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One-dimensional Bose-Einstein condensation of photons in a microtube
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This paper introduces a quasiequilibrium one-dimensional Bose-Einstein condensation of photons trapped
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in a microtube. Light modes with a cutoff frequency (a photon’s “mass”) interact through different processes
of absorption, emission, and scattering on molecules and atoms. In this paper we study the conditions for the
one-dimensional condensation of light and the role of photon-photon interactions in the system. The technique
in use is the Matsubara Green’s functions formalism modified for the quasiequilibrium system under study.
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I. INTRODUCTION

Light in vacuum is quantized as massless photons, which
in equilibrium obey Bose-Einstein statistics. If the photons
were massive, they could break the gauge symmetry under
certain conditions and condense to the lowest energy state
sharing a single wave function. However, the light nowadays
is considered to be massless, so can one expect photons to
form the Bose-Einstein condensate (BEC)? A short answer is
yes.

To observe it, the group of Weitz [1,2] used an optical
microcavity, where the spectra of light modes have a cutoff
due to a geometrical constraint. This cutoff acts as an effective
mass for a two-dimensional (2D) photon. Dimensionality here
refers to the motional degree of freedom of photons. Although
the 2D photons now possess a mass, it is not enough: There
is no BEC transition in a uniform two-dimensional system.
The condition of uniformity, however, is broken by the slight
curvature of the cavity walls, so the trapped light can be
mapped on a 2D field of massive nonrelativistic quasiparticles
experiencing harmonic potential [2], the system that is known
to undergo the BEC transition. In the experiments [2], the
controllable thermalization process [1,3] picks up a single
light mode, and small photon losses are compensated by a
weak external laser pumping. Therefore, it was shown that the
number of photons is conserved on average, and the researchers
can keep the system close to its thermodynamical equilibrium.
The quasiequilibrium BEC of photons is observed at room
temperatures [2,4].

The system being argued to be different from conventional
lasers' becomes of interest for various theoretical [5—20] and
experimental studies [4,21,22]. The growing experimental
and theoretical interest in the topic requires broadening the
variety of systems for which the condensation of photons
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"Photon BECs and lasers are different in several ways in their
underlying physical mechanisms, coherence, and statistical and
thermodynamical properties. In particular, in contrast to lasers, the
photon BECs do not require the inversion of the atomic population.
The photon BEC is a thermalized system; i.e. the temperature of the
cavity is assigned to photon statistics. The macroscopic population
of the mode in case of photon BECs is a consequence of equilibrium
Bose statistics. The observed coherence of photon BECs is reported to
be competitive with some lasers. For further details, please consider
Refs. [2-6,9,21].
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could be observed. In particular, it was explicitly discussed
for dimensionalities D =2 (see, e.g., [3,6,8,23]) and in
different contexts for D = 3 (see, e.g., [7,24,25]), but never
in one dimension. Therefore, there is a need to complete
the study for photons with the one-dimensional degree of
freedom.

The theoretical methods applied to the system strongly
vary. Some authors are using a phenomenological nonlinear
Schrodinger equation (Gross-Pitaevskii equation) in different
forms [2,11,15]. The noninteracting 7 # O theory is also in
use in different forms [2,6—8]. The fully off-equilibrium con-
densate is studied with either an effective kinetic equation with
Jaynes-Cummings interaction [9,19] in the approximation with
real-time propagators or the off-equilibrium 7 # 0 Green’s
function formalism (Schwinger-Keldysh formalism, complex-
time propagators, Matsubara frequencies, etc.) [10,12-14]. In
my opinion, the Schwinger-Keldysh formalism is the most
general and the most powerful approach here.

This paper introduces the one-dimensional quasiequilib-
rium condensation of photons in a microtube. In my opinion,
the Matsubara Green’s function formalism is appropriate here
for the near-equilibrium system. Of course, the Schwinger-
Keldysh formalism may be used here but once the near-
equilibrium properties of the system are well understood.
Matsubara’s formalism describes the finite-temperature close-
to-equilibrium systems, and it is valid in the symmetrical
phase. The main advantage of the approach for this study is
that one can calculate the critical parameters of the interacting
system. In this paper, [ write the Hamiltonian, which takes into
account one-photon and two-photon processes of interaction
with atoms, and treat it perturbatively. As a result, I can
describe the influence of indirect photon-photon interactions
on the critical parameters.

There are some limitations of the model that I use. First,
I do not study the thermalization process, and the time
evolution of the system in general, bounding myself to the
steady state only. Second, I restrict myself to the (first
two) leading corrections to self-energy, which, in terms of
direct photon-photon interactions, if they were present, would
correspond to the Hartree-Fock mean-field theory. The system
under study is a bit more subtle and to obtain these effectively
mean-field contributions one needs to go to the fourth order in
perturbation theory. For the same reasons, optical collisions,
i.e., two-atom mechanical collisions leading to creation of
photons, are not taken into account, even though the model in
use can do it. Other conditions of validity, which shape up the
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model, are discussed in the main text and the footnotes as they
appear.

This paper is organized into three sections followed by
appendices. In the first section of the main body of the paper
(Sec. II), the effective mass of light modes is introduced in
tubes with varying geometry; then, I discuss the conditions for
condensation in 1D and estimate critical parameters. The next
section (Sec. III) deals with the interacting theory, where the
effective Hamiltonian of photon-photon interaction is derived;
this section is the heart of the paper and is organized into
subsections for more comfortable reading: It describes the
perturbation theory for both the uniform case and the trapped
case. The summarizing section is organized more like an
outline and discussion, yet the deeper study of the problem
is still needed.

This paper should be considered as an introduction of
the concept of light condensation in one dimension, comple-
mented by a collection of relevant estimates, not as a strict and
general theory from the first principles.

II. GENERAL IDEA: LIGHT TRAPPING AND
CONDENSATION

To condense photons in a cavity means to transform their
states into the lowest-energy thermodynamical state in the
system [2,3,6,8]. In this section I skip the details of the
thermalization process because they are studied sufficiently
well [1,3,9,10], thus restricting myself to mentioning the three
important ideas. First, the losses of photons are compensated
by a weak external pumping, so the number of photons
conserves on average. Second, the cavity gives a discrete set
of light modes with different cutoffs. Third, it is possible
to thermalize one of the modes, hence ensuring the single
cutoff frequency for all the thermalized photons. As a result,
supporting only one of the modes, we ascribe the effective
mass to a photon as it is described in the first subsection of this
section.

The second challenge for condensing photons in 1D is to
choose the shape of the waveguide (microtube) where the
condensation is possible. This choice is done in the context
of the noninteracting model in the second subsection. At the
end of this section, we discuss the conditions for condensation
and estimate the critical number of photons for the set of
parameters that are similar to those from Refs. [1-4].

A. Light trapping and effective mass of photons

For simplicity, we consider here the waveguides made of a
microtube with axial symmetry, as it is sketched in Fig. 1. The
shape of the tube in the general case is given by a rather smooth
function p(z) (see Fig. 1). Due to the cylindrical symmetry, a
photon’s energy hw is described by two quantum numbers k,
and k,,

ho(k) = hélk| = he(k2 +12)"%, ()

where w is the frequency of a photon with the momentum k
decomposed for convenience into longitudinal k, and polar &,
components. In the microtube the polar wave number k, is
strongly discrete while the longitudinal component k, can be
taken to be continuous because of the strong inequality Ry < /.
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FIG. 1. A scheme of a microtube waveguide for trapping photons.
The shape of the tube is determined by the relative deviation ¢(z) of
the inner radius. To ease visual presentation, the function ¢(z) is taken
to be linear.

In the general case, the set of k,’s follows from Maxwell
equations in the microtube shaped as p(z) with the boundary
conditions on its walls. We consider a tube with the closed
ends.? For the mirror walls one gets

Gmn
p(2)’

where g, is the nth root of Bessel function of the mth order,
Jn(@mn) = 0 (see, e.g., [26]). The formula (2) was obtained
in the approximation of a tube with a slightly changing cross-
section radius,

p(2) = Ro[l —o(@)], () K1, 3)

where Ry is the radius of the tube at z = 0; see Fig. 1. The
dimensionless quantity ¢(z) shows the small relative deviation
of the tube’s radius. Due to the strong requirement Ry < [,
where [ is the half length of the microtube, one expects k, <
ko, where kg = g,/ Ro is the minimal polar wave number. As a
consequence, expression (1) can be asymptotically expanded,

ko(z) = 2)

k2
hew = héko| 1+ =5 + ¢(2) |- 4)
2kg
This expression can be rewritten in a more intuitive way,
272
hw >~ hawy + — + V(2), (5)
2m*

which reminds one of a particle with a mass m* and one-
dimensional degree of freedom k, in the field of external
potential V (z). In our case, the effective mass of a photon, as
follows from comparison between Eqgs. (5) and (4), is defined
as

«_ hamn

"= R (6)

and is related to the cutoff frequency wy as hwy = m*&, which
is a measure of the minimum energy of photons. The trapping

2The approach of this subsection uses the slowly varying envelope
model (parabolic approximation), which is not valid for description
of EM field near the reflection cross section and open ends of the
waveguide. The presented model will be therefore valid only for the
sufficiently long microtube with closed ends.
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(pseudo)potential, caused by the geometry of the reflective
inner surface, is

4mn hé
Ry

V) = 9(2). (N
Thus, both the effective mass of a photon inside the tube
and the effective potential take their origin from the specific
geometry under consideration or, strictly speaking, from the
k,(z) component of a photon’s wave vector.

Summarizing the main idea of the subsection, one can say
that the system of photons trapped inside the microtube can be
considered as an ensemble of quasiparticles with the mass m*
and the one-dimensional degree of freedom « = k, placed in
the potential V (z). The form of the potential V (z) is determined
by the shape of the microtube waveguide ¢(z). Therefore,
changing the shape of this waveguide, one can change the
trapping potential.

B. Noninteracting theory and critical number of photons

The noninteracting model is good for a primal estimate. In
this model, the photons in the microtube are considered to be
noninteracting particles with the one-dimensional degree of
freedom. The total number of photons is given by integrating
the Bose-FEinstein distribution over the configurational space.
The condensation condition can be expressed as follows:
The chemical potential of photons o at the critical point
reaches the minimum energy of photons in the system, i.e.,
o = hay (see [2,6-8]). For the ideal photon gas with the
one-dimensional degree of freedom, the critical number of
particles for Bose-Einstein condensation can be estimated in
Wigner approximation,

dk.d R2k22m* + V -
M= [ ”g*{exp[—z/m i (Z)}—l} L ®
27 T

where g* takes into account the possible degeneracy in photon
energy (see, e.g., [7,8]). The integral in (8) may or may not
converge, which is a consequence of the Bogoliubov theorem
stating, in particular, that there is no BEC in dimensions below
three if the system is uniform. However, the presence of
the external potential can be considered as nonhomogeneity
and the integral in (8) is convergent for certain types of
potentials; for example, in the case of the one-minimum
symmetrical potentials, the singularity is integrable if only the
dimensionless potential ¢(z) = V(z)/hwy grows slower than
a parabolic function,

9(z) = |z/Lol",

where L is a parameter in units of length. Even though one can
imagine more sophisticated potentials (for example, multiple-
minimum potentials), for simplicity, we restrict ourselves to
the case of the one-minimum potential of the form (9). To
calculate the integral (8), we introduce new variables & and 7,
such as

a €(0,2), )

£ = thZZ, g = 10| 2
2m*T T

; (10)

Lo

and after some hackneyed algebra we obtain the expression
for the critical number of photons in the system to observe the
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FIG. 2. Normalization integral /(«) as a function of the trapping
parameter o,V (z) « |z|*. The local minimum is situated at o, =
0.71. The two asymptotes (not shown) are /(o) - +00 as o —
0 and o — 2, limiting the region of desirable trapping parameters
to « € (0,2), where the condensation of an ideal gas of photons is
allowed in one dimension.

phase transition at temperature 7,

e
2fL°f”°< ) I, (1
ha)o

c

No(T;0) =

where we have introduced the dimensionless normalization
_ d&dn

integral,
1
@=[ [ sErot

The normalization integral remains finite while the trapping
parameter is « € (0,2). The dependence [(«) is shown in
Fig. 2. It is noteworthy that there is a minimum at the
trapping parameter omin = 0.71,1(omin) = 1.9. However, a
more fruitful trapping parameter is o = 1, i.e., ¢(2) « |z],
where the value of the normalization integral (as also other
quantities of noninteracting and interacting theory) can be
calculated analytically, 7(1) = I'(3/2)¢(3/2). In this case, the
expression (11) for the critical number of photons simplifies,

L T \*"?
N0=[ £'c(3/2) °“’°(h—%) . (13)

Taking into account the explicit expression for wy and taking
rough values ¢(3/2) = 2.6, g* ~ 3, formula (13) can be sim-
plified and given in terms of direct experimental parameters,

Nor (2 ko (2 )
" \heky ) 0 T \an2rer2)

Formula (14) defines the critical number of photons in the
tube with V-like trapping profile, ¢(z)  |z|. Such a biconical
waveguide can be indeed manufactured® [27]. It is remarkable
that the 7%/> dependence, as in formula (14) for a 1D gas of

12)

3In this paper, I also have not considered the finite-size effects,
which could favor the condensation in a microtube with the closed
ends.
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particles under V-like potential, also holds for a 3D uniform
gas of bosons. This similarity arises from the composition of
the Wigner integral (8).

An estimate for the biconical waveguide gives the follow-
ing. For definiteness, we take the lowest Bessel root ¢g; ~ 2.4.
The radius of the waveguide should be such to ensure close-
ness of cutoff and the atomic transition frequencies, giving
Ro & qo1Aa, Where i, is the atomic transition wavelength
reduced by 2. Taking now for estimate i, ~ 107% m, ¢ ~
2.2 x 108 m/s, Ly ~ 1072 m, and the room temperature T =
300 K, the threshold number of photons to trigger conden-
sation is Np ~ 10*, which is even smaller than the one
reported for the 2D condensation, Ny ~ 10°. Thus, one may
conclude that even at room temperatures the one-dimensional
condensation of photons is possible.

Here, however, I should mention a very important feature
of the finite-number BECs: Strictly speaking, there are no
“phases” and “phase transitions” and, therefore, the finite-
number consideration can smoothen different singularities
in a significant way. Indeed, in my calculations above, in
the experiments on photon condensation, and in the many
experiments on atomic BECs the number of particles under
consideration is mesoscopic, 10°—10°. The issue on the
Bose-Einstein condensation with a finite number of particles
was studied by Ketterle and Van Druten [28] in the early
era of alkali-metal atoms BEC experiments. The inference
of their paper [28] can be summarized as follows: There is
no fundamental difference between the thermodynamical and
finite-number BEC if the density of states of the particles is
correctly approximated. In particular, they show that if the
treatment with thermodynamical-limit integrals is convergent,
the finite-number effects modify physical quantities by just a
few percent even for the extremely mesoscopic case N ~ 102
To avoid the confusion, throughout the paper we consider
the case with o & 1 when the integrals are converging fast;
however, we do not redefine the quantity g*(k) for the sake of
simplicity. Therefore, the present model should be considered
only as a main-order estimate.

C. Fluctuation-free photon gas below T¢

In this subsection, we consider several estimates concerning
some of the properties of the photon gas below the critical
temperature. For simplicity, we consider only o = 1, and we
will work with the time-averaged physical quantities. The
number of atoms in the condensate in an ideal-gas model is
given by

2 L T \*?
Nio(T < Te) ~ N — \/; grL(3/2) "2 (—) . (15)

¢ h(,()o

where the quantities Ny —o correspond to the time-averaged
number of photons in the condensate, i.e., neglecting the
condensate fluctuations.* In this model, the spectral density

“As it was explained from the first principles of statistical physics
in Refs. [5,6], the conservation of photons requires an accurate
account of free photons, photons absorbed by atoms, and the “hidden”
photons, with a subsequent calculation of the chemical potential. In
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of the ideal gas of photons is
dk,
Vi, = Ni,—o2m8(k;) + vi o0, oy e = N, (16)

where §(x) is the Dirac § function of the argument x. The
factor of 2w was introduced with the § function to fulfill the
convention in use [see the normalization condition in (16)].
The spectral density of noncondensed photons v o can be
calculated similarly to the case with 2D system (see [8]). In
the case of V-like potential, V(z) = hw|z|/Lo = u|z|, one has

LT R\
Vi, 20 = 28 ;1n 1 —exp o T . a7

We emphasize that the dependence of the spectral density of
photons (17) on the “kinetic energy” in a 1D system with
o = 1 potential is the same as in the case of a 2D system
with @ = 2 (harmonic) potential, the difference is only in the
normalization prefactors; see Ref. [8].

We calculate quasiclassically the mean value of the longi-
tudinal wave vector squared,

1 +00 dk g* m* 3/2T5/2
(kf)zﬁ/ kka12;=1.07ﬁ<ﬁ> — (18)

The deviation in the frequency of photons is therefore given
by
g* m* 5/2
h{w — =0.54=———T~.
(0 — wo) N T
At first glance, this formula looks quite different from the 2D
case (see Ref. [8]); however, one can verify that it also reduces

to the form A{w — wy) ~ Nklif"T, with the amount of non-

condensed photons given by Ny o = lims_,o+ faoo v, dk; /T,
thus depending crucially on the fraction of the condensate. The
formula (19), however, does not take into account the quantum
effects, which will be estimated further, and therefore it is valid
only approximately at T # 0.

Let us also estimate some of the thermodynamical proper-
ties of the photons in condensate according to the ideal-gas
model from Ref. [8]. The total energy of photons in a partially
condensed state is given quasiclassically by

g hw(k;,z)

oo p+o0 dedk
E = Nkzzoha)o +/ / 5 z s -
o T

(19)

= (20)

Im* 1/2 T5/2
)

= N hawo + 1.13g*<

The heat capacity of the photon gas with condensate can be
found as a temperature derivative,

2m*)1/2 T3/2

C(T <To)= 2.83g*< = — x T2 (21)
u

the present study, I consider a simplified model similar to Refs. [3,7,8].
The effect of the “hidden” photons can be quite significant: During
the nonequilibrium condensation, these photons can lead to the strong
fluctuations in photon number, observed by Schmitt et al. [21] and
predicted previously by Sob’yanin [6].

043817-4



ONE-DIMENSIONAL BOSE-EINSTEIN CONDENSATION OF ...

Now we consider the condensate of photons at sufficiently
“low” temperatures, T < Ty, or at the fixed temperature 7" but
in the limit N /Ny >> 1, so with the good accuracy the photons
can be considered to be in the coherent state. In this limit their
behavior can be described by a collective wave function. In
ideal-gas approximation, the evolution of the wave function is
described by the Schrodinger equation

oy(z,1) n* 92

a 2m* 972
To solve this equation, we first make the phase rotation
¥(z,t) = e"™y(z), where u is the chemical potential of the
noninteracting Bose-Einstein condensate in the thermodynam-
ical limit N/Ny — oo, to obtain the stationary Schrodinger
equation,

ih + V(Z)}W(Z) =0. (22)

n d?

————+ V() - =0, 23
[ P A2 +V(2) u}ﬂ(z) (23)
with the two boundary conditions v'(0) = 0 and (c0) = 0.
The solution of this equation for V(z) = u|z| is straightfor-
ward,

hz 1/3
V(z) = \/ﬁoAi<% +<p1>, a= <2mu) .24

where Ai(x) is Airy function of the first kind, /p, is a
normalization factor, and ¢; = —1.0188 is the first zero of
the Airy prime, Ai'(¢;) = 0. Choosing the normalization
condition fj;o |¥(z,1)|*> = N, one obtains

N
po = 1.71— = 1.71 NCm*u/W*)'/3. (25)
a

Finally, the chemical potential of the condensate t can be
found from Egs. (23) and (24),
(26)

Therefore, the wave function of light BEC in this regime
behaves like (see also Fig. 3)

V(z,t) ~ 1.47 N2 (m*u/1*)"/®

XAy 2m*u/h? |z| + ¢1)

x exp[—i|g1|(R*u?/2m*)' Pt + i ®g].

p = —uap; = |gi|(h*u/2m*)'>.

27

There are deep physical consequences of the above-derived
formulas. The physical parameters of the light condensate
in the coherent state for « = 1 are the following. First,
the condensate is mainly localized in the region of 2a,
with a ~ (h2/2m*u)"”, the chemical potential of the light
condensate is of order ; ~ ua ~ hwy, and the average density
at the center of the condensate (number of photons per unit
length) is given by pg ~ N/a. These results for arbitrary o
can be generalized by dimensional analysis of the differential
equation (23) with V(z) = u(a)|z|%, giving in the general case
an~ (h2/2m*u)l/(2+a) and u ~ u(a)a*; the wave function,
however, can be found only numerically.

Finally, let us discuss some more statistical properties of the
photon condensate in the coherent phase. First, let us consider
the variance

+00
[ dzz2? | (2)|* = 0.438ppa’ (28)

o0
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FIG. 3. Density of photons |1/(z)|? in the condensate as a function
of distance z in the case of V-like potential V (z) = u|z| and (below)
the corresponding density plot of light intensity inside the microtube.
The wave function ¥ (z) is normalized on the total number of free
photons in the system N. The density py and space units a are
explicitly given in the main text. The condensate is mostly localized
in the area 2a around the center of the microtube (z = 0).

(the expectation value of z is zero due to the symmetry of the
wave function). The standard deviation is therefore given by

(Az) = 0. = 0.971av/N. (29)

Using the Heisenberg uncertainty principle, we find (Ak;) >
1/(2{Az)). Therefore, the uncertainty in the longitudinal wave
number is

1
avVN'

This allows us to estimate roughly the principal uncertainty in
the energy of the emitted Bose-Einstein-condensed light from
a microtube as Aw ~ +(R*u?/m*)'/3.

(Akz) ~ (30)

III. INTERACTING THEORY

As we have seen in the previous section, the noninteracting
model is good. It works for a range of potentials and
predicts the BEC transition of photons in one dimension. The
noninteracting model would be exact for photons in a vacuum
where their scattering cross section is negligible. However, the
photons in the system under study do interact with each other,
albeit indirectly. These interactions arise from the multiple acts
of scattering, absorption, and emission of photons. One can
classify all these processes by the number of photons involved
in a single act and then construct a hierarchy of irreducible acts
(the events, which cannot be represented as a product of two
different acts). This hierarchy defines the form of an effective
interacting Hamiltonian, which then is treated perturbatively.

To build up the perturbation theory, first I write down the
Hamiltonian of the irreducible interactions, which is done in
the first subsection. In the second subsection, the renormalized
Green’s functions of photons are derived for the uniform
(nontrapped) case. The effect of the trapping potential is
considered in the third subsection. Finally, the last subsection
gives contributions for all the one-photon and two-photon
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processes. This section is rich in physics and intended to be
longer.

A. Interacting Hamiltonian and observables

The interacting Hamiltonian H should include processes of
absorption, emission, and scattering of photons on atoms. It can
be naturally written in a second-quantized form. For this, we
introduce the operators of creation ¢Zk and annihilation ¢, of
a photon as a massive quasiparticle with the one-dimensional
degree of freedom ki = (k? — k3)!/> = k. In the cylindrical
microtube, as we have already shown, these quasiparticles have
the quadratic dispersion law fiw, = hwo + h*k?/2m* and are
placed in the field of trapping potential. Consequently, the
second-quantized Hamiltonian is given in a general form as

H= Zhwmk«bkk + Y Vadl, b +Hi+Hao (D)

k.q

where V is the Fourier transform of the trapping potential
V(z) and H; reflects the photon-atom interactions and H, is
the two-level-atoms Hamiltonian.> Here are some examples
of the elementary interaction acts: A photon can be absorbed
by an atom in the ground state; a photon can be emitted by
an atom in an excited state; a photon can be scattered by an
atom (or in second-quantized language destroyed and then
created again). To describe these events quantomechanically,
an adequate atomic model in use is the so-called two-level
model, where an atom can be in two states: the ground
state |E, (p)) and the excited state |E,,(p)). The validity
of this model for this study is satisfied by the two reasons,
mainly: First, the cutoff of photons is set closer to the chosen
atomic transition, hwy ~ hw,, and the other transitions are
energetically separated; second, the number of photons is
small in comparison to the number of atoms, Ny < Ny. As
a consequence, the probability of exciting the higher states
is strongly suppressed and can be neglected in the main
approximation.

We introduce the operators Iof creation and annihilation
of atoms in the ground state a]T,,ap and in the excited state

[T 1}

sz,,dp, where indices “p” label the atomic momenta. The
photon-atom interactions are described now as all the possible
combinations of ¢’s, a’s, and a’s (times the complex-valued
coupling vertices), and the number of these combinations is,

>The two-level-atom Hamiltonian H, = %ha)at Zp &g A a:,ap
describes the atomic contribution, and, in general, it should be
treated self-consistently with the photonic and the mixed parts of
the Hamiltonian (31). This procedure usually leads to redefinition of
the quasiparticles in the system by introducing the so-called atomic
polaritons (dressed atom-light states) because the photon description
is no more applicable in the general case of arbitrary coupling (see,
e.g., Refs. [27,29-31]). However, as discussed in Refs. [1,2,29], for
some range of parameters the conditions for the strong atom-photon
coupling are not met, and the relevant quasiparticles in the system
are photons (the two branches of polaritons degenerate into the
single branch of photons). Therefore, in this case the atomic Green’s
functions can be considered uncoupled from the influence of photonic
Green'’s functions, which allows us to drop H,, out of consideration
in photonic perturbation theory.
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in principle, infinite. The good news here is that one can, for
example, build up a hierarchy of irreducible processes based
on the number of photons involved in a process. “Irreducible”
stands here for a process which cannot be decomposed into
two (or more) simpler processes.

The important one-photon and two-photon processes are
sketched in Fig. 4. For example, the left diagram in panel (a)
of Fig. 4 shows a simplest one-photon process: A ground-state
atom absorbs a photon and goes to the excited state. In the
conjugated process, shown in the right diagram of panel (a),
the excited atom emits a photon and goes to the ground state.
Hence, the interacting Hamiltonian can be expressed as

Hi=H' +HP +HE+HE +HP+HP +-, (32)

where the one-photon processes are described by

11
H;' \/—ZF 1T)+k ap $y +Hee,
at

alpeaydo +He, (33

13 50 4
ZF Ay @

dt pk

o T HC.,

the two—photon processes are described by

H = b b q®L ay ¢, +He,
p k.q

HYP = veal g0l a, ¢, +He.,
p k.q

HP = Sl a, o, +Hec,
p k.q

HH = m Xk: Tee ~;+k+q e, Ap P + Heeo, .
p.k.q

H%s Z qu p+k+q ¢Kq a, ¢, +He.,
p kq

M = JT Y TR @) g B, Gp b + Hec,

" pkq

and so on. For aesthetics, I adopt i = 1 in indices labeling; for
example, a k= a; i Teads as an excitation of an atom with
the momentum p + Bk In general, I tend to keep p and p’ for
atomic momenta and k and q for photon wave vectors, so it is
easy to distinguish. The coupling parameters 'k should be also
read as 'y = I'(wg) due to their scalar nature. In the present
paper, we neglect the contributions from optical collisions, i.e.,

the processes of form apl ap] ¢ ay a, (w1th q=p+p2—

p; — p5) and others, even though these processes can be taken
into account in this model by writing their one-photon and
two-photon Hamiltonians in the second-quantized form. For
simplicity, here we consider 2 = 1 until the end of the section,
where it is restored.

We define the Matsubara Green’s function of a photon as

G(k,7,70) = —{ Tr ¢ () ¢} (70))n, (35)

043817-6



ONE-DIMENSIONAL BOSE-EINSTEIN CONDENSATION OF ...

PHYSICAL REVIEW A 93, 043817 (2016)
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AT

AY

XX

KX

KX

AYIAYIA

A4

—_—

ESie o

ground-state atom
excited-state atom

—iWWw—  photon

FIG. 4. Hierarchy of the interaction processes: (a)—(c) one-photon processes; (d)—(i) two-photon processes. The notations are as follows:
A single line designates a ground-state atom; a double line designates an excited-state atom; a curly line designates a photon. Time evolution

is vertical by convention.

where all the operators are in the (imaginary-time) Heisenberg
representation, and T, stands for Matsubara time ordering. We
introduce now Fourier-transformed Green’s functions,

B
Glxsiwn) = / dre ™ Ge,7), 36)
0

where iw, are Matsubara frequencies, which are of discrete
nature, w, = 2wn/B for bosons, and 8§ = 1/T is the inverse
temperature, as usual. We also introduce the atomic Green’s
functions as

Gu(p.7.70) = — (T ap(v) a}(70))in,

i oot (37)
Gu(p,7,70) = — (T ap(7) dp(T0))eh-

Some properties of the atomic Green’s functions are given in
Appendix A.

Matsubara Green’s functions link observables at finite
temperatures with the equal-time response of quantum op-
erators. For instance, the occupation number of photons with
one-dimensional degree of freedom « is given by

fe=(0lo) = = lim Glx,7,0), (38)

and similar expressions for the occupation number of atoms in
the three-dimensional reciprocal space p are

np = (ajay) = = lim Gu(p.7.0). -
fip = (@yay) = — lim Gu(p,,0).

One may notice that the photon occupation number f, and
atomic occupation numbers np,7i, are introduced by different
literals. This is as intended. First, I wish to distinguish between
them two without adding additional indices. Second, the two
quantities are of different units, so they represent different
physical notions.

B. Perturbation theory in a uniform medium

In this subsection, we derive the renormalized photon
propagator and the corresponding self-energies in the absence
of the trapping potential. In the Matsubara formalism, the
perturbed Green’s function is given by a series expansion,

o0

-1y [? ’
g(K,‘L',‘L'()):—Z i /(;drl-n/o dt,

n=0
X (T ¢ (1) ¢ (10) Hi(t1) - Hi(Ta) )gr  (40)

where the thermal averaging includes only connected diagrams
and O stands for the noninteracting eigenstates. To simplify the
discussion, in this subsection I consider a single process only,
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namely the first one,

al oy b + T @l aldy,. @)

This choice is not arbitrary. Indeed, it is H}' that gives one of
the most significant contributions to the self-energy. At the end
of this section, the contributions from all the other one-photon
and two-photon processes are taken into account. To simplify
the relevant formulas further, I drop in this subsection all the
“11” superscripts of expression (41).

According to the formula (40), the first nonvanishing
correction that is given due to acts of absorption and reemission
is given by the first mean-field correction,

1 8 B
86V (k,7) = —5/ dn/ dn
- JO 0

X (Tr ¢ (D) $LO)V Hi (1)) Hi() )y (42)

Using the explicit expression (41), and decoupling the time-
ordered average by using Wick’s theorem, the contributions of
the connected diagrams are determined as

(1) |1_‘k|2 k p
3G (kk,T) = / dn/ dvG(kk, T — 12)G (KK, T1)
at 0 0
XY Gu@. 1 — )GuP + K1 — 1) (43)
P

Going to the i w, representation of formula (43), one shows that
the nonvanishing contribution corresponds to t; = 1,. For the
nondegenerate ensemble of atoms, the product of the atomic
propagators is given as G, (p,t; — rz)ga,(p +Kk1np—1)=
npiip+x. Thus, after Fourier-transforming Eq. (43), one obtains
the first renormalization to the Green’s function,

3GV (ciwy) = TV (w,iwy) Gk iw,), (44)

where the first (on-shell) self-energy M (k,iw,) = M is
contributed by one-photon emission/absorption,

|F ?
Ty = annp+k 45)

To calculate the density of particles, we go back to the
T representation, namely considering the perturbed Green’s
function as

1 .
Gler) ~ 5 Y e Golsiwy)

+- Z TOrGikio) D). (40)

As a result, the occupation number of photons, renormalized
due to interactions, is obtained through the T — 0~ limit. In
the main order one obtains

fe=—= ZQO(K iw,) ZQO(K iwy,) E(l)

iwy iwy

__len — Wy ﬂ ;(lwn _wK)Z' “n

PHYSICAL REVIEW A 93, 043817 (2016)

Using now the Matsubara frequencies summation rules (see
Ref. [32]), one derives

1 BEMePo

fe= g o1 T e =1

(48)

So far the existence of the nonzero chemical potential ; was for
simplicity avoided in (48), but it is easily included switching
wy —> @, — p in the Green’s functions of photons. For
the nonzero chemical potential, the renormalized occupation
number in the first order is

1 ﬁEf{l)eﬁ(“’K_“)

D _ )~
Foat BE =W a1~ (o — 1

(49)

The first term in (49) is intuitively understandable as it
describes the occupation number for the noninteracting gas
of photons while the second term gives the first interacting
correction. We still keep here i = 1.

The next nonvanishing correction is given by the fourth
order of the perturbation theory,

| (B BB B
- / / f / d‘L’]d‘L’zd‘L’3d‘L’4
41 Jo Jo Jo Jo

X (Tr ¢, (V)P OYH (t1YH1 () H i (3)H (1))
(50)

5GP (k1) =

The unique connected diagrams are given, for example, by
T4 = 11,73 = Tp. Decoupling operators with the use of Wick’s
theorem, one finds the quantity under averaging (T, ---) in
Eq. (50) containing a combination of the atomic Green’s
functions,
Gu(P. 112)Gu(P . 20)Gut(P + K. 120)Gut(P' + 4. T12)
+ Gu(P.0Gu (P’ 0)Gue(p + K,0)Gur(p' + k. 0)
+ Gu(P,112)Gu(P + k — 4,205 (p + k,0)

+Ga0.0)Gu(p + k. 221)Gu(P + @, 712), 61V

where we have introduced 7o =17 — 1 and 1oy =1, — 1|
for brevity. Using the properties of the Matsubara Green’s
functions, this expression can be transformed to
Ga(P.712)Gu (0. 121)Gu(P + kK, 121G (P + 4, 712)
x(1+ 5p,p/ + CSk,q + 8p+k,p’+q)- (52)

This, in turn, gives the second perturbative correction to the
photon Green’s function as

M |F |2 / / dtidn,
Nal

Xg(Kk,T — 1) g(Kq,l’z — 71) G(kk,T1)

X Gu(P. 71 — ©2)Gu(' .72 — T1)

xGu(p + k72 — 1)Gu(p + 4,71 — T2)
X(1 4+ 6p p + Sk q + Sptk,p'+q)- (53)

8G@ (kx,7) =

Now we use again the condition that the atomic ensem-
ble is nondegenerate, yielding a quasiclassical propagator
Ga(p,7) = —e’EP’np and a similar expression for Gy (p,7).
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Therefore, one obtains

Ga(P.712)Gu(P + K, 121G (0, 120Gt (P + . T12)

= Npiip ik Npfipq €217 (54)
where we have used the energy conservation law, Ep, + wi =
Epx + A, with A = wy as the energy distance between the
ground state and the excited state, and a similar expression
for q. The vector labeling of photon energies is used here
to emphasize that this expression (54) holds in general. For
definiteness, we consider 1, > 1) in the present calculation.
The next step is proceeding to the Matsubara frequencies, and

we are doing the Fourier transform to Matsubara frequencies,

|Twl? 2 N .
N2 ITql Z Mplp+k NpMp'+q
at q p.p

8GP (ki iw,) =

X G ki, iw,)G (K, iw,),G(kq, i w, + wq — wk)

X(1 4+ 8p p + Sk,q + Sptk,p'+q)- (55)

We introduce the effective interaction coupling parameter

1
Fkiq) = —5 Y (14 8pp + kg + Sprkpta)
N =
anflp+k np’ﬁp’+q, (56)

which simplifies the formula for the perturbed Green’s func-
tion,

8GP(k,iwn) = ITl* G (kjiwn) Y ITgPFk; ). (57)
q

The function F(k;q) can be calculated explicitly (see
Appendix C). For the next step, we sum up over Matsubara
frequencies to obtain the equal-time response,

1
G20t =0) = Tk> ) ITyPF(k; Vg Y Gimy).
q i,

(58)

To proceed in the on-shell approximation, we use noninteract-
ing propagators. The sum can be calculated using the standard
Matsubara machinery [32], yielding the result

1 ) BrePer
5 > Gilkiien) = 62

iwy

fo(@e) — B2e™ f (o), (59)

where again fy(w) = {ef” — 1}71 is the Bose-Einstein distri-
bution for photons. In the leading order, the perturbed Green’s
function is given by (u = 0)

Gk,t = 0) = Gok, v = 0) + B’ (TN + P) fiH(w,)
+ Ol fi (@], (60)

where the second self-energy contribution is determined as

B
) = JIN Y Ty Fks . (61)
q

The formulas (60) and (61) completely describe the renormal-
ized equal-time response for the one-photon process ! in the
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leading orders for a uniform system at 7 # 0. The interactions
thus modify the photon’s spectrum,

2
& = o + P + 2P,

(62)

We = Wo + .
“ O 2mr
Including now the nonvanishing chemical potentials @, and
keeping only linear terms in §u = p — po = lim,_ o[V +
2,52)], one obtains the distribution function of photons, modi-
fied by interactions, as

(@ — 1) ~ folwe — o) — BP0 f2(w, — po)

<[5 + 5 — su]. (63)
If integrated over «, Eq. (63) gives the critical number of
photons at temperature 7. Unfortunately, in one dimension
the Bose-Einstein singularity is not integrable, so we need to
modify the formalism by considering the trapping potential.

C. Perturbation theory in the trapping potential

In this subsection, we calculate the renormalization of
photon’s propagators G as they are trapped in the microtube
waveguide. This is done again by means of the perturbation
theory. First, we look for the first corrections to the nontrapped
propagator and then sum up corrections in all orders. This
procedure gives a new propagator G, describing noninteracting
but trapped photons. At the end of this subsection, this result
is merged with the outcome of the previous subsection, giving
the interacting trapped propagator in the leading order.

Consider noninteracting photons trapped in the potential
V (r) with its Fourier image Vi. The Hamiltonian responsible
for this reads

H=) oqdlbg+ D Vbl b (64)
k k.q

The perturbation theory is given by the same formalism [see
(40)]. The renormalized photon propagator G originates from
the nontrapped propagator Gy = G and is augmented by the
series of perturbative corrections,

Gk,7) =Gk, 7) + GV, 7) + 8GP Uk, T) + - -+, (65)

as sketched in Fig. 5. The first correction to the propagator due
to interaction with the external potential (second diagram on
Fig. 5) is expressed as

B
NeRICRIEDY qu dr,

q.k 0
X(T: § (D GLO DL, (), (7). (66)
Using Wick’s theorem, one obtains
56V (i 7) = Vo fo " dn et — e, (6

where V) = V,,—o. The convolution vanishes as we go to the
Fourier transform, which gives

§GV(k,iwy) = Vo G iwy). (68)
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g(l‘{,,T—Tg) g(H,T*T])

G(k, 71 —10)

AN T A ANANNAPI AN T A AAAANNAPIAANANANAPI AN T

G(kym1—70) G, —11) G(k,T—T2)

FIG. 5. Renormalization of a photon’s propagator in the external field. Wavy propagators stand for one-dimensional photon Green’s
functions G(x,7), whereas dashed lines denote interaction with external potential. The series converge up to the trapped photon propagator

G(k,1).

As in the previous calculations, the equal-time response is
extracted from summing up over Matsubara frequencies,

Bebox
M =1y
(69)

The long-wavelength asymptote x — O of the Fourier image
V, of potential V(z) is finite and given by Vo = V(I)/(1 + «)
(see Appendix B). The theoretical model presented in this
section is not limited to V(z) o |z|* with o = 1; however,
for the sake of simplicity and aesthetics of the expressions
we choose the linearly growing trapping potential, o = 1,
which gives

8GV(k,r = 0) = Vo— Y Glim,) =

iwy

ePr f() ()

§GV(k, 1 =0) = BV (). (70)

The next correction is given by the third diagram in Fig. 5,
which is the only connected diagram one can build up with

J

§G Pk, Tt = 0) =

ta),,

Using the rules of summation, one obtains the correction to the
density of photons due to the interaction with external potential
as

8GP(kx,7 = 0)

_ —Z|V |2{f0( Kk+q)

( Kk+q

fO(ka)

ka)z

n BePos f5(wq) }

ka+q — Wiy
(74)

It is clear that the main contribution to the sum in Eq. (74)
is given by the region where wy,,, =~ w,, . Therefore, we can
expand the numerators in the Taylor series around w,, . It is
important to go up to the third order because some terms get
canceled. This, in turn, leads to

Bwx 1 Bo,
SG(Z)(K,‘L' =0)= w

B f (@ K>Z|V|
(75)

Now one can calculate the sum here explicitly, which gives
> Val> = V2Z()/(1 4 2a) (see Appendix B). Taking again

the perturbed Hamiltonian (64). This diagram is expressed
mathematically as

B rB
8G(2)(Kk,f)=ZVqV_qf / dudo
0 0
q

X Gk, 11)G (Kkq: T2 — TG (KK, T — T2),
(71)

which upon Fourier transform yields to

5GP (r,iwn) = Gl imn) Y Vgl ’Glirq,imn).  (72)
q

Therefore, the equal-time response is expressed in terms of the
Matsubara frequency sum,

1
Z|vq| 292(xk,zwn)g(xk+q,zwn>—ZW,,F ﬁZ R Tr—t )

ka+q )

(

the linearly growing potential, « = 1, one therefore obtains
the expression

PO (1 + ePo) f3(wy)

§GPk, 1 =0)=— c

VA1), (76)

which is the second-order correction to the free propagator due
to the light trapping. Therefore, the first two corrections are
given by Eqgs. (70) and (76). For this study, it is important to
go to the further orders. One can verify that in all orders the
series (65) converges to

1 1 — BBV
In
240

which describes the propagator in the external potential
V(z) = ulz|. Again, the results can be obtained in the
l/Ry — oo approximation and proceeding to the continuous
spectrum by Y, — 2/ [ g—;. Therefore, throughout the ma-
chinery of the previous derivations, one needs to replace the
nontrapped propagators G(x,t) by the propagators G(«,T)
of trapped photons. Up to the first order in photon-atom
interactions (i.e., neglecting all the higher-order terms), one

Gik,1=0)=—

(1 — eﬂwk)eﬂv(l) ’ (77)
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obtains

f(@ — ) ~ —Gk,t = 0) — BeP MG (kT = 0)
X(EK - (SM) (78)

To calculate the critical photon number, one needs to sum
up over momenta. However, a photon in the system under
study is described by the motional degree of freedom k =
k., but there also could be other degrees of freedom, for
example, a polarizational degree of freedom. Recall that it was
taken into account in formula (8) by introducing g = g(k),
which describes degeneracy in photon energy levels. For
the estimate in (8), we took an effective g* ~ 3, because
a massive boson can exist in three polarization states even
in on-shell approximation. Therefore, in this approximation
the continuous limit is introduced as ), — i—l J25. dk. This
essentially leads to multiplying by g* each time we have wave-
vector summation. Therefore, taking into account Eq. (78), one

obtains
2g*1 o
Ny~ —5 d,cln[
7BV ) Jo
2g%1
xBv2(1) Jo

o[ L= ebloio V0
X T o) oV |

1 — eP@c—110) BV D)
(1 — eflo—n) eﬂV(l)i|

dKeﬁ(wK —Mo)(EK — 1)

(79)

One can verify — either analytically or numerically — that
the first term is exactly the noninteracting result we discussed
before [see the expression (13)]. Indeed, taking [ — oo and
o = hwy, the first term turns into

Ny = 28T /ood |14 !
= n
0 Tu * exp(h2«2/2m*T) — 1
+0o0
-/

0
/+oo drkdz g*
oo 27 exp[ghnk? 4+ K] -1
where V(z) = ulz|, i.e., u = hwy/Ly. One notices that it
is exactly formula (8) after relabelling motional degree of
freedom « as k.

(80)

D. Contributions from one-photon and two-photon processes

Finally, in this subsection we list the contributions to
self-energies from one-photon and two-photon processes
(32)—(34) without a detailed derivation. The derivation pro-
cedure is the same as for the process H!! in the two
previous subsections. The critical number of photons in the
interacting case involves the self-energies from the processes
HUHZ H3 H H22 HB HA HP , H?, which are given
by

EK ~ 2¢(K) + E¢¢(K), (81)

where the number of “¢” in the subscripts stands for the
number of photons in an irreducible process; in this study it is
either one or two. The self-energies like X444 («) and of higher
orders are neglected. The contributions from one-photon
processes are given by

(1) 11 ~ 12 13 ~ ~
E¢ (kk) = Z Yk Mpfip+k + Vi~ Nplp+k + Vi Apfip+ks
p
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B
2000 =5 2w Pk @) + nPr 2 ki)
q

+ 1y, Bk q), (82)

where yk” ~ |Fl'{1|2, yklz = |F]'(2|2, yk13 = |F1‘113|2 are positive
factors. In the main approximation the effective interac-
tion parameters (see Appendix C) are given by F,(k;q) =

o04(K) 0,(q), where the quantities

1 . 1
o1k) = ~= D mpiipsx, oK) = = 3 npitpi,
at p at p

1
o3(K) = ~= D Fipfip ik, (83)
at
p

can be calculated analytically (see Appendix C). The contri-
bution of the two-photon processes are given by

1 N,
sy — 2n 4B, = 20
¢¢( k) Nat Xp: k p T1x 7p Y

23 Na
+rk —,
at Nat

B
e X 2D g 1k — @) + G 0ok — @)
q

+ Vg 03k — @), (84)

where ri” = Re Iy and ¢ = |T;|>. The expressions (82)—
(84) describe the one-photon and two-photon processes
without taking into account optical collisions of atoms (or
molecules). Therefore, the critical number of photons to
observe the Bose-Einstein condensation at the temperature 7
is defined by Eq. (79), with the self-energies given by expres-
sions (82)—(84) and the renormalization of the noninteracting
chemical potential, §u = lim,_, ¢ X,

An important simplification comes in the limit / — oo. In
this case, the critical number of photons is given by

28*L3 T (™ B2\ T, —du
2m*T huwo

Nc =~ N, d
T T e o KeXp(

R2i2
X In? [1 ~|—f0(2m*T):|,

where still fy(x) = (¥ — D! the noninteracting critical
number Ny is given by formulas (13) and (14). Note that
in the case [ — oo contributions from the lowest mean-field
self-energies Zg) and E% vanish, but contributions from

(85)

Ef) and Z;zdf remain finite as they involve continuous-limit
summation over photon momenta, returning the factor /.

We note that the self-energies (82) and (84) are responsible
for the interaction effects for the degenerate photon gas,® and

It may seem that the quantities X, which behave essentially like
renormalization of the photon’s energy in the cavity with media,
could be derived from the well-known methods of electrodynamics
of continuous media. This is, however, not true. The quantities X,
are the expectation values of the quantum operators of self-energies,
which means that they inherently contain the information on the
possible macroscopical occupation of one of the modes through the
finite-7 Green’s functions. The renormalization of the EM modes
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in particular they shift down the critical number of particles in
the way it is presented in formula (85).

Formula (85) should be considered only as an estimate of
the contribution of photon-photon interactions to the critical
number of particles. The perturbation theory in the case of
bosons has subtle issues at the critical point, and, generally
speaking, fails at T = T¢. The reason is that correlation length
& diverges as T — T¢. As a consequence, at T = T¢ one
cannot take the intermediate propagators the same way as
they are considered in the symmetric phase. Therefore, there
is a question as to what extent formula (85) could evaluate
the critical number of particles for a real system with weakly
interacting photons. In general, the range of validity of formula
(85) can be addressed only numerically, for example, by using
the path-integral Monte Carlo techniques (see Refs. [33-36]).
This, however, goes far beyond the scope of the present paper.
The following estimate, however, can be done. The study of
Pilati et al. [33] reports the accuracy around 2% of different
analytical and semianalytical perturbation approaches for
predicting the critical parameters for the gaseous parameter
naf ~ 107*, where aj is the s-wave scattering length. In this
regard, it is possible to estimate in order of magnitudes the
range of validity of the expression (85): It was reported in
Refs. [2,3] that the dimensionless interaction parameter for
photon-photon interactions in rhodamine 6G dye is 7 x 1074,
giving an estimate of the s-wave scattering length a, ~
10~* m. Considering a similar demand for convergence of the
present theory, nphaf <« 107*, one could expect that the region
of validity is roughly given as n,, < 10'°. In other words, the
density of the photons in the center of the cavity should be
sufficiently small that (1) the two-level atoms approximation
is valid and (2) the perturbation theory gives an output with a
controllable accuracy.

IV. DISCUSSION AND OUTLINE

The main goal of this paper was to introduce the con-
densation of photons in one dimension: Find the necessary
conditions, estimate the critical parameters, and look for the
role of light-matter interactions. However, it was not my goal
to plan a particular experiment, and neither was it to plot the
observables, since such calculations make sense only after (and
only if) the experiment succeeds.

The analysis, presented in Sec. II, shows that in the weakly
interacting case, the condensation is possible if the light is
trapped in a prolongated microtube, ! >> Ry, which is slowly
narrowing towards the ends as a power-law function weaker
than parabolic. The analysis has not been done for the strongly
varying shape, [ ~ Ry, as the quantization procedure in that
case is not straightforward. However, I would not be surprised
if a similar phenomenon, yet less distinct, could be observed
forl ~ Ry.

based on the continuous-media electrodynamics may or may not
be linked to the expectation values of the self-energy operators
for the thermalized photons. Maxwell equations do not contain
information on Bose-Einstein statistics, and therefore replacing the
true self-energies by their out-of-equilibrium classical analogs will
break the self-consistency of calculations.
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The experiments on Bose-Einstein condensation of photons
[1-4] have an interesting distinguishing feature: the temper-
ature of the setup is fixed, and the number of particles is
tuned by external pumping. Therefore, one of the natural
observables is N¢(T') [compare to T¢(N) in atomic BECs]. In
this study, the noninteracting model contributes to the critical
number of photons as Ny o T3/2, whereas the first perturbative
corrections contribute in a more complicated manner [see
formulas (79) and (85) and the linked expressions in Appendix
C]. Again, as in the case of the two-dimensional BEC of
photons [2,8], the geometry of the system is important for
tuning the system, since the parameters Ry,/, L, appear both
in the noninteracting and interacting context.

The other interesting feature here is the sharp response to
the atomic frequency resonance. As already mentioned, for
the thermalization process based on the repeated processes of
absorption and emission, it is important to ensure the closeness
of the cut-off frequency wy and the main atomic transition
frequency wy, so the absorption processes are favorable
enough compared to scattering processes. Even though the
thermalization processes were not considered implicitly in this
study, just referring to the earlier studies, the importance of
the relation wy & w, is apparent, as it appears throughout the
paper, in both the noninteracting and the interacting cases:
The quantity ® = e"~hw)/T reflects the strength of this
resonance for this system (see, for example, Appendix C);
also, the coupling parameters I" introduced in the Hamiltonian
(32)—(34) will have local extrema for momenta of photons,
satisfying the relation iw(K) =~ hw,,. Finally, for the complete-
ness of this consideration, one should also add into account the
average number of photons that are coupled with atoms, which
also depends on the closeness to the atomic resonance. In
equilibrium this quantity is linearly proportional to the number
of atoms and is given by Ny[1 + g2 exp (@)]71, where
g12 1s the ratio between degeneracy of the atomic ground state
and the first excited state; for details, see Refs. [7,8].

The influence of indirect photon-photon interactions, me-
diated through the different processes of absorption, emis-
sion, and scattering, was studied in terms of an effective
Hamiltonian, taking into account the hierarchy of multiphoton
processes. Because the photon number in the system under
study is significantly smaller than the number of atoms, the
hierarchy graph can be truncated on the one-photon and
two-photons processes, which give the leading contributions
to self-energy, corresponding to the effectively Hartree-Fock
terms if the direct photon-photon scattering was present.
The temperature-dependent perturbation theory, represented
here by Matsubara formalism, is valid in the symmetrical
phase, thus allowing us to estimate the critical parameters
of the system. I should make here two important remarks.
First, the different combinations of one-photon and two-
photon processes can give interfering terms which, of course,
will contribute to the self-energy; however, this contribution
appears to be significantly smaller; the lowest contributions
of the three-photon processes are of the higher order, at least
with eight photon operators, which is beyond the present study.
Second, there could also be present different one-photon and
two-photon processes, involving more than a pair of atoms, for
example, optical collisions of a form aTaT(pJfa a, aTan(pTEl a,
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etc. Even though formally these processes contribute into
effectively Hartree-Fock decouplings, at least for the values
of parameters used in the present paper the corresponding
self-energies are negligible compared to the self-energy
contributions given by formulas (82)—(84).

The problem, however, requires further study. For example,
for the photons in Bose-Einstein condensate, a more general
formalism, allowing broken symmetry, is required. A suitable
machinery is given by the Popov approximation; I am currently
working on it. It will be published elsewhere.
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APPENDIX A: ATOMIC GREEN’S FUNCTIONS

The ground-state atoms and excited-state atoms are phys-
ically the same objects (although with different quantum
numbers of electronic orbitals), so their propagators should
be physically linked. On the other hand, in the model of
two-level atoms, the dynamics of the system is described by
two independent quantum operators ap, (ground state) and dj
(excited state). The generalized atomic operator is introduced

as
_ (%
A= <&p>'

One can verify that the number operator AI,Ap returns the total
number of atoms in the system, that is, the number of atoms in
the ground state N, together with the number of atoms in the
excited state N,

(AL)

Nu=Y_ AlAp =" alay+ala, = No+ Na.
P P

(A2)

The generalized atomic Green’s function is defined as follows:

&(p.7.710) = —(T: A,(T)Al(70))n-

Alternatively, it can also be presented in a matrix form,

(A3)

ﬁ(pv T, TO) giAz(pafvtO)

@ , T, =
(p,7,70) <g?1(p,T,T0) G5 (p,7,70)

> . (A4

with the matrix elements given by
Gh(p.7.70) = —(Trap(v)a)(z0)),
Gih(p.1.70) = —(Trap(1)a}(0)).
G (p.7.70) = —(Trap(v)al (o)),

G (p.7.70) = —(Trap(1)a}(z0)).

(AS5)

The off-diagonal propagators compensate each other near
equilibrium. Throughout the main text of the paper I use the
notation G,(p,7) = G{} (p,7,0) and Gu(p,7) = G35 (p.7,0).
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APPENDIX B: SUMMATION RULES FOR POTENTIAL
HARMONICS

The Fourier transforms Vx = V, of the potential V(z) are
defined as
+
dze "V (2).

. 1
V@)=Y Ve, Ve=— (B1)

~2),

One can verify by direct calculation that the following property
holds:

5 Ldz
dovi= /lz—lV(z)V(—z). (B2)

For symmetric potentials V(z) = V(—z), thus one obtains

1 1
Y V2= _/ dzV3(2).
K l 0

For the power-law models, V(z) « |z|%, one can carry out the
integral explicitly as

(B3)

, V=1

XK:VK T 142a

This sum remains finite for the important region « € (0,2) and
decreases monotonically, approaching zero as @ — 00.

We also need to calculate the x =0 term of this sum
separately, which can be done as

(B4)

) _ 1/’ P Vie=)
Yo _[21 LEVE| =

where the last equality sign stands for V(z) o |z|*. Thus, the
quantity Vo = V(/)/(1 + «) describes the long-scale physics
of the problem. Note that the main contribution to the sum
(B2) is made by the low-energy photons, @ ~ wy.

(BS)

APPENDIX C: EFFECTIVE INTERACTION PARAMETERS

The effective interaction parameters F'(k,q) determine the
self-energy corrections to photon’s spectrum, thus renormaliz-
ing the interacting vertices, reducing the photon-atoms-photon
interaction to effective photon-photon interaction. Consider
the first interaction parameter, given by

1
F] (k; q) =7 Z(l + Sp,p/ + (Sk,q + 8p+k,p’+q)
Na oy
anflp+k np/ﬁp«+q. (Cl)

Even though the entire sum can be calculated analytically, for
the consistency of the main-order approximation the §’s should
be dropped, thus leading to

1 i )
Pl @)~ —5 D npfipsk ipiipq, (C2)
at p.p

and the sum factorizes to

1 )
Ao~ o®ao@, o) =—= mpipu. (C3)
at p

Therefore, we basically need to calculate ox. We do it in
the following steps. First, let us calculate the total number
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of atoms, which in nondegenerate system is given by

Ny = an + ﬁp — Zeﬁ(mep) + eﬂ(ltz*Ep*A)’ (C4)
P P

where A = hw, is the energy difference between the two
atomic eigenstates. The normalization is included as an
additive constant to the chemical potentials. The chemical
potentials 111 » of the ground-state and excited-state atoms are
linked by the condition of chemical equilibrium, ;| + 1 = uo,
with p to be the chemical potential of photons. Because Ny
is an observable, one can first derive the condition for the
chemical potential for one of the atomic subsystem,

-1
N,
Bur at —BE, — Bu—24)
e“‘—l_i_@(Epe ") , O =M, (C5)

and then calculate the effective interaction factor
1 1
— 7 — —Ep) ,B(na—Epx—A)
1K) = — Y npiipyx = — » eP=Ele P .

(Co)
After this, upon the substitution of the previous formula
(C5), and use of the energy-conservation relation Ep, 4+ hoy =
Epix + A, one obtains

-1
1 N,
— —B(hox—p) at E —BEp
=3¢ (1+®)2( —* ) D

The sum here can be calculated in the continuous approxima-
tion,

1% mT\*"*
e Y () s
2 9
~ 222 \ T
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where V is the volume of the cavity with atoms. Therefore,
one obtains

7.[3/2,1,I B2\ /2
k) = a —(hox=w)/T 9
ol =73 +®)2(mT> ¢ )

where ny = Ny /V is the density of the atoms. One can verify
that the quantity o (k) is dimensionless.

The similar expression can be obtained for the other
effective interaction parameters F'(k,q). Again, in the main
approximation they are given by

1
Fakiq) ~ oK) 02(@). 02(K) = = ) " mpnpe
at p
1 . .
Fy(ki@) ~ 03(k) 03(@), 03(K) = = D piipik. (C10)
at p

The effective interaction factors are calculated within the same
approximations and are given by

732 B2\ 32
k) = ———ny| — ) e AT
1+ “\mT -
7320 B2 \3/2 he /T ( )
03(k) = (1 +®)2nat(ﬁ) e (hox=)/ .

Finally, one can notice that o,(k) = 01(k)/® and o3(k) =
o1(k) ®, where © is given in formula (C5). As ® depends
on u, that in the leading order is 7w in the case of condensate,
therefore changing the geometry of the cavity one can make
certain processes to be more or less important for the system
under consideration.
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