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Using speckles to recover an image after its transmission through obstacles
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We show that an image, embedded into a speckle pattern, is robust against distortions during its transmission
through obstacles. The robustness depends on the coherence length of the speckles and obstruction size. This
behavior is based on the self-reconfiguration effect, where, even though some speckles have been blocked by an
opaque obstacle, the speckle-pattern intensity is reestablished during propagation at the point where the signature
of the obstacle disappears. We evaluated the self-reconfiguration ability of the image using the concepts of
visibility and similarity.
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I. INTRODUCTION

For a long time, scattering was considered only a detri-
mental effect that should be suppressed or avoided. However,
recently, a series of interesting physical effects has been
demonstrated and an enormous potential for disorder-based
optical applications has been unveiled, ranging from funda-
mental optical studies to biomedical imaging. For instance,
interesting effects have been explored with light possessing
orbital angular momentum scattered by an opaque media
such as spatial correlation singularity [1] and effective
topological charge obtained from two partially coherent
beams [2,3]. On the other hand, noninvasive imaging of
a fluorescent object has been shown through a strongly
scattering medium [4], with potential use in biomedical
imaging [5]. And, recently, speckle correlation resolution en-
hancement has been proposed for high-resolution fluorescence
imaging [6].

Scattering through an opaque media—such as biological
tissue, glass, and plastic—carries spatial, temporal, and spec-
tral information of the incident signal, and turns it into a
speckle field. Therefore, if the incident wave is changed in
any way, the speckle field changes accordingly. However, re-
trieving information from such field, getting information from
the speckle pattern, or even controlling the light propagation
have been a big challenge. For these purposes, several schemes
have been presented [4,7–14].

In fact, currently there is a great interest to control both
transmission and reflection of light by an opaque medium.
Associated to that, the ability that some beams are capable
of self-reconstructing or self-healing [15,16], even in the
presence of massive particles, may offer new possibilities to
look deeper into scattering tissues or to optimize an optical
signal transmission through scattering media, for instance.
Recently, two papers were published showing the importance
of the self-healing coherent Bessel beams for microscopy
[17,18], particularly for biological samples. At this point an
interesting question arises: Is it possible, using a speckled beam
as a light source, to recover an image after its transmission
through an obstacle?

In this work, we show a remarkable property of speckles:
the ability to image through obstacles. We demonstrate
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that it is possible to recover an image, without distortions,
even when an obstacle is placed on its path. In fact, the
insertion of an obstacle on the speckle field’s path produces
expressive changes in the speckle-pattern intensity. However,
for a specific propagation distance, the obstacle signature
disappears and whole image features are recovered. This
fact is connected with the self-reconfiguration effect [19].
Additionally, another point explored in this work is that the
recovery length along propagation depends on the spatial
coherence length of the speckles and obstacle size. The image
retrieval is evaluated using the concepts of visibility and
similarity. A numerical simulation was used to support the
experimental results and a theoretical analysis was presented
as well.

II. EXPERIMENTAL SETUP

The experimental setup is shown schematically in Fig. 1. A
Nd:YAG laser operating at 532 nm illuminates a computer
generated hologram [20] with controllable pixels written
in a Hamamatsu Model X10468-01 spatial light modulator
(SLM) producing a Fourier transform of a Gaussian beam,
as reference, and a Fourier transform of an image, namely
the letter π , as a signal. Both beams were imaged over the
scattering medium. A lens L2 images the SLM over a rotating
ground glass disk (RGGD) and L3 is placed at a distance f3 =
140 mm from the RGGD. A circular pinhole (PH), placed at
the focal plane of the lens L2, was used to select the desired
diffraction order. Some speckles were blocked by an obstacle
and the transmitted ones were displayed in a charge-coupled
device (CCD) camera for different longitudinal positions z.
First, the reference beam was recorded by the CCD camera,
and after that, the hologram was changed to acquire the
signal beam. The RGGD, CCD camera, and SLM were
synchronized to guarantee that the two acquired images are
spatially incoherent but correlated between them. In fact,
both signal and reference beams are scattered by the same
region of the disk and detected one at a time by changing the
hologram. Only after signal and reference measurements, the
RGGD is rotated for the next set of measurements. To obtain
two spatial coherence lengths of the speckles, we arrange
the experimental setup for two different distances of d. For
d = 5 cm, we have spatial coherence length of δ1 = 31.1 μm
and for d = 15 cm, δ2 = 17.7 μm. This occurs because the
spot size of the laser beam on the disk changes for different
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FIG. 1. Experimental setup. L1, L2, and L3 are lenses with focal
lengths f1 = 30 mm, f2 = 300 mm, and f3 = 140 mm, respectively;
BS: beam splitter; PH: pinhole; SLM: spatial light modulator; RGGD:
rotating ground glass disk; and CCD: charge coupled device.

distances of d, and consequently, the spatial coherence length
is changed accordingly. A numerical autocorrelation method
was used to measure the spatial coherence length of the speckle
[21]. The correlation curve possesses Gaussian distribution
whose full width at half maximum gives the mean speckle
size, which corresponds to the spatial coherence length of
the speckle. Two obstacles were used with diameters of
D1 ≈ 2 mm and D2 ≈ 1 mm. Each obstacle is a dark circle
printed on a transparent sheet.

III. THEORETICAL ANALYSIS

The field propagation from the RGGD to the obstacle can
be described by [22,23]

ES(�u1) =
∫

exp

(
ik

f3
�v1 · �u1

)
π̃ (�v1)G(�v1)d2v1, (1)

and

ER(�u2) =
∫

exp

(
ik

f3
�v2 · �u2

)
g̃(�v2)G(�v2)d2v2, (2)

for the signal and reference beams, respectively. It is important
to remember that these beams are speckle fields. k is the
modulus of the wave vector and is given by k = 2π/λ, where λ

is the wavelength. G describes the random effect of the RGGD.
π̃ represents the Fourier transform of the image “π” and g̃ is
a Fourier transform of a Gaussian beam.

The propagation from the obstacle to the CCD can be
described by

ES(�r1) =
∫

O(�u1)ES(�u1) exp

[
− iπ

λz
(�u1 − �r1)2

]
d2u1, (3)

and

ER(�r2) =
∫

O(�u2)ER(�u2) exp

[
− iπ

λz
(�u2 − �r2)2

]
d2u2, (4)

where O represents the obstacle.

The field spatial correlation function at the detector points
�r1 and �r2 is given by

〈ES(�r1)E∗
R(�r2)〉

=
〈∫∫

O(�u1)O∗(�u2) exp

[
− iπ

λz
(�u1 − �r1)2

+ iπ

λz
(�u2 − �r2)2

]{∫∫
exp

[
ik

f3
(�v1 · �u1 − �v2 · �u2)

]

× π̃ (�v1)g̃∗(�v2)G(�v1)G∗(�v2)d2v1d
2v2

}
d2u1d

2u2

〉
.

(5)

With sufficient scattering, the random effect of the GGD
can be described by a Dirac delta function 〈G(�v1)G∗(�v2)〉 =
δ(�v1 − �v2). Therefore, the integrals in v1 and v2 in Eq. (5)
become

� =
∫

exp

[
ik

f3
�v · (�u1 − �u2)

]
π̃ (�v)g̃∗(�v)d2v. (6)

Considering that g̃ is the Fourier transform of a Gaussian
with very narrow width, Eq. (6) is approximately the convolu-
tion of π with a Dirac delta function, resulting in

� = π (�u1 − �u2). (7)

Inserting Eq. (7) into Eq. (5) and using the change of
variables �u2 = �u1 − �u and �r1 = �r and �r2 = 0, we obtain

〈ES(�r)E∗
R(0)〉 = e− iπ

λz
r2

∫∫
O(�u1)O(�u1 − �u)

× exp

[
− i2π

λz
�u1 · (�u − �r)

]

× exp

(
iπ

λz
u2

)
π (�u)d2u1d

2u. (8)

It can be shown that, for any obstacle, the integral in
the variable �u1 in Eq. (8) results in a function which is
approximately the Fourier transform of the obstacle function
Õ(�u − �r) which can be approximately described by a Dirac
delta function Õ(�u − �r) ≈ δ(�u − �r), such that

〈ES(�r)E∗
R(0)〉 = e− iπ

λz
r2

∫
δ(�u − �r) exp

(
iπ

λz
u2

)
π (�u)d2u

= π (�r). (9)

Based on Reed’s momentum theorem [24], the correlation
between the measured intensities 〈IS(�r)IR(0)〉 is related to the
modulus of the field correlation |〈ES(�r)E∗

R(0)〉| by

〈IS(�r)IR(0)〉 − 〈IS(�r)〉〈IR(0)〉 = |〈ES(�r)E∗
R(0)〉|2. (10)

Thus, considering that the mean intensities at the measure-
ment plane are uniform, the second term in Eq. (10) is just a
constant background in the intensity correlation.

Looking at Eq. (9), it is clear that the π image was recovered
after the obstacleO. From the presented δ-correlated model the
self-reconfiguration length [19] of the image is independent of
z. However, in a more realistic scenario the function Õ(�u − �r)
is not a function of zero width. In this situation the size of π

must be taken into account, and the π dimension depends on
the spatial coherence length of the generated speckle fields.
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FIG. 2. Speckle patterns of the reference and signal beams mea-
sured for different distances of propagation, with spatial coherence
length δ1 = 33.1 μm and obstacle of diameter D1 ≈ 2 mm.

IV. RESULTS AND DISCUSSION

Figure 2 shows the reference and signal speckle-pattern
intensities, with spatial coherence length of δ1 = 31.1 μm,
using matrices of 720 × 720 pixels corresponding to a region
of 2.52 mm × 2.52 mm of the CCD camera. In the first line
of Fig. 2, the CCD camera was placed at z = 0 cm. After
measuring the speckle patterns, a transparent sheet with a
dark circle of diameter D1 ≈ 2 mm was placed at z = 0 cm.
From z = 2 cm to z = 10 cm, the obstacle signature is clearly
observed. On the other hand, the entire speckle pattern
becomes homogeneous or self-reconfigured [19] around z =
34 cm.

The procedure used to obtain the result of cross correlation
between the signal and reference speckle patterns was the
following: We measured the reference intensity followed by
the signal intensity, and, then, we numerically performed a
cross correlation between them,

C(x,y) =
∫ +∞

−∞

∫ +∞

−∞
IS(x ′,y ′)IR(x ′ − x,y ′ − y)dx ′dy ′,

(11)

FIG. 3. Cross correlation between reference and signal beams
for different distances of propagation, with coherence length δ1 =
33.1 μm and obstacle of diameter D1 ≈ 2 mm.

where IS and IR are the signal and reference intensities,
respectively. All experimental results presented in this work
were averaged over 100 measurements.

The cross-correlation results between reference and signal
of Fig. 2 are shown in Fig. 3. The first image (z = 0 cm)
is exactly the retrieved image without obstacle. After that, a
transparent sheet with an obstacle of diameter D1 ≈ 2 mm
was placed on the speckles’ path and a sequence of blurry
images was measured. However, around z = 34 cm, the image
π was clearly recovered. This position coincides with the self-
reconfiguration of the speckles (see Fig. 2). We can see that
all the details of the letter are recovered. Besides, the letter did
not change its size along propagation because the speckle field
is a collimated field. The speckles themselves do not change
their size for the distance between the lens L3 and the CCD
camera position. We have used matrices of 360 × 360 pixels
corresponding to a region of 1.26 mm × 1.26 mm of the CCD
camera to display the images of Fig. 3.

The self-reconfiguration effect is characterized by having
the same autocorrelation profile before and after the obstacle,
as soon as the speckle-pattern intensity has been reconstructed
[19]. The interesting point here is that the reconstruction of the
letter π , which was obtained performing the cross-correlation
procedure, coincides with the self-reconfiguration effect.

We can also observe in Fig. 3, through the color bars, that for
z = 2 cm, the letter π is blurry and the obstacle signature has
a strong influence on the image formation. However, during
the propagation, and at z = 34 cm, the background increases,
returning to the same level observed at z = 0 cm.

Figure 4 shows the reference and signal speckle-patterns
intensity, for the same parameters as Fig. 2, but now with
spatial coherence length of δ2 = 17.7 μm. We observe that
with the reduction of the spatial coherence length of the
speckle, the obstacle effect disappears at a shorter distance,
around z = 17 cm. Figure 5 shows the cross-correlation results
between reference and signal of Fig. 4. We can clearly observe
that the letter and the background are reestablished around
z = 17 cm following Fig. 4.

Since Figs. 4 and 5 have the same dimensions as Figs. 2 and
3, respectively, comparing Fig. 5 with Fig. 3, we notice that the
letter size has changed. This is observed because decreasing
the spatial coherence length of the speckle, by increasing the
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FIG. 4. Speckle patterns of the reference and signal beams mea-
sured for different distances of propagation, with spatial coherence
length δ2= 17.7 μm and obstacle of diameter D1 ≈ 2 mm.

spot size of the laser beam over the RGGD, implies a reduction
of the size of the image formed in the correlation function [25].

We use two parameters to evaluate the reconfiguration
ability for the correlated imaging: the visibility and similarity.
We have used the same experimental results shown in Figs. 3
and 5 to calculate the visibility and the similarity. The visibility

FIG. 5. Cross correlation between reference and signal beams
for different distances of propagation, with coherence length δ2 =
17.7 μm and obstacle of diameter D1= 2 mm.

was calculated as the following:

V = IL − IB

IL + IB

, (12)

where IL is the mean intensity of the pixels over the letter
π and IB is the mean intensity of the pixels out of the letter
π (background). The similarity was calculated also using the
data of Figs. 3 and 5, but following Ref. [26],

S =
∫∫

If Iidxdy∫∫
Ii

2dxdy
, (13)

where Ii is the intensity before the obstacle (z = 0 cm) and If

are the intensities for the different propagation distances.
We have made a simulation to support the experimental

results. Pseudorandom functions R = R(x,y) are generated,
such that each point assumes random values uniformly distri-
buted between 0 and 2π . The speckle pattern is simulated by

P (x,y) = F[A(x,y)eiR(x,y)], (14)

where F denotes a Fourier transform. The term A(x,y) can
be equal to exp[−(x2 + y2)/w2

1] for the reference beam or
equal to a Fourier transform of a letter π for the signal
beam. The result of Eq. (14) is assumed to correspond to

FIG. 6. Experimental and simulation results for visibility (a) and
similarity (b) as a function of propagation distances for the spatial
coherence length of δ1 = 33.1 μm.
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FIG. 7. Experimental and simulation results for visibility (a) and
similarity (b) as a function of propagation distances for the spatial
coherence length of δ1 = 17.7 μm.

the plane at z = 0 cm. Adjusting w1 we can control the
spatial coherence length which is of the order of the speckle
grain size. Next, we simulate the propagation of the signal
and reference fields through the obstacle. After that, we
numerically performed the cross correlation between the signal
and reference intensities for the same distances of propagation
presented in the experiments. All simulations have an average
of 100 calculations. After obtaining a letter π similar to that
in Figs. 3 and 5, we used Eqs. (12) and (13) to evaluate the
visibility and similarity, respectively.

Figure 6 shows the visibility (a) and the similarity (b) for the
cross-correlation images for different distances of propagation,
corresponding to the numerical simulations and experimental
results of Fig. (3). At z = 2 cm the visibility increases at the
same time that similarity decreases. Along the propagation
the visibility values decrease and return to a value close to
one that it had before the obstacle, at z = 0 cm. Differently,
the similarity values increase and approach to 1. It is important
to point out that the similarity quantifies the reconfiguration

effect, showing that the resolution of the letter π is recovered.
It is interesting to notice that there is a trade-off between the
visibility and the similarity, as observed in Fig. 6. This behavior
can be also observed between visibility and resolution [27].
The resolution increases, while the visibility of the pattern
decreases.

For a better understanding of the obstacle effect on visibility
and similarity features, we performed the same study with an
obstacle of diameter D2 ≈ 1 mm. As can be seen in Fig. 6, the
insertion of the obstacle of minor diameter has less effect
on the visibility and similarity, consequently reducing the
reconfiguration distance. Thus, the visibility and similarity
values return to those close to z = 0 cm at a propagation
distance around z = 17 cm.

Figure 7 shows the visibility (a) and similarity (b) for the
cross-correlation images along propagation, with the same
parameters as Fig. 5, but now with spatial coherence length of
δ2 = 17.7 μm. For this case, the recovery of the visibility and
similarity occurs at a shorter distance, since the reconfiguration
distance is directly proportional to the coherence length [28].

It is remarkable that the correlated imaging is more robust
against distortions during diffraction through obstacles when
embedded in a more incoherent speckle pattern. All experi-
mental results are in good agreement with the simulation.

We also should call attention to the fact that the speckles
can be self-reconfigured independently if they were generated
by partially coherent Gaussian or Bessel beams, for example
[19].

V. CONCLUSION

In conclusion, we showed that an image, embedded into
a speckle pattern, can be reconfigured after being transmitted
by an object. This reconfiguration feature is quantified using
the concepts of similarity and visibility. We observed that the
insertion of an obstacle causes changes in these quantities,
but they are reestablished during propagation, erasing com-
pletely any effect of the obstacle. We also observed that the
propagation distance to recover the visibility and similarity
depends on the spatial coherence length of the speckle and the
obstruction size. The image reconfiguration using speckles
may shed light in applications concerning microscopy in
biological samples, since alternative avenues may be opened
overcoming significantly the self-healing beams [17,18]. The
self-reconfiguration effect also may be useful for entangled
photons generated by a partially coherent pump [29,30].
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