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Semiclassical-wave-function perspective on high-harmonic generation
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We introduce a semiclassical-wave-function (SCWF) model for strong-field physics and attosecond science.
When applied to high-harmonic generation (HHG), this formalism allows one to show that the natural time-domain
separation of the contribution of ionization, propagation, and recollisions to the HHG process leads to a frequency-
domain factorization of the harmonic yield into these same contributions, for any choice of atomic or molecular
potential. We first derive the factorization from the natural expression of the dipole signal in the temporal domain
by using a reference system, as in the quantitative rescattering (QRS) formalism [J. Phys. B 43, 122001 (2010)].
Alternatively, we show how the trajectory component of the SCWF can be used to express the factorization,
which also allows one to attribute individual contributions to the spectrum to the underlying trajectories.
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I. INTRODUCTION

Building on the advances of laser technology, strong-
field physics and attosecond science [1–4] have attracted
a lot of attention as means to manipulate and probe the
electronic structure at the atomic and molecular level [5–8].
Among the variety of possible outcomes from the laser-matter
interaction, high-harmonic generation (HHG) [5,9,10] focuses
on the highly nonlinear and nonperturbative process by which
coherent harmonic photons of the driving laser are emitted,
with harmonic orders ranging up to the extreme ultraviolet
regime [9,11]. In turn, the intrinsic coherence of the HHG
process can be exploited in the development of novel high
performance light sources such as attosecond pulses [5,12,13].
Alternatively, by the fundamental properties of the HHG
process, information on electronic structure and electron
dynamics are encoded in the spectrum [6,14–18], opening the
way for high-harmonic spectroscopy.

At the core of strong-field physics is the recollision picture
[19,20] in which an electron, after being ionized, is accelerated
and returned to its parent ion upon reversal of the electric-field
direction. Upon recollision, electromagnetic radiation can be
emitted therefore corresponding to HHG. Following the de-
composition of the process into three successive steps, one can
intuitively expect the HHG cross section to factorize into the
product of each individual step, as (i) the ionization probability
times (ii) the propagation, through the probability of recolli-
sion, times (iii) the efficiency of rescattering. Such a factoriza-
tion has been expressed in the temporal domain for atoms [21]
and was extended to include more complicated core dynamics
of molecular systems [15,17]. Less intuitively, the quantitative
rescattering (QRS) model has empirically shown that this
factorization of the HHG spectrum can be expressed directly
in the frequency domain, with results in very good agreement
with full quantum simulations and experimental measurements
[22–24]. The theory for such a spectral factorization has been
established for short-range potentials [25]. In this general
context, we introduce a semiclassical-wave function (SCWF)
formalism which, by combining the wave and particle picture
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of the electron, leads to an intuitive derivation of the HHG
spectrum factorizations, irrespective of the potential.

In most theoretical analyses and interpretations of HHG,
two main approaches have been considered in the literature.
On the one hand, the plane-wave and/or Volkov state (or
further refined Coulomb corrected models) [21,26,27] adopt a
wave perspective of the recolliding electron. Such an approach
allows one to define the recollision dipole element [see,
e.g., Eq. (2)]. However, since the electronic wave function
is completely delocalized in configuration space, at all times
the ionized part of the wave function overlaps completely with
the bound part and the instant of recollision, i.e., step (iii) in
the recollision picture, has to be imposed by hand. On the other
hand, classical (or semiclassical) interpretations that make use
of electronic trajectories [28–31], e.g., using the stationary
phase approximation, allow for an intuitive definition of the
recollision time but lose the dipole recollision counterpart that
now has to be to some extent artificially imposed. In this paper
we introduce a semiclassical wave function that combines the
wave and particle pictures with a quantumlike delocalized
wave function supported by a trajectory in phase space. In
short, we approximate the electron dynamics starting right
after ionization, for each ionization instant. Then, building on
the knowledge that has been accumulated in the strong-field
community with semiclassical description of HHG, each such
contribution is described with a separate SCWF component
and its associated contribution to the spectrum. All in all, the
combined wave and particle perspective naturally allows us to
define the time-dependent dipole signal associated with each
SCWF component through recollision.

The article is organized as follows: Section II defines the
quantum framework in which HHG simulations are performed
throughout the paper. This section also describes the reduced
dimensional molecular model we use as an illustration.
Section III defines the theoretical framework for the SCWF
approximation. First we discuss the semiclassical trajectory
component of the SCWF (Sec. III A). Then we focus on
the bound part of the wave-function and ionization step
(Sec. III B). Finally, we put all these elements together to
approximate the dipole acceleration signal (Sec. III C) from
which HHG spectra are computed. Section IV uses the SCWF
picture to derive a factorization of the HHG spectrum as
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the product of the ionization, propagation, and rescattering
(i) × (ii) × (iii) terms, in the energy (frequency) domain. First
we consider the factorization when the propagation part is
described with a reference system (Sec. IV A). Then, we
investigate the factorization when the semiclassical trajectory
picture of the SCWF is used for the propagation term
(Sec. IV B); this allows us to compare the relative importance
of the three step cross sections in the overall HHG spectrum.
Section V concludes the paper and discusses some possible
perspectives unveiled by the SCWF picture.

II. MODEL

In this paper we consider high-harmonic generation (HHG)
as obtained from numerical integration of the time-dependent
Schrödinger equation (TDSE) i∂t |ψ〉 = Ĥ|ψ〉, using bracket
notations where appropriate, for an isolated single active
electron (SAE) model. In the length gauge and using atomic
units (unless otherwise specified) the Hamiltonian operator
reads

Ĥ(x,t) = Ĥ0(x) + E(t)x̂ = −�

2
+ V(x) + E(t)x̂, (1)

where V is the (SAE) effective potential, E(t) is the laser
electric field, and we consider a one-dimensional configuration
for the sake of simplicity, as illustrated in Fig. 1. From the
solution of the TDSE we define the associated HHG spectrum
as the Fourier transform of the dipole acceleration

RHHG(ν) = F[d̈(t)](ν) with d = 〈ψ |x̂|ψ〉, (2)

where the Fourier operator F is defined as

F[f (x)](ν) = 1√
2π

∫
R

dx f (x)e−iνx . (3)

Throughout the paper, and in numerical simulations, we use the
direct expression for the dipole acceleration d̈ = 〈ψ |â|ψ〉 [32]
although the dipole signal can as easily be used. We also use a
Hanning window [33] over the time duration of the simulations
to avoid spurious frequencies in the computation of the
associated discrete Fourier transform (2) of finite time signals.

FIG. 1. Illustration of the one-dimensional model of potential (4).
The electron dynamics is restricted along the polarization direction
which forms an angle θ with the molecular axis as shown in the upper
part of the figure. In the lower part, we display the effective potential
shapes for the two limiting angles θ = 0 and θ = π/2 (used as the
reference, see text) as labeled in the figure.

We now introduce the model we use in numerical simula-
tions. We consider a two-center soft-Coulomb potential [34]
where the electron dynamics is along a line that forms an angle
θ with the molecular axis, as illustrated in Fig. 1. The potential
has the form

Vθ (x) = − Zeff√
x2 − Rx cos θ + R2

4 + a2

− Zeff√
x2 + Rx cos θ + R2

4 + a2
, (4)

where Zeff is the effective charge, R is the internuclear
distance, and a is the softening parameter. We consider two sets
of parameters, Zeff = 1 and R = 2 or Zeff = 0.5 and R = 1.5,
with the softening parameter set such that the field-free
ionization potential is Ip = 1 or Ip = 0.5 respectively (a ≈
1.39 and a ≈ 1.33). Each can be seen as rough approximations
of the H2

+ molecular ion and the H2 molecule, respectively,
and will be referred to as such in what follows. We introduce
the angle θ so as to investigate the changes in the HHG
spectrum as the polarization direction is varied and how the
factorizations (see Sec. IV) reproduce these changes.

Although the discussion is kept as general as possible, for
the numerical simulations reported in this paper, we consider
a linearly polarized laser field with a constant envelope

E(t) = E0 cos(ωt), (5)

where E0 is the peak field amplitude and ω is the laser
frequency and all simulations are started at a zero of the field.
For numerical integration of the TDSE, we use a second-order
pseudospectral split operator scheme where the kinetic part
is treated in momentum space (using fast-Fourier transforms)
and the potential part is in configuration space [35], initialized
in the ground state. In all cases we use high-resolution
computations and we have checked the robustness of the
reported results with parameters.

III. SEMICLASSICAL WAVE FUNCTION

We will consider a HHG scenario in which ionization is
kept low. Combined with the long wavelengths we consider in
this paper, ionization will be assumed as an adiabatic process.
At each time t0, the instantaneous ionization rate is taken as
the one for a static electric field with amplitude E(t0) (see
Sec. III B). In this section, we introduce the semiclassical
wave function (SCWF) which is used to model and analyze
the electron dynamics following ionization and the associated
HHG emission.

We decompose the wave function between its bound and
ionized parts

ψ(x,t) = ϕb(x)αb(t)eiφb(t)︸ ︷︷ ︸
bound

+
∫ t

dt0 ϕ(t0; x,t)︸ ︷︷ ︸
ionized

, (6)

where the unspecified lower bound in the integral is set to
the initial time for quantum simulations. We will discuss the
bound part of the wave function in detail in Sec. III B. ϕ(t0; x,t)
corresponds to the subsequent dynamics of the part of the
bound wave function ionized at time t0. We show an illustration
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FIG. 2. Illustration of the semiclassical wave function (SCWF)
ϕ(t0; x,t) (full color, limited by the Gaussian envelope—see text) and
bound state ϕb. For comparison, we also display, in light shade, the
continuum state ϕE attached to the SCWF. The right part of the figure
highlights the phase difference ��(E,E′) between the (continuum
state) system ϕE and reference ϕ′

E′ .

of the bound and ionized parts of the wave function in the
SCWF approximation in Fig. 2.

The strong field ionization process has drawn a lot of
attention in the adiabatic regime and beyond from the
seminal works of Keldysh [36], Perelomov-Popov-Terentev
[37], and Ammosov-Delone-Krainov [38] to TDSE numerical
approaches [39,40]. Generally speaking, these theories predict
the electron, after exiting the ionization barrier at time t0, to
exhibit a Gaussian distribution in momentum, generally cen-
tered around 0 for linear polarization. Moving the momentum
distribution picture into configuration space, we take the initial
ionized part of the wave function as a Gaussian profile. For
the subsequent dynamics, the SCWF approximation consists
of two main hypotheses. (1) We assume that the spatial profile
remains Gaussian, with a time-dependent maximum x(t0; t)
and width σ (t0; t). Following the maximum of the Gaussian
then gives rise to a classical trajectory in phase space, with
position and momentum x(t0; t) and p(t0; t), respectively.
(2) We assume that the fast spatial variations of the SCWF
can be described by the (single, field-free) continuum state
with the corresponding momentum p(t0; t) around x(t0; t).
For simplicity, we label this continuum state |ϕE〉 with its
energy E(t0; t), where |ϕE〉 is solution of Ĥ0|ϕE〉 = E|ϕE〉
with E > 0, following the electron dynamics. The motivation
for using continuum states rather than the usual plane-wave,
or Volkov states, or Coulomb waves... is to account for the
specific influence of the potential at hand [15,23,41], e.g.,
when the electron is close to the core region (see in Fig. 2
how, on the continuum state, both the local frequency and
amplitude change around the core position). Altogether, the
SCWF model then yields

|ϕ(t0; t)〉 = α0(t0)eiφ0(t0) e
−[x−x(t0;t)]2/4σ 2(t0;t)

√
σ (t0; t)

|ϕE(t0;t)〉eiφ(t0;t),

(7)

where α0 and φ0 are related to the ionization yield and
phase respectively (see Sec. III B), φ corresponds to the phase
accumulated by the SCFW trajectory, while σ accounts for the
quantum spread of the wave function in the continuum (see

Sec. III A). As expressed in Eq. (6), the entire wave function
is then recovered by integrating over ionization times. In the
past, the use of semiclassical frozen Gaussians [42–45] have
proven very useful in several fields of physical chemistry with
a more recent application to HHG [46].

The SCWF approximation aims at identifying and retaining
the key ingredients of the electron dynamics and the HHG. It is
now well established that the target potential interaction, e.g.,
with long-range Coulomb-like tail, is such an ingredient. The
SCWF framework allows for including such potential specific
effects at two different levels. First, at a purely quantum level,
this is achieved by using continuum states for the specific
potential at hand, therefore accounting for the exact scattering
cross section. Second, at the classical level and beyond the
strong-field approximation (SFA), the potential effect can
be accounted for in the trajectory component of the SCWF
(and attached phase) through its equation of motion. We
discuss the importance of each level, compared to generic
approximations such as plane waves or the SFA, at the end of
Secs. IV B and V. For processes involving a single ionization
and recollision channel the success of QRS-type factorizations
[22–24], directly in the frequency domain, lie in their capacity
to account for both levels. Yet, as interests move toward
more complicated systems in which multiple channels and
the resulting core dynamics play a role [17,18], time-domain
formulations offer a natural framework to account for each
such channel, correlated to the core dynamics.

A. Electronic trajectory

In the simple case of a flat potential—corresponding to
the SFA—continuum states can be computed analytically and
correspond to the so-called Volkov states [47] leading to

|ϕE(t0;t)〉eiφ(t0;t) = 1
4
√

2π
e
i(p(t0;t)x−∫ t

t0
ds p2(t0;s)/2)

,

with E(t0; t) = p2(t0; t)/2. In this case, the semiclassical
trajectory is given by Hamilton’s equations,

dtx(t0; t) = p(t0; ·) and dtp(t0; t) = −E,

and can for instance be found using the stationary phase
approximation. We also note that the SCWF phase corresponds
to the Hamiltonian action φ(t0; t) = − ∫ t

t0
ds p2(t0; s)/2 [47].

In the SFA, the potential is flat so that its effect on the quantum
dynamics is independent of the electron motion. In this context,
the standard deviation can be derived from the free particle case
giving

σ (t0; t) =
√

4σ 4
0 + (t − t0)2

4σ 2
0

,

where σ0 = σ (t0; t0) is therefore the initial standard deviation,
immediately after the ionization step. Note that our definition
of the SCWF naturally avoids the singularity of the standard
deviation for t → t0 as is typically observed using the
stationary phase approximation [26,27]. Numerically we find
that in the SFA the SCWF approximation offers very good
results compared to the full quantum dynamics.

Beyond the SFA, e.g., for long-range potentials with a
Coulomb-like tail, one can consider substituting Coulomb
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waves instead of the Volkov states in the previous equations
and adapt the subsequent analysis accordingly. Generally
speaking, for a given potential, the SCWF approximation
consists of selecting an appropriate dynamics for the position,
momentum, standard deviation, phase, and energy. Irrespective
of this specific choice, in what follows we will assume

ẋ ≈ ∂pH, ṗ ≈ −∂xH, and φ̇ ≈ −E, (8)

where H is the classical counterpart to the Hamiltonian
operator Ĥ, and we use Hamilton’s equations in place of the
TDSE. The phase derivative equation ensures that, in the limit
of infinite standard deviation σ → ∞, the quantum dynamics
for the continuum state i∂t |ϕE〉eiφ = Ĥ|ϕE〉eiφ = E|ϕE〉eiφ

is satisfied. As we shall see, this approximation is very
useful whenever the phase derivative is needed in theoretical
investigations.

B. Bound state and ionization

For the sake of simplicity, we assume the bound part
of the wave function to be a single, field-free, eigenstate
[26]—in most cases the ground state—which we denote ϕb

as illustrated in the left part of Fig. 1. We neglect laser
induced spatial variations of the bound state and compute the
complex ionization potential Ip(E) for a static electric field
with amplitude E , using a complex rotation [48]. Then, the
bound part dynamics of Eq. (6) is given by

αb(t) = e− ∫ t
ds{�b[E(s)]/2}, φb(t) = −

∫ t

ds Eb(E(s)), (9)

where Eb is the Stark-shifted bound-state energy and �b the
ionization rate with Ip = −Eb + i�b/2.

From the bound-state dynamics, we can now derive the
condition for the ionized part of the wave function in Eq. (7),
i.e., the initial ionization step (i). Indeed, given that bound
and continuum eigenstates of the Hamiltonian operator form
a generalized orthonormal basis, if we neglect recapture of
previously ionized electrons, charge conservation imposes

α2
b(t) +

∫ t

dt0 α2
0(t0) ≈ 1,

where we have neglected the effect of the Gaussian profile on
the cross terms when computing the total charge. Taking the
derivative of the previous equality and using Eq. (9), after a
short calculation we get

α0(t0) =
√

�b(E(t0)) exp

(
−

∫ t0

ds
�b(E(s))

2

)
. (10)

In the low ionization regime, when bound-state depletion
can be ignored, the amplitude coefficient simply becomes
α0 ≈ √

�b. Finally, the adiabatic approximation applied to the
ionization phase leads to

φ0(t0) = −
∫ t0

ds Eb(E(s)) + �φ0(E(t0)), (11)

where �φ0(E(t0)) is the phase accumulated only during the
ionization process and the first term on the right-hand side
reflects the synchronization of the ionized part of the wave
function with the bound-state phase at the instant of ionization.

C. Dipole radiation signal

We now have all the key ingredients to express the dipole
signal and, in turn, its associated HHG spectrum using the
SCWF approximation for the wave-function dynamics. From
Eq. (6), combined with the dipole definition (2), we identify
three main contributions to the dipole signal. From these
three, we ignore the contributions from the bound-bound and
continuum-continuum state coupling (due to its low-frequency
spectrum, and its second-order importance compared to the
bound-continuum component, respectively). We isolate the
contributions from each initial ionization time and define the
complex dipole acceleration element

d̈(t0; t) = 〈ϕb|â|ϕ(t0; x,t)〉αb(t)e−iφb(t), (12)

where the bound-state amplitude and phase are given by
Eqs. (9) and the total dipole acceleration is obtained by
integrating over ionization times

d̈(t) =
∫ t

dt0 d̈(t0; t) + c.c., (13)

with c.c. is the complex conjugate. From the definition of the
SCWF (7), after appropriate factorization, one can isolate the
three steps of the recollision model in the complex acceleration
dipole

d̈(t0; t) =
√

�b(E(t0))e− ∫ t0 ds �b(E(s))+i�φ0(E(t0))︸ ︷︷ ︸
(i) ionization

× e
i(φ(t0;t)−∫ t

t0
ds I ∗

p (E(s)))

√
σ (t0; t)︸ ︷︷ ︸

(ii) propagation

× 〈ϕb|â|e−[x−x(t0;t)]2/4σ 2(t0;t)ϕE(t0;t)〉︸ ︷︷ ︸
(iii) rescattering

, (14)

where “I ∗
p” is the complex conjugate of the ionization

potential. The first step, (i) ionization, has been set by hand
in the model through the adiabatic approximation and there is
therefore little surprise to find it here. On the other hand, the
clear separation between the second, (ii) propagation, and the
third, (iii) rescattering, was not predetermined and is a direct
consequence of the SCWF model.

IV. FACTORIZATION OF THE HIGH HARMONIC
GENERATION SPECTRUM

The factorization (14) makes clear that the complex dipole
signal associated with a given SCWF is the product of the
ionization, propagation, and recollision cross sections. Note
though that this factorization is expressed here in the time
domain. In this section we investigate how the factorization
maps to the frequency domain and, more interestingly for our
purpose, to HHG spectra. First we investigate the factorization
when the propagation part is described with a a reference
system that only shares generic features with the system at
hand, for instance a long-range Coulomb tail away from the
core, as in the QRS formalism [22–24] (Sec. IV A). While the
use of such a reference provides very good results for HHG
spectrum predictions, it sheds little light on the propagation
step (ii) which is treated as a black box. Alternatively, this
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question can be investigated with the SCWF perspective
taking advantage of the trajectory component of the model
(Sec. IV B). More specifically, it allows us to disentangle the
individual contributions from all the trajectories that contribute
to the HHG spectrum and enables us to compare the relative
contributions (i)–(iii).

For consistency with our choice of computing HHG spectra
using the acceleration form of the dipole signal, in what follows
we discuss the factorization using the acceleration scattering
cross section 〈ϕb|â|ϕE〉 = −〈ϕb|∇V|ϕE〉. A similar analysis
can be carried out using the dipole form and its associated
scattering cross section 〈ϕb|x̂|ϕE〉. The equivalence between
the two factorization forms will be discussed in the end of
Sec. IV A.

A. Using a reference system

The central idea behind using a reference system is to
approximate the propagation term (ii) as a black box by
including some of the effects of the potential at hand. To
be a good candidate, the reference system should be easy
to compute and/or common to a wide range of parameters
under investigation where the reference is computed once
and then reused throughout the parameter analysis. For our
illustration of molecular models of potential (4) we investigate
the dependance of the HHG spectrum with the polarization
angle RHHG(θ ; ν). Similarly to the QRS formalism we define
the reference spectrum R′

HHG(ν)—more generally we will label
all data associated with the reference system with primes—
with identical (field-free) ionization potential [49] and similar
potential shape away from the core region. In our case, such a
reference can be taken to be the system at a given angle, e.g.,
R′

HHG(ν) = RHHG(π/2; ν) where the potential becomes the one
for a SAE atomic target as illustrated in Fig. 1. Then, from the
definition of the HHG spectrum (2) and using the linearity of
the Fourier transform we apply the SWCF approximation to
the dipole accelerations (14) and get

RHHG(θ ; ν) =
∫

dt0 F
[
d̈ ′(t0; t)

d̈(θ,t0; t)

d̈ ′(t0; t)

]
(ν) + c.c., (15)

with c.c. = F[d̈∗(θ,t0; t)]. Intuitively, we see that the key
element of the QRS factorization—e.g., Eqs. (1) and (4) of
Ref. [24]—consists of moving the relative dipole acceleration
d̈/d̈ ′ outside of the Fourier transform as a global multiplicative
factor. In what follows we investigate the theoretical grounds
for doing so.

As discussed previously, we consider HHG in the low ion-
ization regime where bound-state depletion can be neglected
such that the ionization part (i) of the ratio d̈/d̈ ′ simplifies to

(i)

(i)′
≈

√
�b(θ,t0)

�′
b(t0)

ei��0(θ,E(t0)),

where ��0(θ,E) = �φ0(θ,E) − �φ′
0(E) is the ionization

phase difference with the reference system. Numerical com-
putations of ionization rates show a very generic shape for
systems with comparable ionization potential such that, at
the leading order,

√
�b(θ,t0)/�′

b(t0) ≈ �(θ ), irrespective of
the ionization time t0. For higher laser intensities, where
the bound-state depopulation effects can be neglected over

one laser cycle but not for the full duration of the pulse,
using the argument that similar dipole signals are produced
every laser period, the previous equation can be modified
taking into account the ionization yield over a laser cycle.
Because of the integration over the laser cycle, the ionization
factor is independent of the ionization time t0 within a cycle.
As a consequence, integrating over the laser pulse duration,
the overall ionization ratio is also independent of t0 and
|(i)/(i)′| ≈ �(E0; θ ).

We now turn to the propagation part (ii) of the dipole
acceleration ratio. This term describes the ionized electron
dynamics in the continuum, i.e., mostly when the electron is far
away from the core. Beyond the SFA picture, using a reference
system with similar potential shape offers a much better
description of this electron dynamics away from the core. We
illustrate this point in the right part of Fig. 2 where only a
zoom allows to differentiate between the system and reference
continuum states away from the core and this difference is
associated with a phase shift (��). In the previous paragraph,
we have ruled out effects of the bound-state depopulation such
that the only possible source of difference between the system
and reference comes from their respective bound-state energy
Stark shift. We assume that the Stark shift of the system and
its reference are the same to leading order (which is a good
approximation at moderate intensity) and would therefore
cancel in the ratio (ii)/(ii)′. Now looking at the overall dipole
acceleration (14) we notice that the phase term in (ii) is the only
fast oscillating factor, compared to all the other terms which
vary on the time scale imposed by the laser frequency ω. The
instantaneous HHG frequency, defined as the time derivative
of the total phase, is then

|ν(t0,t)| ≈ |φ̇(t0,t) − Re(Ip(E(t)))| ≈ E(t0,t) + Ip,

where Re denotes the real part and we have used Eq. (8)
for the phase derivative. This instantaneous frequency will be
discussed in further detail in Sec. IV B; for now it provides a
link between the HHG frequency and electronic energy.

For atomic and small molecular systems the bound part of
the wave function ϕ

(′)
b is localized in space and we define χb

as the characteristic function over this region, i.e., χb(x) = 0
where ϕb ≈ 0 and 1 elsewhere. Without loss of generality we
use the same characteristic function for both the system and
reference. This could for instance be achieved by increasing
the respective characteristic domains to make them match. As
is illustrated in Fig. 2, the width of the ionized part of the
wave function is typically much larger than that of the bound
part. Intuitively, this can be understood by the fact that right
after ionization the electron is usually localized in momentum
space. Moving this picture in position initializes the ionized
part of the wave function with a relatively large width σ

(′)
0 and

is further amplified through quantum spread in the continuum.
As a consequence we have

e−[x−x(θ,t0;t)]2/4σ 2(θ,t0;t)χb(x)

≈
∫

dy e−[y−x(θ,t0;t)]2/4σ 2(θ,t0;t)χb(y)∫
dy χb(y)

χb(x),
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which approximates the Gaussian envelope with its mean value
over the characteristic function χb domain, and thus

〈ϕb(θ )|â(θ )|e−[x−x(θ,t0;t)]2/4σ 2(θ,t0;t)ϕE(θ,t0;t)〉

≈
∫

dy e−[y−x(θ,t0;t)]2/4σ 2(θ,t0;t)χb(y)∫
dy χb(y)

〈ϕb(θ )|â(θ )|ϕE(θ,t0;t)〉.

(16)

A similar approximation can be written for the reference
system. Again, because of the similarity between the potential
with the reference model we expect x(θ,t0; t) ≈ x ′(t0; t) in
the region away from the core such that the prefactors
to the bound-continuum acceleration dipole element in the
previous equation cancel in the rescattering part of the dipole
acceleration ratio

(iii)

(iii)′
≈ 〈ϕb(θ )|â(θ )|ϕE(θ,t0;t)(θ )〉

〈ϕ′
b|â′|ϕE′(t0;t)〉 .

Already we see the central role played by the scattering states in
the HHG spectrum, as emphasized by the QRS approximation
[22–24] as compared to the SFA where plane waves are used.
In Fig. 3 we display the angle resolved cross section for the
molecular models (4) we consider here. For both molecular
models we notice that the two center interference generates
a singularity in the scattering cross section whose position
in energy depends on the angle θ . Note, though, that when
the laser is perpendicular to the molecular axis (θ = π/2, see
upper part of the Fig. 3), the singularity disappears, which
makes this a good candidate as a reference since it avoids
dividing by zero in the previous equation.

We put together all the simplifications discussed above
for components (i)–(iii) of the dipole acceleration ratio and

FIG. 3. Polarization angle resolved acceleration scattering cross
sections with the ground state, 〈ϕb|â|ϕE〉, for the H2 molecule (left
panels) and H2

+ molecular ion (right). For clarity, the lower panels
show the projection of the scattering cross section over positive angles
θ and the upper panels compares the cross section curves for the
reference system (θ = π/2) and potential with parallel molecular
and polarization directions (θ = 0, see labels).

combine it with the HHG spectrum (15) which becomes

RHHG(θ ; ν) ≈ �(E0; θ )
∫

dt0 ei��0(θ,E(t0))

×
(
F[d̈ ′(t0; t)]∗ 1√

2π
F

[ 〈ϕb(θ )|â|ϕE(θ,t0;t)(θ )〉
〈ϕ′

b|â′|ϕE′(t0;t)〉
])

(ν)+c.c.,

(17)

given the convolution property of the Fourier transform
of a product (F[fg] = F[f ] ∗ F[g]/

√
2π ). As discussed

previously, the energy E(′)(t0; t) evolves on the time scale of the
electron dynamics, which is very slow compared to the overall
dipole variation associated with the total phase in propagation
term (ii). As a consequence, this slow variation is recovered in
the scattering cross-section ratio

F
[

(iii)

(iii)′

]
(ν) ∝ δ(ν − ω) ≈ δ(ν), (18)

where δ is the Dirac δ distribution, and given that ω � ν for
high-harmonic orders. Following the time scale separation of
the dipole signal phase discussed previously, the proportional-
ity coefficient in the Fourier transform of Eq. (18) is obtained
using the instantaneous frequency approximation and reads

〈ϕb(θ )|â(θ )|ϕE(t0;t)(θ )〉
〈ϕ′

b|â′|ϕE′(t0;t)〉 with E = |ν| − Ip

in Eq. (17). Since the reference system dynamics away from
the core is assumed to reproduce the one for the system
at hand we further consider E ≈ E′. The last term we are
left to deal with in the HHG spectrum factorization is the
ionization phase difference ��0. Most ionization models
attribute similar ionization effects to potentials with identical
field-free ionization potentials and we therefore ignore this
additional phase altogether, ��0 ≈ 0. In the end, we arrive at
the HHG spectrum factorization from the reference system

RHHG(θ,ν) ≈ �(E0; θ )R′
HHG(ν)

〈ϕb|â|ϕE〉(θ )

〈ϕ′
b|â′|ϕ′

E〉 , (19)

given that R′
HHG = ∫

dt0 F[d̈ ′(t0; t)] + c.c. As emphasized in
the QRS formulation [23], the dipole acceleration element ratio
〈ϕb|â|ϕE〉/〈ϕ′

b|â′|ϕ′
E〉 contains phase information due to the

phase difference of field-free continuum eigenstates (denoted
�� on the right most part of Fig. 1). We finish by noticing
that one can also substitute the dipole element ratio

〈ϕb|â|ϕE〉
〈ϕ′

b|â′|ϕ′
E〉 ≈ 〈ϕb|x̂|ϕE〉

〈ϕ′
b|x̂ ′|ϕ′

E〉 ,

in Eq. (19), e.g., using the approximation 〈ϕb|â|ϕE〉 ≈
−E2〈ϕb|x̂|ϕE〉, and that this corresponds to the standard
formulation of the QRS factorization [23].

To conclude this section, in Fig. 4 we compare the spectrum
factorization using a reference system (19) with the result of
a full quantum simulation—panels (b) and (a) respectively.
As demonstrated in QRS analyses [23], such a factorization
offers a very good approximation of the actual result as
the two spectra are very similar. In particular, we notice
that both spectra exhibit a local minimum around 360 eV,
labeled with vertical dashed lines, which is associated with
a singularity in the scattering cross section (see upper right
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FIG. 4. HHG spectrum for the H2
+ molecular ion model of

potential (4) with parallel molecular and polarization directions (θ =
0). For the simulations, we integrate the TDSE over ten laser cycles
with 3 × 1014 W cm−2 and 2150-nm laser intensity and wavelength,
respectively. From up to down, we compare spectra obtained from
(a) the full quantum dynamics with Eq. (2) to, in (b) and (c), the
reference system factorization (19) using scattering and plane waves
respectively [49]. For indication, on each panel, the vertical dashed
line labels the HHG energy associated with the singularity in the
acceleration scattering cross section as seen in the upper right panel
of Fig. 3.

panel of Fig. 3). On the other hand, looking at the lower panel
of Fig. 4(c) we see that using the plane-wave scattering cross
section in the spectrum factorization yields poor results (the
local minimum is shifted by about 40 eV. To some extent,
spectra with the factorization (19) and plane-wave scattering
cross sections account for the classical level, including some
effects of the potential in the electron trajectory (and phase),
while they disregard the purely quantum level by not using
accurate continuum states. This discrepancy illustrates the
crucial importance of using continuum states for the system
at hand, rather than plane waves (e.g., Volkov states), in the
SCWF (7).

B. Direct factorization

As illustrated in Fig. 4, and more generally discussed
in QRS analyses [22–24], the use of a reference system is
interesting in that it offers very good, quantitatively compa-
rable, results compared with the full quantum simulations.
For appropriately chosen systems, such as a scaled hydrogen
atom, the computation of the reference HHG spectrum can
be evaluated numerically relatively cheaply with modern
technology. Yet, beyond the computational point of view, from
the theoretical perspective, one of the drawbacks of using
a reference system is that it treats the propagation step (ii)
as a black box from which little physical insight is gained.
On the other hand, insightful electron trajectory pictures
have been developed for the interpretation of HHG spectra,
for instance the well-known short and long trajectories with

linearly polarized lasers [10,29]. In this section we connect
the trajectory component of the SCWF to the propagation
component (ii) of the spectrum which leads us to a direct
factorization of the HHG spectrum. In particular, this analysis
allows us to separate the contributions from each such
trajectory and to compare the relative importance of the three
steps (i)–(iii) to the spectrum.

In this context, the analysis is the same irrespective of the
polarization angle and, for the sake of simplicity, in what
follows we omit the θ parameter dependence in equations
when there is no confusion possible. We start again from the
SCWF approximation in which contributions to the harmonic
spectrum are separated by ionization time. We define the
element

RHHG(t0; ν) = F[d̈(t0; t)](ν), (20)

such that

RHHG(ν) =
∫

dt0 RHHG(t0; ν) + c.c.

For typical atomic and small molecular systems, the bound
part of the wave function is localized in a well defined part of
space, which we denoted with the characteristic function χb

in the previous section. In comparison, the ionized electron
dynamics extends over much larger excursion distances,
as illustrated in Fig. 2. As a consequence, the trajectory
component of the SCWF model allows for the definition of a
recollision time tr when the electron returns to the core (or the
time of closest return depending on the chosen model), if any.
In our case of potential (4), the recollision time for a given
trajectory is defined by the implicit equation x(t0; tr ) = 0.
Then, considering a linearization of the trajectory around
this recollision time, combined with the comparatively large
Gaussian width of the SCWF, the spatial averaging (16) can
be expressed in the temporal domain

(iii) ≈ e−(t−tr )2/2σ̃ 2〈ϕb|â|ϕE(t0;t)〉,
for some standard deviation σ̃ related to the parameters of the
problem at hand.

Looking at the terms composing the complex dipole
acceleration element (14) we notice a clear separation of
time scales between the different terms. On the one hand, the
phase coefficient in propagation (ii), φ(t0; t) + ∫ t

t0
ds Eb(E(s)),

exhibits a rapid variation in time. As introduced in the previous
section we define its time derivative,

ν(t0; t) = φ̇(t0; t) + Eb(E(t)) ≈ −E(t0; t) − Ip, (21)

using the trajectory phase derivative approximation (8) and
neglecting any Stark shift. On the other hand, the term ν(t0; t)
like the other time-dependent coefficients in Eq. (14) evolves
with the characteristic time scale of the SWCF electron
dynamics, i.e., very slowly—typically with the frequency
of the driving laser ω. We then consider a linearization of
the phase around the recollision time which allows for a
computation of the HHG spectrum element (20)

RHHG(t0; ν) ≈ (i)(ii)(iii)|t=tr σ̃ e−[(ν−ν(t0;tr ))2σ̃ 2/2]−iνtr , (22)
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where the second and third factors of Eq. (14) are evaluated at
the recollision time. In the limit of large σ̃ we notice that

σ̃ e−(ν−ν(t0;tr ))2σ̃ 2/2 −−−→
σ̃→∞

√
2πδ(ν − ν(t0; tr )),

the Dirac δ distribution. Taking this limit when summing over
ionization times, we see that the overall HHG spectrum adds
up to the coherent superposition of the contributions from all
ionization times leading to the same recollision frequency

RHHG(ν) =
∑
t ′0

d̈(t ′0; tr )e−iνtr with t ′0 s.t. ν(t ′0; tr ) = ν.

(23)

From the previous equation (23) we recover the direct link
between semiclassical trajectories of the SCWF and harmonics
in the HHG spectrum. For example, in the SFA and linear
polarization, the sum over ionization times t ′0 corresponds
to finding the short, long, and possible multiple recollision
trajectories leading to a given harmonic frequency. Breaking
down the factors in the individual contributions for a given
trajectory, we get

|RHHG(t ′0; ν(t ′0; tr ))| ∝
√

�b(E(t ′0))

σ (t ′0; tr )
|〈ϕb|â|ϕE〉|, (24)

where we have neglected bound-state depopulation and recall
E = |ν(t0; tr )| − Ip (21). Furthermore, in the previous equa-
tion we remark that the variations of the σ factor—associated
with quantum spread in the propagation term—are much
slower than that of the ionization and rescattering factors.
This is made obvious in the SFA where σ (t ′0; tr ) ≈ |tr − t ′0|
in the limit of large propagation times. We see that the linear
dependence is negligible compared to the typical exponential
variations over several orders of magnitude that normally occur
in both the ionization and scattering cross section (as can
be seen in Fig. 3 for the latter). From this perspective, the
variations of the propagation factor can be neglected and the
trajectory contribution is reduced to

|RHHG(t ′0; ν(t ′0; tr ))| ∝
√

�b(E(t ′0))|〈ϕb|â|ϕE〉|. (25)

For simplicity, we use the SFA to compute the SCWF
trajectory component—although as discussed in Sec. III A, a
more refined model including the effects of the potential could
also be considered. In the upper panel of Fig. 5 we compare
the contributions of short and long trajectories (see labels on
the figure) using prediction (25) with the HHG spectrum of
a full quantum simulation. In our configuration, we see that
the long trajectory contribution qualitatively reproduces the
overall shape of the full HHG spectrum and dominates the
short trajectory component. This can be easily understood with
the fact that long trajectories are born around the maxima of
the electric field—therefore with the higher ionization rate
in the adiabatic approximation—while short trajectories are
initiated later on, when the instantaneous field is weaker.
More generally note that, for a given harmonic energy, in the
factorization framework we have developed here, both short
and long (and multiple recollision) trajectories share the same
rescattering cross section. As a consequence, the difference in
their respective contribution amplitudes can only come from
the ionization (i) and propagation (ii) factors.

FIG. 5. Comparison between the full quantum HHG spectrum
with the prediction (25) for short and long (upper panel, see labels)
trajectories and the coherent superposition of both (lower) from
Eq. (23). The proportionality coefficient in Eq. (25) has been chosen
such as to get best match with the full HHG computation. As
illustrated in the figure, the lower panel focuses on the part of the
spectrum between 2.4Up + Ip and 3.17Up + Ip where only one
short and one long trajectory (no multiple recollision) contribute to
the spectrum in the SFA. The system (H2

+), laser and computation
parameters are the same as of Fig. 4.

Since more than one trajectory contributes to the HHG
spectrum, following Eq. (23), they should be added coherently,
that is including their respective phases. We display such a
coherent superposition of both short and long trajectories,
where their respective amplitudes are computed with Eq. (25),
in the lower part of Fig. 5. In the panel we focus on the
harmonics between 2.4Up + Ip and 3.17Up + Ip where only
one short and one long trajectory (no multiple recollision)
contribute to the HHG spectrum according to the SFA, and
Up = E2

0 /4ω2 is the ponderomotive energy. When compared
to the full quantum spectrum, we see that the coherent
superposition of both short and long trajectories reproduces
very well the oscillation pattern observed in the spectrum. We
take it as a further proof of the relevance of the SCWF analysis
and predictions of Eqs. (23) and (25).

Compared to the reference system version, the direct factor-
ization bypasses the computation of a quantum HHG spectrum
altogether. Beyond the computational considerations, and
more interestingly, the direct factorization offers an intuitive
interpretation of spectra in terms of electron trajectories
and allows us to disentangle their respective contributions
to the spectrum. Conceptually, each trajectory corresponds
to a quantum path that must be summed over coherently to
obtain the harmonic spectrum [28]—this corresponds to the
integral over ionization time t0 throughout the article—and
illustrated by the interference pattern between short and long
trajectories, as discussed previously. The reference system
factorization, with its compact form, automatically account
for this summation. Yet, for comparison with experimental
measurements, it is often desirable to have access to each
contribution individually. One such example is the phase
matching condition where macroscopic propagation of HHG
restricts the contribution to a given harmonic from (at most)
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a single identified trajectory [10,12,29,50]. In this context
the individual spectra of isolated systems, as provided with
the reference system factorization, are quite different from
the macroscopic counterpart as it lacks the filtering imposed
on trajectories that are not phase matched. More critically,
as interests move towards more complicated systems in which
multiple channels and the resulting core dynamics are involved
[17,18], the access to each individual contribution becomes
a requirement. In this perspective, the SCWF time-domain
formulation offers a natural framework to model and analyze
systems and their HHG spectra.

V. CONCLUSIONS AND PERSPECTIVES

To summarize, we have introduced the semiclassical-
wave-function (SCWF) approximation which combines the
wave and particle picture of the electron dynamics: It is
supported by a semiclassical trajectory while incorporating
a spatially delocalized extension of the wave function. This
intuitive framework, applied to high-harmonic generation
(HHG) allows the factorization of the spectrum as the
product of the ionization (i), propagation (ii), and rescat-
tering (iii) cross sections in energy (frequency) space. The
propagation component can be described with a reference
system (19) as in the quantitative rescattering (QRS) for-
malism [23]. Alternatively, the factorization can be per-
formed directly using the trajectory perspective of the SCWF
(23) and (25).

In Fig. 6, we compare the accuracy of the two factorizations
(middle and lower panels) in approximating the full quantum
spectra (upper panels). More specifically, we display the
intensity of odd harmonics (which gives the global envelope
of the harmonic comb) between 2.4Up + Ip and 3.17Up + Ip

energy, as the polarization angle θ is varied for the H2

molecule (left panels) and H2
+ molecular ion (right) models

of potential (4). Qualitatively, we see that both factorizations
reproduce full quantum results very well. In particular, we
see that all three panels present very similar oscillations
patterns in photon energy and, as the polarization direction
is varied, they all exhibit a local minimum that follows the
singularity in the scattering cross section (see black curves
in the panels). For both factorizations though, we see that
this local minimum is sharper than in the full quantum
computation counterparts. This can be attributed to the fact
that in full quantum simulations, the scattering cross section
is expressed in the temporal domain as in Eq. (14) while
it is directly expressed in the frequency domain for the
factorization. In the former case, the singularity can be blurred
by higher-order effects when computing the Fourier transform
to compute the HHG spectrum (2). On the quantitative level,
in Fig. 6, we observe better results using the reference system
(middle panels) than with the direct factorization with SFA
(lower).

We have illustrated in Sec. IV A and Fig. 4, using
plane-wave scattering cross sections instead of the accurate
continuum state ones in the SCWF model, the importance of
the quantum level. As a corollary, the direct factorization with
SFA trajectories (and correct scattering cross section) allows
us to evaluate the importance of having accurate equations
of motion for the electron (classical level). To some extent,
the middle panels of Fig. 6 account for both quantum and
classical levels and reproduce very well results from numerical
integration of the TDSE. On the other hand, the lower
panels use approximate trajectories, neglecting the long-range
Coulomb potential influence, leading to quantitatively less
accurate results. All in all, those examples illustrate the success

FIG. 6. Envelope of the HHG spectrum (obtained by selecting odd harmonics only) as the polarization direction angle θ is varied for the
full quantum system (upper panel), using a reference system in factorization (19) [49] (middle) and the direct factorization (23) and (25) with
SFA short and long trajectory interfering (lower). For the linear molecules we consider here, spectra are symmetrical by reflection with the
molecular axis (θ = 0) and we therefore display only half of those spectra. Left panels correspond to the H2 molecule (with 3 × 1013 W cm−2

and 2850-nm laser intensity and wavelength respectively) and right panels to the H2
+ molecular ion (laser parameters are the same as in Fig. 4)

model of potential (4). For both systems, we focus on the part of the spectrum between 2.4Up + Ip and 3.17Up + Ip energy where only one
short and one long trajectory (no multiple recollision) contribute to the spectrum in the SFA. For indication on each color map we also display,
with a continuous curve, the HHG energy associated with the singularity in the scattering cross section (see Fig. 3).
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of the SCWF in identifying and retaining the key elements
for HHG spectra computations, their analysis and building
qualitative and quantitative predictions.

Beyond the results of the factorization derived in this article,
the SCWF allows the identification of possible perspectives for
improving the results of approximate predictions compared
to full quantum simulations. For the reference system of
Eq. (19) there is not much obvious room for improvement
apart from potentially fine tuning the energy correspondence
E ≈ E′ in the scattering cross section. On the other hand, the
direct factorization, with a direct access to the propagation
step and underlying trajectories, leaves more perspectives for

improvement. One such logical possibility is accounting for
the energy Stark shift [51] in both the bound part of the
wave function and instantaneous frequency. This formalism
also leaves room for including laser induced bound-state
deformation [52,53] or core dynamics.
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