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Off-resonance regimes in nonlinear quantum Rabi models
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We study the nonlinear quantum Rabi model—both in the two-photon and the intensity-dependent coupling
scheme—by utilizing the perturbation method in the off- and near-resonance regimes characterized by the field
and the atomic transition frequencies. We consider the weak-coupling condition, the perturbation parameter being
the ratio between the coupling constant and the atomic frequency. For both models we determine the first- and
second-order corrections to energy eigenvalues and eigenstates, disclosing the doublet structure characterizing
the energy spectrum. Then we apply our findings to both the coupling schemes in order to calculate the time
evolution of a general initial state and the atomic population inversion for an initial state composed by a mixture
of excited and unexcited atoms.
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I. INTRODUCTION

The quantum Rabi model provides a simple but successful
paradigm of the interaction between matter and electromag-
netic fields where a matter qubit, a two-level atom, interacts
with a single field mode. After the seminal papers [1],
where radiation was considered within the semiclassical limit,
extensive use of the quantum Rabi model and its manifold
applications in quantum optics [2,3], quantum information [4],
and atom physics [5] are well documented, and include, on a
more theoretic ground, a recent considerable interest for its
integrability properties [6–11].

Two nonlinear generalizations of the quantum Rabi model
are well known in which the field-atom interaction of the model
Hamiltonian, involving two different realizations of algebra
su(1,1), can be written in a unified form resorting to the ladder
operators K± of the algebra.

Selecting the Schwinger realization [12] for K± leads
to the two-photon quantum Rabi model (TPM), where the
absorption and emission mechanism, featuring two photons
rather than one, has been thoroughly studied and used in
physical applications, as reported, e.g., in [13,14]. From a
theoretical point of view, the search for analytical solutions of
the two-photon model (see, e.g., [15] and references therein)
has been significantly revamped since Braak presented his
solution scheme [6] for the one-photon quantum Rabi model,
which is based on the Bargmann representation of boson
operators a and a†.

This intense investigation includes the solution of the TPM
through the extension of Braak’s approach [7,8], the TPM
characterized by the presence of two qubits and their mutual
interaction [9], and the extension of the TPM to a multiqubit
chain via trapped-ion technology, which reveals the effect of
the coupling-induced spectral collapse [10]. A diagonalization
scheme based on a symmetric form of the rotating-wave
approximation is reported in [11].

On the other hand, using the Holstein-Primakoff realization
[16,17] for operators K± results in the intensity-dependent
Rabi model (IDM), a kind of nonlinear light-matter coupling
whose definition, within the frame of the Jaynes-Cummings
model (JCM) [18], can be traced back to works [19,20].
Numerical investigations [21,22] are usually carried out for

analyzing this coupling, whose experimental realization has
been achieved recently by studying the light transport in engi-
neered waveguide superlattices [23–25]. The IDM, including
m-photon processes with m � 2, has been considered in [26].

Unlike the cited works, which rely mainly on numerical ap-
proaches or appropriate extensions of Braak’s semianalytical
scheme, in this work we analyze the nonlinear TPM and IDM
by resorting to the standard perturbative approach [27]. The
advantage is that implementing a fully analytic treatment of
the problem provides a description of the physical properties
that explicitly depends on the model parameters. We note in
advance that the perturbative approach implicitly excludes the
resonance condition between the atomic and the field-mode
frequencies. Then, in this paper, our attention is focused on
both the off- and near-resonance regimes of the system without
applying the rotating-wave approximation.

We determine the second-order expressions of the energy
eigenvalues and of the corresponding eigenstates, which
provides a deeper insight into the interplay among the model
parameters and suggests prospective physical phenomenology.
Based on these results we show how, for both the TPM
and the IDM, the spectrum features different energy-doublet
structures depending on the model-parameter regime one
considers. Then, we calculate the explicit expressions for
the time evolution of a generic quantum state and apply this
finding to illustrate the time behavior of the atomic population
inversion (API) in the case when the initial state of the system
corresponds to a superposition of excited and unexcited atomic
states.

While our analysis is mainly devoted to the dynamical
aspects of the TPM in view of its relevance in fully quantum
systems, we note that the very generality of the perturbative
scheme allows for a straightforward extension of this scheme
to the IDM, which we perform in the final part of the paper.

For this reason we have structured our work as follows:
First, we detail the su(1,1) framework of both models in
Sec. II, while reporting in Sec. III the relevant second-order
perturbative results (energy eigenvalues and eigenstates) in
the weak-coupling regime. In the latter section we resort
to a perturbation scheme, which proved useful already for
trapped ions [28]. For the TPM we derive the evolution
of the model quantum state (Sec. IV) and evaluate API
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in Sec. V. In our time-dependent analysis the initial state
of the system is considered to be a superposition of two
number-spin product states. In Sec. VI we report the results
for the IDM, while Sec. VII is devoted to concluding remarks.
Additional mathematical details are supplemented in the
Appendices.

II. PERTURBATIVE APPROACH TO
NONLINEAR RABI MODEL

In units � = 1, the TPM and the IDM are both embodied in
the Hamiltonian

H = ωn̂ + ω0S3 + g(K− + K+)(S+ + S−), (1)

where g is the coupling constant, and ω and ω0 denote the
energy of the bosonic-field mode and the atomic transition
energy, respectively. In Eq. (1) pseudospin operators S3 and
S± act on the two-dimensional atomic space, K− and K+
are ladder operators acting on the field Fock space, and
n̂ = a†a with [a,a†] = 1. Operators S3, S± and K3, K±
represent the standard generators of algebras su(2) and su(1,1),
respectively, obeying well-known commutation relations [29].
Hamiltonian (1) comprises both nonlinear quantum Rabi
models and their explicit expressions, depending on the
realization of operators K± one works with. Resorting to
the single-mode Schwinger realization [30] of the su(1,1)
generators,

K− = 1
2a2, K+ = K

†
−, K3 = 1

2

(
n̂ + 1

2

)
, (2)

model (1) yields the TPM, while in the frame
of the single-mode Holstein-Primakoff realization
[16,17]

K− = √
n̂ + 2κ a, K+ = K

†
−, K3 = n̂ + κ, (3)

with κ the group-representation index, the IDM is retrieved
from Hamiltonian (1).

The general form of Eq. (1), suitable to a perturbative
approach, is

H = Hunp + εW, (4)

where Hunp is the unperturbed Hamiltonian, ε the perturbation
parameter, and the perturbative term W assumes different
expressions depending on the coupling scheme. We identify
the perturbation parameter of model (1) with the dimensionless
ratio ε = g/ω0, so that in Eq. (4)

Hunp = ωn̂ + ω0S3, (5)

and

W = ω0

2
(a2 + a†2

)(S+ + S−), (6)

W = ω0(
√

n̂ + 2κ a + a†√n̂ + 2κ)(S+ + S−), (7)

in the coupling schemes corresponding to the operator re-
alizations (2) and (3), respectively. Following the station-
ary perturbation theory [27] for the eigenvalue problem
H |E(n,s)〉 = E(n,s)|E(n,s)〉, one expands both eigenvalues
and eigenstates E(n,s) and |E(n,s)〉 in powers of ε, where
s = ±1 is the quantum number associated to the atomic
states, i.e., S3|s〉 = (s/2)|s〉, while index n ∈ N0 labels the

field-mode states such that n̂|n〉 = n|n〉. For completeness,
we report here the standard formulas of perturbation the-
ory which we have utilized in our first- and second-order
analysis,

E1(n,s) = 〈E0(n,s)|W |E0(n,s)〉, (8)

|E1(n,s)〉 =
∑
m�=n

∑
r

〈m,r|W |n,s〉
E0(n,s) − E0(m,r)

|m,r〉, (9)

E2(n,s) =
∑
m�=n

∑
r

|〈m,r|W |n,s〉|2
E0(n,s) − E0(m,r)

, (10)

|E2(n,s)〉 =
∑
m�=n

∑
r

|〈m,r|W |E1(n,s)〉|2
E0(n,s) − E0(m,r)

|m,r〉. (11)

In the previous formulas the spin index r takes the value
±1, while the eigenvalue E0(n,s) and the relevant eigenstate
|E0(n,s)〉, entering the unperturbed problem Hunp|E0(n,s)〉 =
E0(n,s)|E0(n,s)〉, are given by

E0(n,s) = ωn + 1
2ω0s, |E0(n,s)〉 = |n,s〉. (12)

Note that the unperturbed eigenstates simply represent the
direct product of a photon state and an atomic state, namely,
|n,s〉 = |n〉|s〉, |m,r〉 = |m〉|r〉.

III. PERTURBATIVE RESULTS FOR THE
TWO-PHOTON MODEL

The first-order contribution to the eigenvalues and eigen-
vectors of the TPM are easily found to be

E1(n,s) = 0

and

|E1(n,s)〉 = ω0

2

[
bn|n − 2〉
2ω + ω0s

− bn+2|n + 2〉
2ω − ω0s

]
| − s〉, (13)

with bn = √
n(n − 1), respectively. Determining second-order

contributions requires a longer but straightforward calculation,
leading to the expressions

E2(n,s) = ω0

2

[
q(s)

(
n

2

)
− q(−s)

(
n + 2

2

)]
(14)

where

q(±s) = ω0

2ω ± ω0s
, (15)

and

|E2(n,s)〉 = 1

8

ω0

ω
[q(s)K2

− + q(−s)K2
+]|n〉|s〉,

= 1

16

ω0

ω
[q(s)cn|n − 4〉 + q(−s)cn+4|n + 4〉]|s〉,

(16)

with cn = √
n!/(n − 4)!.
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A. Spectrum properties in the off-resonance regime

The energy eigenvalues including correction (14) have the
form

E(n,s) = E0(n,s) + ε2ω2
0

4

[
n(n − 1)(2ω − ω0s)

4ω2 − ω2
0

− (n + 1)(n + 2)(2ω + ω0s)

4ω2 − ω2
0

]
, (17)

which implicitly defines two off-resonance regimes, 2ω < ω0

and 2ω > ω0. Both can exhibit doublet structures of energy
levels, even if originated differently. Indeed, in the first case,
by assuming ω0 = pω with integer p > 2, one naturally finds
the degeneracy condition

E0(n, + 1) = E0(m, − 1)

of the unperturbed levels, if p = m − n. Eigenvalues E0(n, +
1) and E0(n + p, − 1) are thus grouped into a s = +1 band
and s = −1 band, respectively, whose lowest levels n = 0
and m = 0 are shifted of ω0. The resulting spectrum, formed
by levels E(n,s) including the second-order corrections, is
characterized by interband level doublets with E(n, + 1) and
E(n + p, − 1), whose gap

E(m, − 1) − E(n, + 1) = ε2ω2
0

2
(
4ω2 − ω2

0

)γ (m,n),

with m = n + p and γ (m,n) = ω0(m2 + n2 + m + n + 2) −
4ωp, is controlled by the perturbation parameter ε.

A different type of doublet structure appears, in the second
case, when the condition 2ω > ω0 becomes a strong inequality
2ω � ω0. The latter, in fact, implies a quasidegeneracy
condition in that E0(n, + 1) − E0(n, − 1) = ω0 � ω. The
energy gap of perturbed levels reads

E(n, + 1) − E(n, − 1) = ω0

[
1 − ε2 n2 + n + 1

4(ω/ω0)2 − 1

]

when second-order contributions are considered. In this
limiting regime the occurrence of level doublets represents
a property of the unperturbed energies. Second-order terms
simply represent perturbative corrections of the level separa-
tion ω0.

IV. TIME PROPAGATION OF STATES FOR
THE TWO-PHOTON MODEL

The scheme we use for determining the time propagation of
a generic unperturbed eigenstate |E0(m,r)〉 = |m〉|r〉 and in-
cluding second-order corrections is described in Appendix A.
By exploiting the expressions for E0(n,s), E2(n,s), |E1(n,s)〉,
and |E2(n,s)〉, Eq. (A1) can be reduced to the form

|ψt (m,r)〉 = e−iH t |m〉|r〉 	 e−i[E0(m,r)+ε2E2(m,r)]t

[
1 + ε2

2
(Vt (r,m,ε) + Vt

′(r,m,ε))
]
|m〉|r〉

+ ε2

2
(e−4iωtUt (r,m,ε)|m + 4〉|r〉 + e4iωtUt

′(r,m,ε)|m − 4〉|r〉)

+ ε√
2
q(r)

(
m

2

) 1
2

[1 − e−iε2�E2(m−2,−r)t e+i(2ω+ω0r)t ]|m − 2〉| − r〉

− ε√
2
q(−r)

(
m + 2

2

) 1
2

[1 − e−iε2�E2(m+2,−r)t e−i(2ω−ω0r)t ]|m + 2〉| − r〉, (18)

where �E2(m ± q, ± r) = E2(m ± q, ± r) − E2(m,r), with q = 2,4 (note that the double signs of r and of q are independent
from each other), and the time-dependent quantities

Ut (r,m,ε) =
√

6

(
m + 4

4

) 1
2
[

ω0

4ω
(e4iωtq(−r) + e−iε2�E2(m+4,+r)t q(r)) − e−iε2�E2(m+2,−r)t ω2

0e
i(2ω+ω0r)t

4ω2 − ω2
0

]
,

Ut
′(r,m,ε) =

√
6

(
m

4

) 1
2
[

ω0

4ω
(e−4iωtq(r) + e−iε2�E2(m−4,+r)t q(−r)) − e−iε2�E2(m−2,−r)t ω

2
0e

−i(2ω−ω0r)t

4ω2 − ω2
0

]
,

Vt (r,m,ε) = q2(r)

(
m

2

)
(e−iε2�E2(m−2,−r)t ei(2ω+ω0r)t − 1),

Vt
′(r,m,ε) = q2(−r)

(
m + 2

2

)
(e−iε2�E2(m+2,−r)t e−i(2ω−ω0r)t − 1),

have been introduced. It is worth noting that both formula (18) and the subsequent definitions feature two time scales corresponding
to

T± = 2π

|2ω ± ω0| , Tε ∼ 2π

ε2�E2(m ± q, ± r)
. (19)
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The fact that T± � Tε implies that the exponential terms
depending on �E2(m ± q, ± r) essentially exhibit no time
dependence for times t ∼ T±.

Within this time scale, formula (18) shows that the main
perturbative contribution to the time evolution of a state with
definite spin r (atomic level) is a first-order term corresponding
to a state with opposite spin −r . If one assumes, for example,
r = −1 and considers ω of the same order of ω0/2, the
main perturbative contribution in |ψ(t)〉 corresponds to the
state |m − 2〉| + 1〉 exhibiting a slowly oscillating coefficient
containing the term q(−1). The latter can be significantly larger
than q(+1) included in the rapidly oscillating coefficient of
|m + 2〉| + 1〉. The atomic excitation through the destruction
of two photons thus represents the favored process with the
initial state |m〉| − 1〉. On the other hand, consistent with
this reasoning, state |m + 2〉| − 1〉 (emission of two photons
from an excited atom) is the principal perturbative contribution
when assuming r = +1, namely, the initial state |m〉| + 1〉.

In passing, we note that, owing to formula (18), one can
calculate the time propagation

|	t 〉 = e−iH t
∑

s

∑
n

fn,s |n〉|s〉 =
∑

s

∑
n

fn,s(t)|n〉|s〉,

of the more general initial state
∑

s

∑
n fn,s |n〉|s〉, representing

a superposition of photonic and spin states.

V. ATOMIC POPULATION INVERSION FOR
THE TWO-PHOTON MODEL

If the time evolution of the previous state |	t 〉 is known, one
can determine the expectation value of the atomic population

inversion 〈	t |S3|	t 〉. However, in view of the analytical com-
plexity of such state, a numerical approach would be required.

Here, as an application of our perturbative study of
the TPM, we consider the simple case where the atomic
population inversion involves the two states |n〉| + 1〉 and
|m〉| − 1〉. The system constituted by either excited or un-
excited atoms, each one corresponding to one such states, is
then described by

|D(n,m)〉 = α|n〉| + 1〉 + β|m〉| − 1〉, (20)

with 1 = |α|2 + |β|2, whose time evolution is reported in
Appendix B. The choice m = n + 2 is made when con-
sidering the characteristic excitation/deexcitation processes
described by the TPM interaction. Based on state (B1) one
derives the time-dependent formula for the API 〈S3(t)〉nm =
〈Dt (n,m)|S3|Dt (n,m)〉 whose final form is

〈S3(t)〉nm = 1
2 |α|2(|A|2 − |C+|2 − |C−|2)

+ 1
2 |β|2(−|A′|2 + |C ′

+|2 + |C ′
−|2)

+ 1
2 ᾱβ(ĀC ′

+〈n|m + 2〉 + ĀC ′
−〈n|m − 2〉

−A′C̄+〈n + 2|m〉 − A′C̄−〈n − 2|m〉)
+ 1

2αβ̄(−Ā′C+〈m|n + 2〉 − Ā′C−〈m|n − 2〉
+AC̄ ′+〈m + 2|n〉 + AC̄ ′−〈m − 2|n〉). (21)

By exploiting the coefficients reported in Appendix B, the
latter reduces, for m = n + 2, to the final form (we set, for
brevity, 〈S3(t)〉n n+2 = 〈S3(t)〉)

〈S3(t)〉 = 1

2
(|α|2 − |β|2) + ε

q(−1)

2
√

2

√(
n + 2

2

)
[ᾱ β (e−itω0ε

2ηn + e−itω0ε
2ηn+2 )(e−i2(ω−ω0/2)t − 1) + c.c.] − 2ε2q2(1)

×
[
|α|2

(
n

2

)
− |β|2

(
n + 4

2

)]
sin2[(ω + ω0/2)t] − 2ε2q2(−1)

(
n + 2

2

)
(|α|2 − |β|2) sin2[(ω − ω0/2)t], (22)

where ηn = ω2
0(n2 + n + 1)/(4ω2 − ω2

0). In view of prospective experimental studies, we emphasize that the significant time
scale in Eq. (22) is given by t ∼ T± � Tε. In this case, formula (22) considerably simplifies, since the exponential terms
depending on �E2(m ± q, ± r) essentially reduce to 1. One finds

〈S3(t)〉 = |α|2 − |β|2
2

− εq(−1)√
2

√(
n + 2

2

)
{α∗β + αβ∗ − 2|αβ| cos[(ω0 − 2ω)t − �θ ]} − 2ε2q2(1) sin2

(
2ω + ω0

2
t

)

×
[
|α|2

(
n

2

)
− |β|2

(
n + 4

2

)]
− 2ε2q2(−1) sin2

(
2ω − ω0

2
t

)(
n + 2

2

)
(|α|2− |β|2), (23)

where ξ = |ξ |eiθξ , ξ = α,β, and �θ = θα − θβ . As a reference
case, we illustrate Eq. (23) in Fig. 1 for the simplest possible
choice of the population parameters |α|2 = |β|2 (equal popula-
tions) and �θ = 0 (coherent phases). Next, we show in Fig. 2
the results corresponding to a parameter choice where, due
the assumption of different populations, both the second-order
contributions are present. In all figures, on the time axis the
rescaled time ω0t is represented.

Discussion. Various interesting cases relevant to Eq. (23)
can be found by varying the field frequency ω with respect to
the atomic transition energy ω0.

In the near-resonance regime ω is close to ω0/2 so that,
remembering definition (15), the quantity |q(−1)| can be made
significantly larger than q(+1). The choice of 2ω − ω0 is
made, of course, to avoid affecting the perturbative character
of ε2q(−1) by the potentially diverging behavior of q(−1)
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when ω → ω0/2. Then, by neglecting the q(+1)-dependent
term (this, in addition, is fast oscillating with respect to the
q(−1)-dependent term) the API reads

〈S3(t)〉 	 |α|2 − |β|2
2

− εq(−1)√
2

√(
n + 2

2

)
× 4|αβ|

×
{

− sin2

(
�θ

2

)
+ sin2

[
(ω0 − 2ω)t − �θ

2

]}

−2ε2q2(−1) sin2

(
2ω − ω0

2
t

)(
n + 2

2

)

×(|α|2 − |β|2),

where the cosine term of (23) has been rewritten according to
the formula cos η = 1 − 2 sin2(η/2). The new expression of
〈S3(t)〉 still exhibits an explicit dependence on the coherence
property of the atomic population through the parameter �θ

and features an evident phenomenon of collapses and revivals.
The time scale of the latter is controlled by the period T =

4π/|2ω − ω0| to both the first and second perturbative order.
However, the pulses of the first-order term are characterized
by the delay time T �θ/4π with respect to that emerging
from the second-order term. If, in addition, coherent atomic
populations are considered, namely, if θα = θβ , the API
remarkably simplifies, giving

〈S3(t)〉 	 |α|2 − |β|2
2

− 2ε�n sin2

[
(ω0 − 2ω)t

2

]
,

with

�n =q(−1)
(n + 2)!

n!

[ |αβ|√n!√
(n + 2)!

+ ε

2
q(−1)(|α|2− |β|2)

]
.
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FIG. 1. API for the TPM. Upper panel: API [red (light gray)
line] and first-order contribution [blue (dark gray) line] described by
Eq. (23) for |α|2 = |β|2 = 0.5, ω = 2, g = 0.1, �θ = 0 and n = 5
(energies in units of ω0). Lower panel: since |α|2 = |β|2 only the first
second-order term of Eq. (23) contributes.

This sensitivity to the changes of parameter �θ should be
interesting in view of experimental observations.

A second interesting case is found when restoring the
off-resonance condition and setting |α|2 = |β|2 = 1/2 in
Eq. (23). This equality amounts to assuming identical atomic
populations in (20). In this case we find

〈S3(t)〉 = ε�n

{
sin2(�θ/2) − sin2

[
(ω0 − 2ω)t − �θ

2

]}

+ 2ε2q2(1)(2n + 3) sin2

(
2ω + ω0

2
t

)
, (24)

with �n = √
2q(−1)(n+2

2 )1/2, highlighting an oscillation

modality where the perturbative terms dictate the time behavior
of the API. Note that Eq. (24) holds as well in the extreme
regimes ω � ω0 and ω � ω0. It is worth observing that in
the latter case the API signal exhibits amplitude and period
essentially independent from frequency ω. On the other hand,
for ω � ω0, the amplitude of the API is proportional to
the ratio ω0/2ω (the second-order term becomes rapidly
negligible) while the period of the API pulses is essentially
controlled by ω.

Finally, restoring the near-resonance case, we report the
numerical results obtained from the general equation (23) in
Fig. 3, where the effect of considering equal or different popu-
lations for noncoherent phases, �θ = π/2, is highlighted. The
suppression of zero-order and of one of the two second-order
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FIG. 2. API for the TPM. Upper panel: API [red (light gray)
line] and first-order contribution [blue (dark gray) line] described
by Eq. (23) for |α|2 = 0.52, |β|2 = 0.48, ω = 0.4, g = 0.1, �θ =
0 and n = 5 (energies in units of ω0). Lower panel: second-order
contributions, first (second) term in Eq. (23) corresponds to the solid
(dashed) line.
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FIG. 3. API [red (light gray) line] and the first-order contribution
[blue (dark gray) line] of the TPM for ω = 0.4, g = 0.1 and �θ =
π/2 (energies in units of ω0). Upper panel: |α|2 = 0.52, |β|2 = 0.48.
Lower panel: |α|2 = |β|2 = 0.5.

contributions, caused by |α|2 = |β|2, is clearly visible in the
lower panel of Fig. 3.

VI. PERTURBATIVE RESULTS FOR
THE INTENSITY-DEPENDENT MODEL

Since the unperturbed Hamiltonian Hunp is the same for
both the TPM and the IDM, the zeroth-order eigenvalues
and eigenvectors are still given by Eqs. (12). Similar to the
TPM, for the IDM the first-order contribution to the energy is
E1(n,s) = 0, while for the eigenstate one finds

|E1(n,s)〉 = ω0

[
f 2(n)|n − 1〉

ω + ω0s
− f 2(n + 1)|n + 1〉

ω − ω0s

]
| − s〉,

with f (n) = √
n(n + 2κ − 1). The second-order contributions

to eigenvalues and eigenvectors read

E2(n,s) = ω2
0

[
n(n + 2κ − 1)

ω + ω0s
+ (n + 1)(n + 2κ)

−ω + ω0s

]
(25)

and

|E2(n,s)〉 = ω0

2ω
(q(s)Fn|n − 2〉 + q(−s)Fn+2|n + 2〉)|s〉,

respectively, with Fn = f (n − 1)f (n). Clearly, the presence
of level doublets in the energy spectrum also emerges in the
IDM in the two regimes ω0 = pω (with integer p > 1) and
ω0 � ω. The energy gaps relevant to such doublets are easily
calculated along the same lines of the TPM (see Sec. III A).

The distinctive feature of the IDM is the presence of param-
eter κ , which presently has no direct physical interpretation.
However, in the limit κ → ∞, this parameter allows one to
reduce [see the ladder-operator definitions (3)] the IDM to the
single-photon quantum Rabi model (SPM). (The factor

√
κ

emerging from the limit can be absorbed in the interaction g.) If
one considers the eigenvalue E(n,s) = E0(n,s) + ε2E2(n,s)
with ε = g/ω0 and κ → ∞, the second-order contributions of
the SPM,

ε2E2(n,s) = 2(g
√

κ)2

[
n

ω + ω0s
+ (n + 1)

−ω + ω0s

]
, (26)

show a dramatic change, from quadratic to linear, in the
dependence from the photon number n with respect to the case
with finite κ . Conversely, for small κ , formula (25) essentially
coincides with formula (14), displaying a dependence on n2 for
n � 1. Then, in this case, almost no difference arises between
the spectrum of the IDM and that of the TPM, even if the first
model involves single-photon instead of two-photon processes.

The intermediate regime where κ is large enough (but finite)
becomes interesting for 0 � n < κ . In this interval, Eq. (25)
shows a well-visible deviation from the quadratic dependence
on n, which assumes the n-linear form (26). The quadratic
dependence on n is recovered for n > κ . This effect should
be accessible to the experimental observation in the recently
realized waveguide superlattices [23–25], reproducing the
matter-radiation coupling of the IDM for κ = 1/2.

A. Atomic population inversion within the
intensity-dependent model

In view of the different coupling scheme displayed by the
IDM, where a single photon (rather than two) is involved
in the energy exchanges, we consider the atomic population
inversion for a system whose atoms initially are in one of the
two states |n〉| + 1〉 and |n + 1〉| − 1〉. The time evolution of
the elementary states |m,r〉 is required to derive the expectation
value describing the API. All relevant calculations are reported
in Appendix C.

Despite the difference in the initial state, the structure of the
API for the present model closely mimics the one obtained in
the two-photon case. By exploiting the time-evolved state (C1)
one readily obtains |Dt (m,n)〉 = α|φt (n, + 1)〉 + β|φt (m, −
1)〉, with m = n + 1, connected to the initial state α|n〉| +
1〉 + β|n + 1〉| − 1〉. As in the TPM case, one then determines
the expectation value 〈S3(t)〉 = 〈Dt (m,n)|S3|Dt (m,n)〉 whose
general expression (D2) is derived in Appendix D. By
observing that, as suggested by Eqs. (C1) and (D2), the time
scales of the ID model are

T± = 2π

|ω0 ± ω| � Tε ∼ 2π

ε2�E2(m ± q, ± r)
, (27)

for observation times t ∼ T± Eq. (D2) reduces to the simple
form

〈S3(t)〉 = |α|2 − |β|2
2

− εq(−1)f (n + 1){α∗β + αβ∗

−2|αβ| cos[(ω0 − ω)t − �θ )]} − 4ε2q2(1)

× sin2

(
ω + ω0

2
t

)
[|α|2f 2(n) − |β|2f 2(n + 2)]

−4ε2q2(−1) sin2

(
ω−ω0

2
t

)
f 2(n + 1)(|α|2−|β|2),

(28)
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with q(r) = ω0/(ω + rω0), since the ε2-dependent exponen-
tials in Eq. (D2) become essentially equal to 1.

Discussion. We note that the considerations and results
pertaining to the TPM discussion can be extended to the
IDM with slight modifications. For example, the quantity
|q(−1)| can be made significantly larger than q(+1) in
the near-resonance regime (ω 	 ω0). In this case, Eq. (28)
reads

〈S3(t)〉 = |α|2 − |β|2
2

− εq(−1)f (n + 1)4|αβ|

×
{
− sin2

(
�θ

2

)
+ sin2

[
(ω0 − ω)t − �θ

2

]}

− 4ε2q2(−1) sin2

(
ω − ω0

2
t

)

× f 2(n + 1)(|α|2 − |β|2).

As for the near-resonance regime of the TPM, also this
expression exhibits an explicit dependence from the initial
phases θα and θβ of the two amplitudes α, β of |Dt (n +
1,n)〉 at t = 0. The time scale characterizing the pulses
of 〈S3〉 is T ′ = 4π/|ω − ω0| (the delay time between the
first- and second-order terms is still given by T ′�θ/4π ),
while the condition �θ = 0 for coherent atomic populations
implies

〈S3(t)〉 = |α|2 − |β|2
2

− 4ε�n(κ) sin2

[
(ω0 − ω)t

2

]
,

with

�n(κ) = q(−1)f 2(n + 1)

×
[ |αβ|
f (n + 1)

+ εq(−1)(|α|2 − |β|2)

]
.

In the off-resonance condition and for equal population,
|α|2 = |β|2 = 1/2, the analogue of Eq. (24) is

〈S3(t)〉 = ε�′
n

{
sin2(�θ/2) − sin2

[
(ω0 − ω)t − �θ

2

]}

+ 4ε2q2(1)(2n + 2κ + 1) sin2

(
ω + ω0

2
t

)
,

(29)

where �′
n = q(−1)f (n + 1), and f (n) = √

n(n + 2κ − 1).
Equation (29) discloses an oscillation modality where the
perturbative terms dominate the time behavior of the API. The
same comments made for the API of the TPM when either
ω � ω0/2 or ω � ω0/2 can be extended to the present case.

The dependence on an (in principle) arbitrary parameter κ

indeed represents a new aspect characterizing the IDM. Small
values of κ have an essentially negligible effect on the API of
the IDM, which displays the same linear dependence of the
TPM on the photon number n. Conversely, for large values
of κ , the diversity of the TPM and of the IDM becomes
fully evident. The comparison of Eqs. (24) and (29) shows
that, for n/(2κ) < 1, the API of the TPM is controlled by
a factor

√
(n + 1)(n + 2) ≈ n, while for the IDM this factor

becomes
√

κ(n + 1). This behavior is illustrated in Fig. 4 for
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FIG. 4. API of the IDM for different photon numbers, n = 1 [blue
(dark gray) line], n = 5 (black line), and n = 120 [red (light gray)
line]. κ = 20, |α|2 = |β|2 = 0.5, ω = 2, g = 0.0016 and �θ = 0
(energies in units of ω0).

small (n = 1,5) and large (n = 120) photon numbers with
κ = 20.

VII. CONCLUSIONS

We have applied the perturbation method to both the two-
photon and intensity-dependent Rabi models, determining the
eigenvalues and the corresponding eigenstates to the second
order in the parameter g/ω0. Based on this analysis, we have
calculated the time evolution of the product of a photonic and
an atomic state |m〉|r〉. We have utilized this result to derive
the expectation value of the atomic population inversions, the
latter including all the physical parameters embedded in the
Rabi Hamiltonians, as well as the phases and amplitudes of the
initial states |D(m,n)〉 representing the superposition of two
atomic states with appropriate photon numbers.

Our analysis highlights a strong similarity between TPM
and IDM (with finite κ) as far as the eigenvalues, the
eigenstates, the time-evolved state |Dt (m,n)〉, and the API
〈S3(t)〉 are concerned. For large values of κ the diversity
of the two models appears both in the second-order energy
contributions and in the oscillating-term amplitude of
〈S3(t)〉. Note that our results depend on significant physical
parameters such as (i) the frequency ratios ω0/2ω or ω0/ω

in the TPM or IDM case, respectively, controlling the near-
and far-resonance regimes, (ii) the phase difference �θ in the
atomic components of |D(m,n)〉, and (iii) the fractions |α|2
and |β|2 of the atomic populations. Our perturbative analysis
then offers a scheme in which the explicit dependence on
the model parameters favors the experimental study of their
interplay and of the influence on the time evolution of the
system (for example, through the API).

Finally, the results about the IDM provide new information
concerning the dynamics of the waveguide superlattices
mentioned in the Introduction, the link between the latter
and the IDM being obtained for κ = 1/2. In this case, the
Schrödinger problem of the IDM coincides with the dynamical
equations of waveguide superlattices.
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APPENDIX A: TIME EVOLUTION OF UNPERTURBED ENERGY EIGENSTATE FOR THE TPM

To determine the formula describing the time evolution of a generic state |m〉|r〉 including second-order corrections, we exploit
the completeness of the energy-state basis {|E(m,r)〉}. This allows one to represent the identity operator as

I =
∑

n

∑
s

|E(n,s)〉〈E(n,s)|,

and thus to describe the time propagation of |m〉|r〉 by means of

e−iH t |m〉|r〉 =
∑

n

∑
s

e−iE(n,s)t 〈E(n,s)|m〉|r〉 |E(n,s)〉.

Within the second-order approximation the eigenstates are given by

|E(n,s)〉 = R(n,s)(|E0(n,s)〉 + ε|E1(n,s)〉 + ε2|E2(n,s)〉),
where the normalization factor

R(n,s) = 1/(1 + ε2〈E1(n,s)|E1(n,s)〉)1/2

has been included, and the eigenvalues are

E(n,s) = E0(n,s) + ε2E2(n,s).

Then, by defining |ψt (m,r)〉 = e−iH t |m〉|r〉, one finds

|ψt (m,r)〉 = e−iE(m,r)t

{
|m〉|r〉 + ε|E1(m,r)〉 + ε2|E2(m,r)〉 − ε2

2

[
q2(r)

(
m

2

)
+ q2(−r)

(
m + 2

2

)]
|m〉|r〉

}

+ ε
1√
2

[
e−iE(m+2,−r)t q(−r)

(
m + 2

2

) 1
2

|m + 2〉| − r〉 − e−iE(m−2,−r)t q(r)

(
m

2

) 1
2

|m − 2〉| − r〉
]

+ ε2 1√
2

[
e−iE(m+2,−r)t q(−r)

(
m + 2

2

) 1
2

|E1(m + 2, − r)〉 − e−iE(m−2,−r)t q(r)

(
m

2

) 1
2

|E1(m − 2, − r)〉
]

+ ε2

√
6

8

ω0

ω

[
e−iE(m+4,r)t q(r)

(
m + 4

4

) 1
2

|m + 4〉|r〉 + e−iE(m−4,r)t q(−r)

(
m

4

) 1
2

|m − 4〉|r〉
]
. (A1)

The final form of this state, where the contributions relevant to the first and the second perturbative order are grouped in separated
terms, is given in Eq. (18).

APPENDIX B: TIME EVOLUTION OF STATES |D(m,n)〉
The evolved state (A1) is the basic element for determining the time evolution of the initial mixed state (20). This, in turn,

allows one to calculate the time behavior of the API for the TPM. The time evolution of state (20) is described by

|Dt (m,n)〉 = e−iH t (α|n〉|1〉 + β|m〉| − 1〉) = α(A(n,t)|n〉| + 1〉 + B+(n,t)|n + 4〉| + 1〉
+B−(n,t)|n − 4〉| + 1〉 + C+(n,t)|n + 2〉| − 1〉 + C−(n,t)|n − 2〉| − 1〉) + β(A′(m,t)|m〉| − 1〉
+B ′

+(m,t)|m + 4〉| − 1〉 + B ′
−(m,t)|m − 4〉| − 1〉 + C ′

+(m,t)|m + 2〉| + 1〉 + C ′
−(m,t)|m − 2〉| + 1〉), (B1)

where

A(n,t) = e−iE(n,1)t

{
1 − ε2

[
1

2

(
q2(1)

(
n

2

)
+ q2(−1)

(
n + 2

2

))]
+ ε2 1

2

[
q2(−1)

(
n + 2

2

)
ei(ω0−2ω)t + q2(1)

(
n

2

)
ei(ω0+2ω)t

]}
,

A′(m,t) = e−iE(m,−1)t

{
1 − ε2

[
1

2

(
q2(−1)

(
m

2

)
+ q2(1)

(
m + 2

2

))]
+ ε2 1

2

[
q2(1)

(
m + 2

2

)
e−i(ω0+2ω)t

+ q2(−1)

(
m

2

)
ei(−ω0+2ω)t

]}
,

B±(n,t) = ε2

√
6

8

ω0

ω
e−iE(n±4,1)t

√(
n + 2 ± 2

4

)
[q(∓1)e±i4ωt + q(±1)],

B ′
±(m,t) = ε2

√
6

8

ω0

ω
e−iE(m±4,−1)t

√(
m + 2 ± 2

4

)
[q(±1)e±i4ωt + q(∓1)],
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C±(n,t) = ∓ ε√
2
e−iE(n±2,1)t q(∓1)

√(
n + 1 ± 1

2

)
(e±i2ωt − eiω0t ),

C ′
±(m,t) = ∓ ε√

2
e−iE(m±2,−1)t q(±)

√(
m + 1 ± 1

2

)
(e±i2ωt − e−iω0t ).

APPENDIX C: TIME EVOLUTION OF STATES |m,r〉 AND |D(m,n)〉 FOR THE IDM

The time evolution of a state |m,r〉 is driven by the IDM Hamiltonian. Its time evolution can be calculated along the same
lines followed to obtain state (18) for the TPM. The details of this calculation are reported in Appendix A, leading to formula
(A1). With a long but straightforward calculation the evolved state |φt (m,r)〉 = e−iH t |m,r〉 is found to be

|φt (m,r)〉 = e−iE(m,r)t [1 + ε2Ṽt (r,m,ε) + ε2Ṽ ′
t (r,m,ε)]|m〉|r〉

+ ε2e−iE(m,r)t [e2iωt Ũt (r,m,ε)|m − 2〉|r〉 + e−2iωt Ũ ′
t (r,m,ε)|m + 2〉|r〉]

+ εe−iE(m,r)t (1 − ei(ω+rω0−ε2�E2(m−1,−r))t )q(r)f (m)|m − 1〉| − r〉
− εe−iE(m,r)t (1 − ei(rω0−ω+ε2�E2(m+1,−r))t )q(−r)f (m + 1)|m + 1〉| − r〉, (C1)

where

Ṽt (r,m,ε) = q2(r)f 2(m)(ei(ω+rω0−ε2�E2(m−1,−r))t − 1),

Ṽ ′
t (r,m,ε) = q2(−r)f 2(m + 1)(e−i(ω−rω0−ε2�E2(m+1,−r))t − 1),

Ũt (r,m,ε) = χm−1

[
ω0

2ω
(q(r)e−2iωt + e−iε2�E2(m−2,r)t q(−r)) − q(−r)q(r)e−i(ω−rω0+ε2�E2(m−1,−r))t

]
,

Ũ ′
t (r,m,ε) = χm+1

[
ω0

2ω
(q(−r)e2iωt + e−iε2�E2(m+2,r)t q(r)) − q(r)q(−r)ei(ω+rω0−ε2�E2(m+1,−r))t

]
,

with χm = f (m + 1)f (m), and

�E2(n ± q, − r) = E2(n ± q, − r) − E2(n,r)

[see formula (25)]. Once more, we observe that, within the second-order approximation, the energy eigenvalues are given by
E(n,s) = E0(n,s) + ε2E2(n,s). Interestingly, we note how, in spite of the different algebraic structures characterizing the IDM
and the TPM coupling, the time-evolved state (C1) exhibits the same structure of the two-photon counterpart (18).

APPENDIX D: ATOMIC POPULATION INVERSION FOR THE IDM

The formula describing the time evolution of the API for the IDM is readily derived by using the time-evolved state
|Dt (m,n)〉 = e−itH |D(m,n)〉 = e−itH (α|n〉| + 1〉 + β|m〉| − 1〉) and states |φt (n,r)〉 = e−itH |n〉|r〉 given by formula (C1). We
then obtain

〈Dt (m,n)|S3|Dt (m,n)〉 = 1

2
|α|2(|A|2 − |C+|2 − |C−|2) + |β|2

2
(|C ′

+|2 + |C ′
−|2 − |A′|2) +

(
ᾱβ

2
�m,n + c.c.

)
,

(D1)

where

�m,n = ĀC ′
+〈n|m + 1〉 + ĀC ′

−〈n|m − 1〉 − A′C̄+〈n + 1|m〉 − A′C̄−〈n − 1|m〉
and

A(n,t) = e−iE(n,1)t {1 − ε2[(q2(1)f 2(n) + q2(−1)f 2(n + 1)) − q2(−1)f 2(n + 1)ei(ω0−ω)t − q2(1)f 2(n)ei(ω0+ω)t ]},
A′(m,t) = e−iE(m,−1)t {1 − ε2[(q2(−1)f 2(m) + q2(1)f 2(m + 1)) − q2(1)f 2(m + 1)e−i(ω0+ω)t − q2(−1)f 2(m)ei(ω−ω0)t ]},

B±(n,t) = ε2e−itE(n,1)f (n ± 1)f (n + 1 ± 1)

{
ω0

2ω
[q(−1) + q(+1)e∓2iωt ] − q(1)q(−1)eit(ω0∓ω)

}
,

B ′
±(m,t) = ε2e−itE(m,−1)f (m ± 1)f (m + 1 ± 1)

{
ω0

2ω
[q(±1) + q(∓1)e∓2iωt ] − q(1)q(−1)e−it(ω0±ω)

}
,

C±(n,t) = ±ε e−itE(n,+1) (eit(ω0∓ω) − 1)q(∓1)f (n + 1/2 ± 1/2),

C ′
±(m,t) = ±ε e−itE(m,−1)(e−it(ω0±ω) − 1)q(±1)f (m + 1/2 ± 1/2).
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By means of straightforward calculations the API (D1) takes the final form

〈S3(t)〉 ≡ 〈Dt (m,n)|S3|Dt (m,n)〉 = |α|2 − |β|2
2

− 4ε2

[
(|α|2 − |β|2)q2(−1)f 2(n + 1) sin2

(
ω − ω0

2
t

)

+ q2(1) sin2

(
ω + ω0

2
t

)
(|α|2f 2(n) − |β|2f 2(n + 2))

]

+
{

ε

2
α∗βe−i(ω−ω0)t e−iε2�E2(n+1,−1)t q(−1)f (n + 1)2[1 − ei(ω−ω0)t ] + c.c.

}
, (D2)

with �E2(n ± q, − r) = E2(n ± q, − r) − E2(n,r) [see formula (25)], r = 1, and q = 1. It is worth noting how these time-
dependent quantities exhibit the same form characterizing the analogous quantities of the TPM case defined below Eq. (B1).
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