we analyze the performance of the nonlinear
double-coupled ring resonator switch based on a white-light
cavity. To show its advantages, we compare the performance
of this type of switch with the conventional optical switch. In
realistic cases, the signal field is not exactly cw, but a very long
pulse. Therefore we adopt the pulse as the incident signal field
to check the two complementary characteristics of the switch,
namely, the switching power and the switching time.

A. Switching power

We consider the incident signal field to be a Gaussian pulse
with center frequency ω0, whose spectral distribution is

ρ(ω) = τ

2
√

π
e−τ 2(ω−ω0)2/4, (18)

FIG. 4. (a) Reflection R and (b) intracavity amplification M of the ring cavity as a function of the frequency of the signal field. The red solid
curves correspond to the white-light cavity with r = 4γ and 
μW = 333.31γ . The blue dashed curves refer to the conventional ring cavity
without doping with a three-level atom. r2

c = 0.99. γ ≈ 2π × 4.6 MHz.
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where τ is the duration of the pulse that determines the spectral
distribution. The incident wave packet at the incident position
can be expressed as follows [27]:

Ei(t) = E0

∫ +∞

0
ρ(ω)e−iωtdω. (19)

The power of the incident wave packet can therefore be
written as

Pi(t) = P0

(
τ

2
√

π

)2∣∣∣∣
∫ ∞

0
e−τ 2(ω−ω0)2/4−iωtdω

∣∣∣∣
2

, (20)

where P0 ∝ |E0|2 represents the peak power of the pulse.
When the pulse is launched at port A, it can be partially

coupled into the ring cavity, and finally exits after propagating
through the ring. The phase shift per circle for each frequency
component can be expressed as

ϕ(ω) = ϕ0 + �ϕ = ω

c
n(ω)l + ωn21lP2

2cS
, (21)

where

P2 = P0

∣∣∣∣
∫ ∞

0

√
M(ω)ρ(ω)dω

∣∣∣∣
2

. (22)

is the peak power of the pulse inside the ring cavity. Here M is
defined in Eq. (17). The first part of Eq. (21), i.e., n(ω)lω/c,
is almost a constant in a white-light cavity. Nonlinearity is
embodied in the second part. The frequency components that
are resonant with the cavity can be amplified inside the cavity
and take part in the nonlinear Kerr effect, which leads to a
phase shift and results in an “on” switch. On the other hand,
those frequency components that are detuned with respect
to the cavity cannot be coupled into the cavity and have no
contribution to the switch. To achieve a certain P2 which can
leads to a π phase shift, the required input power P0 [defined
in Eq. (20)] for the white-light cavity is smaller than that for
a conventional cavity according to the result of Fig. 4(b). This
is the reason why a white-light cavity can realize a lower
switching power than the conventional optical switch.

To confirm our prediction, we define the reflection of the
pulse at port B as

R = I0

∣∣∫ ∞
0 R(ω)ρ(ω)dω

∣∣2

I0

∣∣∫ ∞
0 ρ(ω)dω

∣∣2 . (23)

Here R(ω) is given in Eq. (2). With Eqs. (18) and (21)–(23),
we plot the total reflection R as a function of incident peak
power P0 in Fig. 5.

In Figs. 5(a), 5(c), and 5(e), we plot the total reflection R as
a function of the incident peak power of the pulse P0 for three
incident pulses with τ = 800τ0, τ = 1200τ0, and τ = 3000τ0.
For comparison, we denote the result for the white-light cavity
with the red solid curve, while that of the conventional ring
resonator is given as a blue dashed curve.

It is clear that, when the input power is weak, i.e., P0 =
0, the reflection of a switch based on a white-light cavity is
lower and it is in the “off” state. Meanwhile the reflection of a
conventional-resonator-based switch is not lower; it increases
with shorter τ , i.e., R = 0.2 for τ = 3000τ0, R = 0.5 for τ =
1200τ0, and R = 0.63 for τ = 800τ0. The reason is that the
FWHM of the conventional resonator is smaller than that of

the incident pulse. Thus a shorter value of τ leads to a larger
FWHM of the pulse. In Figs. 5(b), 5(d), and 5(f), we denote the
spectrum of the pulse as a black solid curve, the transmission
spectrum of the conventional resonator as a blue dashed curve,
and that of the white-light cavity as a red dash-dotted curve.
For the incident pulse, frequency components detuned from
the resonator cannot enter into the ring and should be reflected
to port B directly. Therefore the reflection at port B is not
equal to zero for conventional resonators. This phenomenon
also happens for white-light cavities, but it is not apparent
because of the broadband resonance in the cavity. In practice,
we can add a filter at port B to filter out the nonresonance
spectrum.

The reflection increases monotonically with increase of the
incident power. When the input power increases to a certain
value, the reflection is close to 1, which switches the resonator
to the status “on”. We define the incident power which makes
the reflection reach 0.99 as the switching power, i.e., Pinc.
Because the spectral components of the pulse that are resonant
with the white-light cavity are much larger than those for a
conventional resonator, the switching power for the switch
based on the white-light cavity is always smaller than that
for the conventional switch. This is evident by comparing
the solid curves with the dashed curves in Figs. 5(a), 5(c),
and 5(e). For example, under the incident pulse with τ =
800τ0, τ = 1200τ0, and τ = 3000τ0, the switching powers
of the all-optical switch based on the white-light cavity are
only P inc = 10 mW, Pinc = 4 mW, and Pinc = 0.8 mW. By
contrast, the switching powers for the conventional switch are
Pinc = 30 mW, Pinc = 12 mW, and Pinc = 2.5 mW.

The switching power for the white-light-cavity-based
switch also changes with incident pulses with different
durations τ because the bandwidth of the white-light cavity is
limited to 400γ . In conclusion the white-light cavity is helpful
in reducing the switching power compared to the conventional
resonator. In our simulation here, this reduction is nearly by a
factor of 1/3.

B. Switching time

Next we study the switching time. It should be noticed that
Eq. (11), i.e., τ = nlQ/c, is valid only for cw incidence. It
refers to the time for single-frequency cavity field building.
When Q is high, the cavity field will run many circles inside
the ring before it escapes out of the cavity, so the time for
cavity field building is prolonged. At such times, the cavity
field reaches its peak value and leads to apparent nonlinear
effects, and then the switch works. Therefore the time for
cavity field building is just the switching time.

The switching time changes when the input signal is a pulse.
Here we adopt the pulse evolution to check the switching time,
and compare the case of the white-light cavity with that of the
conventional resonator. The calculations are focused only on
the linear regime.

The incident pulse is expressed in Eq. (20). The transmitted
pulse at port C is

It (t) =
(

τ

2
√

π

)2∣∣∣∣
∫ ∞

0
t(ω)e−τ 2(ω−ω0)2/4−iωtdω

∣∣∣∣
2

, (24)
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FIG. 5. Reflection of the pulse as a function of the input power when the duration of the pulse is (a) τ = 800τ0, (b) τ = 1200τ0, and (c)
τ = 3000τ0. Comparison among the spectrum of the pulse (black solid curve) and the transmission spectra of the conventional resonator Tc

(blue dashed curve) and white-light cavity Tw (red dash-dotted curve) when the duration of the pulse is (b) τ = 800τ0, (d) τ = 1200τ0, and (f)
τ = 3000τ0.

and the transmission coefficient t(ω) is defined as

t(ω) = Et

Ein
= t1t2e

iϕ0/2

1 − r1r2eiϕ0
. (25)

The intracavity field intensity at C2 is

Iintra(t) =
(

τ

2
√

π

)2∣∣∣∣
∫ ∞

0

√
M0(ω)e−τ 2(ω−ω0)2/4−iωtdω

∣∣∣∣
2

= 1

|t2|2 It (t). (26)

with intracavity amplification

√
M0(ω) = t1e

iϕ0/2

1 − r1r2eiϕ0
. (27)

Here the intracavity intensity relates to nonlinear effects
according to Eq. (6). However, the intracavity pulse at C2

follows the same evolution as the transmitted pulse; their ratio
is 1/|t2|2, which is just the Q factor. Therefore we can judge
the switching time through the time delay needed to reach the
maximum intensity of the transmitted pulse relative to that of
the incident pulse.
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We calculate the pulse evolution of the incident field at
port A, the reflected field at port B, and the transmitted field
at port C first in a conventional resonator. The results are
shown in Fig. 6 for different pulses with durations τ = 800τ0,
τ = 1200τ0, and τ = 10 000τ0.

For the input pulse with duration τ = 800τ0, the transmitted
pulse is weak and broad as shown in Fig. 6(a). This happens
because the spectrum of the pulse is broader than the
transmission spectrum of the ring cavity, shown in Fig. 5(b),
and few parts of the pulse can enter into the cavity and finally
transmit through it. The time decay for the peak value of the
transmitted pulse is about τc = 850τ0 which is much smaller
than the predicted cw switching time.

For the case of an input pulse with τ = 1200τ0, the ratio of
frequency components resonant with the ring cavity increases
as shown in Fig. 5(d). Therefore the transmitted pulse in
Fig. 6(b) becomes stronger than that in Fig. 6(a). Meanwhile,
the time decay for the peak value is prolonged to near
τc = 1100τ0 as shown in Fig. 6(b).

When the duration of the pulse increases to τ = 10 000τ0 ,
the spectrum of the pulse is so narrow that it is resonant with
the resonator as shown in Fig. 5(f). Therefore the transmitted
pulse has nearly the same shape as the incident pulse, and the
time decay for the peak value is about 2700τ0 which is very
close to the predicted time of the cw case τc = 3000τ0. If we
further increase the duration of the pulse, the switching time
should approach 3000τ0. Therefore Eq. (6) is valid for the cw
case and is the limitation for a long pulse in the conventional
ring resonator.

However, the white-light cavity not only reduces the switch-
ing power which is mentioned in the previous section, but
also shortens the switching time compared to the conventional
resonator. The reason is that the group velocity of the pulse
in a white-light cavity is faster than that in a conventional
resonator. It is known that the group velocity in a dispersive
material is

υg = dω

dk
= c

n(ω) + ω∂n(ω)
∂ω

. (28)

For a white-light cavity, ∂n/∂ω is negative as shown in
Fig. 3. The denominator in Eq. (28) is therefore smaller
than that in constant-index or positive-dispersive materials,
i.e., conventional resonators, and this leads to a faster group
velocity. Therefore the time needed to reach the peak value of
the transmitted pulse in a white-light cavity is shorter than in
a conventional cavity. This leads to a shorter switching time.

In Fig. 7, we plot pulse evolutions in a white-light ring
cavity for input pulses with τ = 800τ0, τ = 1200τ0, and τ =
10 000τ0. The black solid curves refer to the input pulse, and
the blue dashed curves refer to the pulse transmitted through
the white-light cavity. For comparison, we also show the pulse
transmitted through a conventional resonator as red dot-dashed
curves in the same figures.

It is clear that the pulses transmitted through a white-light
cavity are stronger than those through a conventional cavity
which confirms the conclusions of the previous section,
namely, the white-light cavity is helpful in reducing the
switching power. Furthermore, the time needed to reach the
peak value is also shorter than that in a conventional cavity.
When τ = 800τ0, the time needed to reach peak value is 120τ0

FIG. 6. Pulse evolution through a conventional ring cavity to
check the switching time. The duration of the pulse is (a) τ = 800τ0;
(b) τ = 1200τ0, and (c) τ = 10 000τ0, respectively. The black solid
curves are incident pulses at port A; the red dash-dotted curves are the
transmitted pulses at port C; the blue dashed curves are the reflective
pulses at port B.

for the white-light cavity and 850τ0 for the conventional cavity
as shown in Fig. 7(a). Similarly, for the case of an input pulse
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FIG. 7. Pulse evolution through a white-light ring cavity and a
conventional ring cavity. The duration of the pulse is (a) τ = 800τ0,
(b) τ = 1200τ0, and (c) τ = 10 000τ0. The black solid curves are
incident pulses at port A; the red dash-dotted curves Tc are the
transmitted pulses at port C for a conventional ring cavity; the blue
dashed curves Tw are the transmitted pulses at port C for a white-light
ring cavity.

with τ = 1200τ0, the time needed to reach the peak value of
the transmitted pulse is 130τ0 for the white-light cavity and

1100τ0 for the conventional cavity as shown in Fig. 7(b). When
τ = 10 000τ0, the time needed to reach the peak value of the
pulse transmitted through a white-light cavity is 1000τ0, which
is much shorter than 2700τ0 in the case of a conventional cavity.

Combining Eqs. (28) and (15) we obtain an infinite group
velocity at ω0 in the white-light cavity in principle. However,
the index of the fiber in a white-light cavity is complex, as
shown in Fig. 3, even if the imaginary part at ω0 is extremely
small, and this prevents the infinite group velocity from being
reached. Therefore, the time needed to reach the peak value of
the pulse transmitted through the white-light cavity is not zero
in the above calculations. In the case of Fig. 7(c), if we consider
that the pulse runs 100 circles (Q = 100) before it escapes out
at port C, the time delay 1000τ0 indeed means superluminal,
because 2000τ0 is needed for a particle to run 100 circles
with light velocity c in the fiber of l = 20λ0. However, our
result does not violate causality or special relativity. The
negative-dispersion region between two gain peaks given in
Eq. (13) is a result of the Kramers-Kronig relation which
itself is based on the causality requirements of electromagnetic
responses [28,29]. Meanwhile the superluminal group velocity
of a pulse is just the result of reshaping, which results from
the interference between different frequency components in an
anomalous dispersion region as discussed in [28] [our Fig. 3
is very similar to the Fig. 1(b) in [28]]. The local velocity of
energy propagation never exceeds c.

In summary, the nonlinear optical switch based on a white-
light cavity can reduce the switching power and the switching
time simultaneously unlike the case of a conventional ring
resonator.

V. CONCLUSION

The all-optical switch is a pivotal technology in the field of
photonics. The development of photonic information technol-
ogy is in urgent need of a low-power-consumption, high speed,
low-absorption, low-cost, and practical all-optical switch. All-
optical switches have not been practical until now, because of
a series of difficulties, the most important of which is that there
is a fundamental issue relating to the switching power and the
switching time. Generally speaking, the lower is the switching
power, the longer is the switching time, and vice versa.

In this paper, we proposed a ring cavity doped with a group
of three-level atoms such that the effective susceptibility can
be adjusted to realize negative dispersion through incoherent
pump and coherent driving fields. Through optimizing parame-
ters to transform the conventional ring cavity into a white-light
ring cavity, we can achieve a high-Q cavity with broadband
resonance. When the incident field is a light pulse, the
nonlinear optical switch based on the white-light ring cavity
can reduce the switching power and improve the switching
time simultaneously. The performance of the switch can be
further improved if the broadband nature of the white-light
cavity is improved. When the FWHM of the white-light cavity
is doubled to that of a conventional resonator, the switching
power and switching time can be reduced by more than half. If
the FWHM of the white-light cavity is much larger than that of
a conventional resonator, the switching power and switching
time can be reduced to a level which is superior to the present
electric switches. Therefore a switch based on a white-light
cavity helps in overcoming the bottleneck associated with the
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reciprocal relationship between the switching power and the
switching time.
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