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Controllable photon bunching by atomic superpositions in a driven cavity
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We propose a feasible approach to generate the desired light with controllable photon bunchings by adjusting
the atomic superpositions in a driven cavity. Under the large detuning limit, i.e., the cavity is far resonance
with the inside atom(s), we show that the photons in the cavity are always bunchings. Typically, when the
effective dispersive interaction equals the detuning between the driving and cavity fields, we find that the value
of second-order correlation g(2)(0) inverses to the probability of the superposed atomic state. This suggests that
such a value could be arbitrarily large, and thus the bunchings of the photons could be significantly enhanced.
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I. INTRODUCTION

It is well known that the discovery of two-photon bunching
in thermal source by Hanbury Brown and Twiss [1] is one of the
milestones in quantum optics. Indeed, the attempt to explain
this experiment leads to many important developments in
optics. For example, in a semiclassical framework Purcell [2]
explained that the Hanbury Brown and Twiss (HBT) effect was
due to the interference of wave packets, although Mandel [3]
claimed that such an effect could be explained by a classical
interference theory. The basic development in this topic is
due to Glauber’s [4] quantum coherence theory, and the
nonclassical two-photon interference was verified [5]. Since
then, the temporal distinguishability of photons in quantum
coherence theory has been successfully utilized to interpret
various multiphoton interference phenomena [6,7]. Indeed,
quantum coherence of light provides a powerful platform to
conceptually understand quantum physics and implement vari-
ous novel quantum technologies, such as quantum information
processing, quantum lithography, and “ghost” images, etc. [8].

Mathematically, the second-order correlation function
g(2)(τ ) of the radiation field is usually utilized to describe
the photon bunching feature, i.e., the probability of detecting a
photon at the time t and then the second one at the time t + τ .
In quantum coherence theory [4], this normalized function can
be defined as

g(2)(τ ) = 〈Ê(−)(t + τ )Ê(−)(t)Ê(+)(t)Ê(+)(t + τ )〉
〈Ê(−)(t)Ê(+)(t)〉2

, (1)

where Ê(+)(t) and Ê(−)(t) indicates the complex electric field
operators and 〈X̂〉 refers to the relevant expected value of
the field operator X̂ for the quantum optical state. Typically,
g(2)(τ ) = 2 marks the usual chaotic field, and g(2)(τ ) < 1
describes various nonclassical light sources (e.g., the single-
photon one) wherein the photon is antibunching [9]. In
recent years, due to the requirement of ideal quantum secure
communication, various high-quality single-photon sources
with the significant photon-antibunching effects have been
paid much attention [10–13]. Relatively, the bunching lights
[with the stronger second-order correlations, i.e., g(2)(τ ) � 1]
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have hardly been discussed. Typically, for the thermal lights
the nth order correlation is the factorial of n [14]. The stronger
bunching effect of the photons is revealed in the weak squeezed
vacuum field [15], even for the zero-delay correlation func-
tions. Particularly, the recent experiments demonstrated that by
using the electromagnetically induced transparencies [16], the
photons emitted from an atomic ensemble into a single-mode
cavity could be controlled effectively from antibunching to
bunching [17], and their second-order correlation can reach to
a significantly high value. In this paper we focus our attention
on how to generate the desired strong bunching photons with
a driven cavity QED system, wherein a few two-level atoms
dispersively coupled to a single-mode field (with the frequency
ωr ). It assumed that the cavity is driven by a sufficiently weak
coherent field, and thus all the incoherent effects are robustly
neglected. Basically, by exactly solving the relevant master
equations beyond the usual mean-field approximation, all the
statistical properties of the intercavity field can be derived.
Without loss of the generality and for simplicity, we exactly
calculate the zero-delay second-order correlation function [18]

g(2)(0) = 〈â†â†ââ〉
〈â†â〉2

, (2)

for various coherent atomic states. Here, a† (a) is the
creation (annihilation) operator of the intercavity field. We
found that the value of this function is strongly related to
the atomic superposed states. Specifically, near the modified
cavity frequencies, the value of the g(2)(0) is inversely related
to the superposed probability of the atomic eigenstate. This
provides an effective approach to generate the significantly
strong bunching photons by engineering the atomic coherence.

II. BUNCHING PHOTONS BY ENGINEERING THE
COHERENCE OF ATOMS IN A DRIVEN CAVITY

Under the usual Born-Markov approximation, the dynamics
of the driven cavity QED system is described by the following
master equation [18]:

ρ̇ = −i[HN + Hd,ρ] − κ

2
(−2âρâ† + â†âρ + ρâ†â), (3)
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with ρ being the density matrix of the system and κ the decay
rate of the intercavity photons. Above,

HN = �ωrâ
†â +

N∑
j=1

[
�ωj

2
σzj + �gj (σ+j â + σ−j â

†)

]
(4)

describes a single-mode cavity interacting with N two-level
atoms (i.e., qubits) inside the cavity [19]. Here, ωj is the
j th atom transition frequency, and gj the coupling strength
between atom and cavity. The above atomic operators are
defined as σ+j = |1〉j 〈0|, σ−j = |0〉j 〈1|, and σzj = |0〉j 〈0| −
|1〉j 〈1|. Simply, the coherent driving of the cavity Hd in Eq. (3)
reads

Hd = �ε(â†e−iωd t + âeiωd t ), (5)

where ε is time-independent real amplitude and ωd the
frequency of the drivings. For simplicity, we assume that the
following dispersive condition [20–22]

0 <
gj

�j

,
gjgj ′

�j�jj ′
,

gjgj ′

�j ′�jj ′
� 1, j �= j ′ = 1,2, . . . ,N

(6)

are satisfied robustly, such that the energy exchanges between
the different atoms and also the energy exchange between
the atom and the cavity could be effectively neglected. Here,
�j = ωj − ωr is the detuning between the j th qubit and the
cavity, and �jj ′ = ωj − ωj ′ the detuning between the j th and
j ′th atoms.

The central task of this work is to calculate the correlation
functions of the intercavity photons, which should be related
to the coherence of the atoms in the cavity. As a consequence,
the quantum statistical behaviors of the output field could
be determined. Specifically, we discuss how to control the
correlation of photons by engineering the coherence of a
single and two dispersively coupled atom(s). The demonstrated
arguments should also hold for more atoms.

A. Bunching photons by engineering a single atom coherence

For the simplest case, i.e., the cavity contains only one
two-level atom, we have (� = 1 throughout the paper)

H1 + Hd = ω̃1

2
σz1 + (�r + 	1σz1)â†â + ε(â† + â), (7)

in a frame rotating at the drive field frequency ωd . Here,
�r = ωr − ωd is the detuning between the cavity and driving
frequencies, and ω̃1 = ω1 + 	1, 	1 = g2

1/�1.
Substituting Eq. (7) into Eq. (3), we have the following

coupled differential equations related to the time-dependent
average photon number:

d〈â†â〉
dt

= −iε(〈â†〉 − 〈â〉) − κ〈â†â〉, (8)

with

d〈â〉
dt

= −i�r〈â〉 − i	1〈âσz1〉 − iε − κ

2
〈â〉,

d〈âσz1〉
dt

= −i�r〈âσz1〉 − i	1〈â〉 − κ

2
〈âσz1〉 − iε〈σz1〉,

(9)

r

FIG. 1. Steady-state transmission spectra of the driven cavity
(with a two-level atom) versus the detuning �r = ωr − ωd between
the cavity and driving for typical selected atomic states with |β|2 =
0,0.2,0.5,0.6,1, respectively. As a comparison the empty-cavity
(EMC) transmission is also plotted. The relevant parameters are
chosen as (	1,γ ) = 2π × (15,1) MHz.

d〈â†〉
dt

= i�r〈â†〉 + i	1〈â†σz1〉 + iε − κ

2
〈â†〉,

d〈â†σz1〉
dt

= i�r〈â†σz1〉 + i	1〈â†〉 + iε〈σz1〉 − κ

2
〈â†σz1〉,

(10)

d〈σz1〉
dt

= 0. (11)

The steady-state photon number S transmitting through the
cavity can be calculated as

S ∝ 〈â†â〉ss

ε2
= γ 2 + 	2

1 − 2〈σz1〉	1�r + �2
r

(γ 2 + 	2
1 − �2

r )2 + 4γ 2�2
r

. (12)

Here γ = κ/2. The steady-state transmission spectra of the
driven cavity is schematized in Fig. 1. Certainly, if there is no
atom in the cavity [i.e., for the empty-cavity (EMC) case] then
the photons with the same frequency as the eigenfrequency
ωr of the cavity can transmit ideally through the cavity. The
presence of the atom modifies significantly the transmission
spectra of the driven photons, although it is dispersively
coupled to the cavity. Specially, if the atom is prepared at
one of its eigenstates |0〉 or |1〉, then the frequency of the
ideal transmitted photons is shifted to ωr − 	1, or ωr + 	1.
This agrees well with the experimental observations [23].
Therefore, the shifts of the transmitted peaks of the driven
photons can be used to mark the eigenstates of the atom.
Generally, if the atom is prepared at a generic coherence
superposed state of its eigenstates, i.e., |ψ1〉 = α|0〉 + β|1〉,
then the two transmitted peaks, marking respectively the states
|0〉 and |1〉, are revealed simultaneously. Interestingly, Fig. 1
shows that the relative heights of the two peaks are exactly
equivalent to the relevant superposed probabilities |α|2 and
|β|2, respectively. This implies that the atomic coherence
influences the transmission properties of the driven photon
through the cavity.
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In order to investigate how the quantum coherence of the
dispersively coupled atom influences the quantum statistical
properties of the intercavity field, we now calculate the relevant
second-order correlation function g(2)(0) at the steady state.
First, we find

d〈â†2â2〉
dt

= −i2ε(〈â†2â〉 − 〈â†â2〉) − 2κ〈â†2â2〉, (13)

and

d〈â†2â〉
dt

= i�r〈â†2â〉 + i	1〈â†2âσz1〉

− iε(〈â†2〉 − 2〈â†â〉) − 3κ

2
〈â†2â〉, (14)

d〈â†â2〉
dt

= −i�r〈â†â2〉 − i	1〈â†â2σz1〉

− iε(2〈â†â〉 − 〈â2〉) − 3κ

2
〈â†â2〉. (15)

It is emphasized that, under the usual mean-field approxima-
tion by neglecting any atom-field correlation [i.e., 〈X̂σα〉 ≈
〈X̂〉〈σα〉 holds for any field operator X̂ and the atomic operator
σα (α = z, + ,−)], one can easily check that the steady-state
zero-delay second-order correlation function g(2)(0) of the
intercavity field is always equivalent to 1. The detailed
derivation is given in the Appendix. This implies that the
intercavity field is also at the usual coherent state, without
any bunching or antibunching effect. However, the atom-field
correlation should be considered generically and the statistical
properties of the intercavity field should deviate from those in
the coherent states. To verify this argument, we need to deliver
the exact dynamical equations for the expectable values of the
atom-field operators:

d〈â†2âσz1〉
dt

= i�r〈â†2âσz1〉 + i	1〈â†2â〉 − iε(〈â†2σz1〉

− 2〈â†âσz1〉) − 3κ

2
〈â†2âσz1〉, (16)

d〈â†âσz1〉
dt

= −iε(〈â†σz1〉 − 〈âσz1〉) − κ〈â†âσz1〉, (17)

d〈â†2σz1〉
dt

= 2i�r〈â†2σz1〉 + 2i	1〈â†2〉 + 2iε〈â†σz1〉

− κ〈â†2σz1〉, (18)

d〈â†â2σz1〉
dt

= −i�r〈â†â2σz1〉 − i	1〈â†â2〉 − iε(2〈â†âσz1〉

− 〈â2σz1〉) − 3κ

2
〈â†â2σz1〉, (19)

d〈â2σz1〉
dt

= −2i�r〈â2σz1〉 − 2i	1〈â2〉

− 2iε〈âσz1〉 − κ〈â2σz1〉, (20)

and also

d〈â†2〉
dt

= 2i�r〈â†2〉 + 2i	1〈â†2σz1〉 + 2iε〈â†〉 − κ〈â†2〉,
(21)

)0(2ssg

r

FIG. 2. The steady-state zero-delay second-order correlation
function g(2)

ss (0) of the intercavity field versus the detuning �r for
single atomic states |β|2 = 0,0.2,0.5,0.6,1, respectively. The other
parameters are the same as in Fig. 1.

d〈â2〉
dt

= −2i�r〈â2〉 − 2i	1〈â2σz1〉 − 2iε〈â〉 − κ〈â2〉. (22)

The steady-state expectable values of 〈â†2â2〉 and 〈â†â〉 can
be obtained by solving the above coupled equations under
the usual steady-state conditions. As a consequence, the
zero-delay second-order correlation function g(2)(0) of the
intercavity field can be expressed as

g(2)
ss (0) = γ 4 + Aγ 2 + 	4

1 + B〈σz1〉 + 6	2
1�

2
r + �4

r(−γ 2 − 	2
1 + 2〈σz1〉	1�r − �2

r

)2 , (23)

where A = 2	2
1 − 4〈σz1〉	1�r + 2�2

r and B =
−4	1�r (	2

1 − �2
r ). It is easily seen from Eq. (23) that,

the zero-delay second-order correlation function of the
coherent driving field does not change after it transmits
through the cavity, i.e., g(2)

ss (0) ≡ 1 for the output field, if
(i) 	1 = 0, i.e., there is no atom in the cavity or the atom
in the cavity decoupled completely from the cavity; or (ii)
〈σz1〉 = ∓1, i.e., the dispersively coupled atom is prepared
at one of its eigenstates. This indicates that, for these cases
the photons through the cavity are still in the coherent
states without being bunching. However, the situation is
very different if the atom in the cavity is prepared at the
superposition of its eigenstates, e.g., |ψ〉 = α|0〉 + β|1〉 with
α, β �= 0. Indeed, Fig. 2 shows clearly that the value of the
calculated zero-delay second-order correlation function g(2)

ss (0)
is strongly related to the atomic coherence, i.e., g(2)(0) > 1 is
always satisfied, except at the zero-detuning point (but in this
case the photons with the same frequency as the cavity cannot
transmit through the cavity practically). Particularly, for the
photons with the frequency shifts 	1 and −	1, which mark,
respectively, the eigenstates of the atom (see Fig. 1), one can
find that the value of the above second correlation function
directly depends on the superposed probability of the atomic
states in the cavity. For example, if �r = 	1, then

g(2)
ss (0) = γ 4 + 4γ 2	2

1 − 4〈σz1〉γ 2	2
1 + 8	4

1 − 8〈σz1〉	4
1(−γ 2 − 2	2

1 + 2〈σz1〉	2
1

)2 .

(24)
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FIG. 3. The zero-delay second-order correlation function g(2)(0)
for the single-qubit states vs the probe detuning with |β|2 selected as
0.6. The parameter 	1 is chosen as 2π × 15 MHz and γ is chosen as
2π (1,4,8,16,160) MHz.

Similarly, for �r = −	1, we have

g(2)
ss (0) = γ 4 + 4γ 2	2

1 + 4〈σz1〉γ 2	2
1 + 8	4

1 + 8〈σz1〉	4
1(−γ 2 − 2	2

1 − 2〈σz1〉	2
1

)2 .

(25)

From Eqs. (24) and (25) we find that, if the conditions

(1 − 〈σz1〉)2	4
1 � (1 − 〈σz1〉)γ 2	2

1, γ 4,
(26)

(1 + 〈σz1〉)2	4
1 � (1 + 〈σz1〉)γ 2	2

1, γ 4

are satisfied, the zero-delay second-order correlation function
can be simplified as

g
(2)
	1

(0) ∼ 2

1 − 〈σz1〉 = 1

|β|2 (27)

for �r = 	1 and

g
(2)
−	1

(0) ∼ 2

1 + 〈σz1〉 = 1

|α|2 (28)

for �r = −	1. Specifically, the conditions (26) can be simpli-
fied as

|	1| � γ, (29)

for most superposition states with the value of 〈σz1〉 being
not close to ±1. This indicates that the value of g(2)

ss (0) could
be engineered to be significantly large, and thus the strong
bunching effects of the intercavity photons can be delivered
by properly setting the atomic coherence in the driven cavity.

Certainly, the above arguments will be deviated, if condition
(29) cannot be satisfied well. Indeed, Fig. 3 shows specifically
that, for the superposition state |ψ ′

1〉 = √
0.4|0〉 + √

0.6|1〉, the
value of the steady-state correlation function g(2)

ss (0) decreases
and the locations of the peaks deviate from those of the
maximal transmissions as the decay rate γ increases.

B. Two-atom coherence and photon bunchings

The above demonstrations on single-atom coherence en-
gineering the photon bunchings can be easily extended to
the two-atom case. The transition frequencies of the two

FIG. 4. The steady-state transmission spectra of the driven cavity
with the two-atom superposed state: |ψ2〉 = √

0.1|00〉 + √
0.2|01〉 +√

0.3|10〉 + √
0.4|11〉, versus the detuning �r . The other parameters

are chosen as (	1,	2,γ ) = 2π (7,16,0.5) MHz.

individual atoms in the driven cavity are represented as ω1 and
ω2, respectively. The effective Hamiltonian of two individual
atoms dispersively interacting with the cavity is described as

H2 =
2∑

j=1

ω̃j

2
σzj +

⎛
⎝�r +

2∑
j=1

	jσzj

⎞
⎠â†â, (30)

where ω̃j = ωj + 	j and 	j = g2
j /�j .

Again, the second-order correlation function g(2)(0) can
be calculated by solving the system’s master equation for
the driven cavity with H2 beyond the usual mean-field ap-
proximation again. Obviously, in this case the state-dependent
frequency shift of the cavity should be jointly determined by
the states of the two atoms. For example, the frequency shifts
of the cavity are −	1 − 	2, −	1 + 	2, 	1 − 	2, and 	1 + 	2,
corresponding to the two-atom computational basis states
|00〉, |01〉, |10〉, and |11〉, respectively. In order to get good
resolution of the transmission peaks, we assume the condition
|	2| − |	1| � 0. Consequently, the central frequencies of
the steady-state transmission spectra mark the two-atom
computational basic states |00〉, |01〉, |10〉, and |11〉; and
their relative heights present, respectively, their superposed
probabilities [24]: |α1|2, |α2|2, |α3|2, and |α4|2 in the two-atom
state |ψ〉 = α1|00〉 + α2|01〉 + α3|10〉 + α4|11〉, respectively.
Specifically, Fig. 4 shows the steady-state transmission spec-
trum for a two-atom state:

|ψ2〉 =
√

0.1|00〉 +
√

0.2|01〉 +
√

0.3|10〉 +
√

0.4|11〉.
(31)

The zero-delay second-order correlation function g(2)(0)
can be similarly determined by calculating the steady-state
expected values of the relevant cavity operators. For example,
the dynamical equation of the expected value of 〈â†2â2〉 reads

d〈â†2â2〉
dt

= −2iε(〈â†2â〉 − 〈â†â2〉) − 2κ〈â†2â2〉. (32)
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FIG. 5. The steady-state second-order correlation function of the
intercavity for the two-atom state |ψ2〉 versus the detuning �r . The
relevant parameters are chosen as (	1,	2) = 2π (7,16) MHz, (γ ) =
2π (0.5,3,8,80) MHz.

This is further related to the following dynamical equations
(i = 0,1,2,3):

d〈âBi〉
dt

= −i�r〈âBi〉 − i

2∑
j=1

	j 〈âBiσzj 〉

+ iε〈Bi〉 − κ

2
〈âBi〉, (33)

d〈â†Bi〉
dt

= i�r〈â†Bi〉 + i

2∑
j=1

	j 〈â†Biσzj 〉

+ iε〈Bi〉 − κ

2
〈â†Bi〉, (34)

d〈â2Bi〉
dt

= −2i�r〈â2Bi〉 − 2i

2∑
j=1

	j 〈â2Biσzj 〉

− 2iε〈âBi〉 − κ〈â2Bi〉, (35)

d〈â†2Bi〉
dt

= 2i�r〈â†2Bi〉 + 2i

2∑
j=1

	j 〈â†2Biσzj 〉

+ 2iε〈â†Bi〉 − κ〈â†2Bi〉, (36)

d〈â†âBi〉
dt

= −iε(〈â†Bi〉 − 〈âBi〉) − κ〈â†âBi〉, (37)

and

d〈A1Bi〉
dt

= i�r〈A1Bi〉 + i

2∑
j=1

	j 〈A1Biσzj 〉 − iε(〈â†2Bi〉

− 2〈â†âBi〉) − 3κ

2
〈A1Bi〉, (38)

d〈A2Bi〉
dt

= −i�r〈A2Bi〉 − i

2∑
j=1

	j 〈A2Biσzj 〉 − iε(2〈â†âBi〉

− 〈â2Bi〉) − 3κ

2
〈A2Bi〉, (39)

d〈Bi〉
dt

= 0. (40)

Above, we have defined A1 = â†2â, A2 = â†â2, B0 = 1, B1 =
σz1, B2 = σz2, and B3 = σz1σz2, respectively. Solving the
above dynamical equations at the steady state, the second-order
correlation function g(2)

ss (0) can be determined and then shown
schematically in Fig. 5. These numerical results imply again
that the intercavity photons still show the bunching behaviors:
g(2)(0) > 1. Also, if condition (29) is satisfied, then the inverse
relationship between g(2)

ss (0) and the superposed probabilities
is revealed again at the frequencies of the cavity transmission
peaks.

III. DISCUSSIONS AND CONCLUSIONS

Beyond the usual mean-field approximation, in this paper
we exactly calculated the steady-state second-order correlation
function of the photon transmitting through the driven cavity,
dispersively coupled single- and two-atom states. The results
showed that the zero-delay second-order correlation function
of the photons is always larger than 1, if the atom(s) in the
cavity is prepared at the superposition of its computational
base states. Otherwise, we have g(2)

ss (0) ∼ 1. Interestingly, if
the condition |	1| � γ is satisfied, we found that an inverse
relationship between g(2)

ss (0) and the superposed probabilities
of the computational base states exists. The proposal presented
here provides an effective approach to generate the signif-
icantly strong bunching photons by engineering the atomic
coherence. Note that in our derivations the atomic decay had
been neglected for analytical simplicity. In fact, one can check
straightforwardly that the main arguments delivered above
are still robust, even when the relevant atomic decays are
considered. Indeed, from the master equation including the
atomic decay

ρ̇ = −i[HN + Hd,ρ] − κ

2
(−2âρâ† + â†âρ + ρâ†â)

− γ1

2
(−2σ−ρσ+ + σ+σ−ρ + ρσ+σ−), (41)

with σ± being the atomic operators and γ1 the decay of
the atom, the relevant differential equations for various
expectable values on the field and atomic operators, similarly
to Eqs. (8)–(11) and (13)–(22), can also be delivered. Here, it
is unnecessary to write all of them. Of course, Eq. (11) for the
atomic operator σz1 without atomic decay should be replaced
as

d〈σz1〉
dt

= −γ1(〈σz1〉 + 1), (42)

for the atomic decay γ1. This formally results in the decay
of the expected value of atomic operator σz1, i.e., 〈σz1(t)〉 =
exp(−γ1t)[〈σz1(0)〉 + 1] − 1. However, the time to finish a
single detection of the photon through the cavity is about T =
40 ns [25], which is significantly shorter than the decoherence
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FIG. 6. A feasible scheme to generate and verify high bunching
photons; the detectable steady-state second-order correlation function
of the output field can be effectively enhanced by controlling the
atomic superposed states.

time T1 ∼ 7.3 μs [26] of the atom. This implies that the decay
of the atom can be neglected really during the detection of the
transmitted photon. Indeed, the decay time T1 ∼ 7.3 μs [26] of
the atom indicates the atomic decay rate γ1/2π ∼ 0.02 MHz
[27], which is significantly less than the cavity’s decay rate
κ/2π = 1.69 MHz [25]. Therefore, even the decay of the
atom is considered; all the numerical results demonstrated
previously without the atomic decay should not be influenced
manifestly. Our numerical results with the experimental atomic
decay [27] really verify such an argument, which means that
all the derivations in the main text are robust even when the
atomic decay is considered.

Experimentally, the predictions delivered in the present
work without performing the usual mean-field approximation
could be immediately tested by measuring the g(2)

ss (τ ) param-
eter by the usual HBT setup (see Fig. 6). Probably, one of the
potential challenges for the experiment is that the atom-cavity
interaction is required to work in the dispersive regime. This is
solvable, as the frequency of either the cavity or the artificial
atom (e.g., superconducting qubits) is adjustable in principle.
Therefore, the present proposal to generate the photons with
significantly strong bunching effects is feasible.
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APPENDIX

In this Appendix, we verify, in detail, that the predicted
photon bunchings cannot be delivered by performing the usual
mean-field approximation. In fact, under the usual mean-field
approximation by neglecting any atom-field correlation, e.g.,
〈X̂σα〉 ≈ 〈X̂〉〈σα〉 [25] for field operator X̂ and single-atomic

operator σα, (α = +, − ,z), we have the following exact
dynamical equations for the driven cavity with a single
dispersively coupled two-level atom:

d〈â†2â2〉
dt

= −i2ε(〈â†2â〉 − 〈â†â2〉) − 2κ〈â†2â2〉, (A1)

d〈â†2â〉
dt

= i�r〈â†2â〉 + i	1〈â†2â〉〈σz1〉

− iε(〈â†2〉 − 2〈â†â〉) − 3κ

2
〈â†2â〉, (A2)

d〈â†â2〉
dt

= −i�r〈â†â2〉 − i	1〈â†â2〉〈σz1〉

− iε(2〈â†â〉 − 〈â2〉) − 3κ

2
〈â†â2〉. (A3)

d〈â†2〉
dt

= 2i�r〈â†2〉 + 2i	1〈â†2〉〈σz1〉 + 2iε〈â†〉 − κ〈â†2〉,
(A4)

d〈â2〉
dt

= −2i�r〈â2〉 − 2i	1〈â2〉〈σz1〉 − 2iε〈â〉 − κ〈â2〉.
(A5)

d〈â†â〉
dt

= −iε(〈â†〉 − 〈â〉) − κ〈â†â〉, (A6)

d〈â〉
dt

= −i�r〈â〉 − i	1〈â〉〈σz1〉 − iε − κ

2
〈â〉, (A7)

d〈â†〉
dt

= i�r〈â†〉 + i	1〈â†〉〈σz1〉 + iε − κ

2
〈â†〉, (A8)

respectively. The steady-state solutions to these equations
deliver that

〈â†â〉 = ε2

(γ − i〈σz1〉	1 − i�r )(γ + i〈σz1〉	1 + i�r )
, (A9)

〈â†2â2〉 = ε4

(γ − i〈σz1〉	1 − i�r )2(γ + i〈σz1〉	1 + i�r )2
.

(A10)

Obviously, under such an approximation the steady-state zero-
delay second-order correlation function of the intercavity filed
reads

g(2)(0) = 〈â†2â2〉
〈â†â〉2

≡ 1, (A11)

which implies that the field in the cavity should be still at the
coherent state, without any bunching or antibunching behavior.
This argument can also be delivered for the driven cavity
with two dispersively coupled two-level atoms. Therefore, the
predicted bunching effect, in the main text, of the intercavity
photons could not explained by the usual mean-field approxi-
mation. Instead, it is due to the atom-field correlations beyond
the mean-field approximation.
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