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Tunable optomechanically induced transparency in double quadratically coupled optomechanical
cavities within a common reservoir
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We consider the optomechanically induced transparency in the double quadratically coupled optomechanical
cavities within a common reservoir, in which the two cavities are driven by the coupling fields. It is shown
that the probe transparency is improved by increasing the coupling field (the left coupling field) applied on the
probing cavity, but the transparency position (the probe frequency of the maximal transparency) is shifted to
high frequency. The coupling field (the right coupling field) applied on the other quadratically coupled cavity
can lead to a low-frequency shift for the transparency position, which can be used to fix the transparency position
by adjusting the right coupling field. We get the quantitative findings that the transparency position is exactly
determined by the intensity difference between the two coupling fields. On the other hand, it is found that when
the two coupled optomechanical cavities interact with their common reservoir, the cross decay induced by the
common reservoir can improve the probe transparency and widen the transparency window. Finally, the effects of
the environment’s temperature on the transparency are investigated. This will be useful in cooling the membrane,
squeezing and entangling the output fields.
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I. INTRODUCTION

The interaction between electromagnetic radiation and
mechanical motion can be realized in the optomechanical
system (OMS) by using radiation pressure [1–3]. The OMS
has attracted much attention because of its many potential
applications, such as in entangling the macroscopic oscillator
and the cavity field [4], cooling the mechanical vibrations to
their quantum ground states [5–7], and producing the quantum
nonlinearities in quantum processing [8–10].

Recently, the optomechanically induced transparency
(OMIT), which was originally discovered in the multilevel
atomic system by using atomic coherence [11,12], has been
demonstrated in the OMS theoretically [13] and experimen-
tally [14,15], respectively. Many studies on OMIT in OMS
have been developed in the context of the linearization
procedure [13–15]. Subsequently, OMIT with higher-order
sidebands [16] and the nonlinear versions of OMIT without
the linearization procedure [17–19] were investigated. Ma-
nipulation of OMIT in an optomechanical cavity made by
two moving mirrors which contain a Kerr-down-conversion
nonlinear crystal was also considered [20]. To get much
more flexible controllability of OMIT, the investigation of
OMIT in single-cavity OMS has been generalized to the
case of two-cavity OMS. For example, OMIT and slow light
in a two-mode cavity optomechanical system composed of
two cavity modes interacting with a common mechanical
resonator were theoretically demonstrated [21]. The optome-
chanically induced absorption (OMIA) in the double-cavity
configurations of the hybrid optoelectromechanical systems
was predicted [22]. Also, the mechanical-mode splitting of
the movable mirror as well as OMIT in the splitting region
in the two-mode optomechanical system were investigated
[23]. Recently, we have considered the OMIT and OMIA
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accompanied by normal-mode splitting (NMS) in strongly
tunnel-coupled optomechanical cavities [24].

Besides the optomechanical systems with the linear cou-
pling between the optical field and the mechanical mode, there
exist quadratically coupled optomechanical systems in which
the optical cavity field is coupled parametrically to the square
of the position of a mechanical oscillator. The quadratic inter-
action in an optomechanical system can be realized by placing
a membrane at a cavity node (or antinode) of the intracavity
modes [25–27]. In the quadratically coupled optomechanical
systems, there appear many interesting phenomena, such as
the cooling and squeezing of a mechanical oscillator as well
as their dependencies on membrane absorption [28,29], basic
quantum characteristics [30–32], tunneling of a macroscopic
optomechanical membrane [33], single-photon emission and
scattering [34], and quantum nonlinearity [35,36]. Recently,
the single-mechanical-mode quadratically coupled optome-
chanical system has been generalized to two- or multiple-
mechanical-mode quadratically coupled optomechanics. For
example, in such generalized quadratically coupled optome-
chanical systems the hybridization of the two mechanical
modes [37], the optomechanical cooling [38], trapping and
entangled-state engineering of vibrational modes [39], and
bistability and bifurcations [40] were investigated. On the
other hand, the generalized two-optical-mode quadratically
coupled optomechanical system has been proposed. A two-
color mirror trapping and cooling in a two-cavity quadratically
coupled optomechanical system were considered [41], and
the tunneling of the photon between the two cavities and the
dynamics of the membrane were investigated [42].

In general, the dissipation or decoherence induced by the
interaction between the composite quantum system and its
surrounding environment devastates the quantum properties in
the system. However, when the coupled systems are coupled
to a common reservoir, the quantum phenomenon such as
entanglement between the subsystems can persist for a long

2469-9926/2016/93(4)/043804(9) 043804-1 ©2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.93.043804


C. BAI, B. P. HOU, D. G. LAI, AND D. WU PHYSICAL REVIEW A 93, 043804 (2016)

time. Therefore, many quantum phenomena in the coupled
system within a common reservoir were studied. For exam-
ple, the coherence phenomenon of two coupled dissipative
oscillators within a common reservoir was comprehensively
analyzed [43]. And, a decoherence-free subspace in a cavity
quantum electrodynamics involving two modes in the presence
of a common reservoir was predicted [44]. Subsequently,
the dynamics of the entanglement between two oscillators in
the same environment was characterized [45]. Recently, the
synchronization in quantum networks of harmonic oscillators
within a common environment [46] and the heat transport in
optomechanical arrays in contact with a common bath [47]
were investigated. To our knowledge, the OMIT in the double
optomechanical cavities within a common reservoir has not
yet been investigated.

Recently, the OMIT and slow light in a single-mode
quadratically coupled optomechanical system were demon-
strated [48,49]. In such an optomechanical system, the
OMIT is improved by increasing the coupling field which
deepens and widens the transparency window. However, the
probe transparency position, i.e., the probe frequency of
the minimum absorption (or maximal transparency) value in
the transparency window, is shifted to high frequency with
increase of the coupling field. Thus, it is difficult to fix the
OMIT position at a certain frequency and simultaneously
improve the OMIT by increasing the coupling field. In the
present paper, we shall investigate the OMIT in the two-mode
quadratically coupled optomechanical system composed by
two cavities within a common reservoir, which are indepen-
dently pumped by the coupling fields. It is found that the probe
transparency window becomes deeper and the transparency
position is shifted to high frequency with increase of the
coupling field (the left coupling field) applied on the probing
cavity, while the coupling field (right coupling field) driving
the coupled cavity suppresses the transparency and leads to
a low-frequency shift for the transparency position. We get
the quantitative findings that the transparency position can be
exactly determined by the intensity difference between the
two coupling fields. Thus the application of the right coupling
field on the coupled cavity can overcome the frequency shift
of the transparency position in a single-mode quadratically
optomechanical system when increasing the coupling field to
improve the transparency. Although the right coupling field
can assist in fixing the transparency position, it suppresses
the OMIT induced by the left coupling field. Subsequently,
we consider the OMIT in the two-mode quadratically coupled
optomechanical system in which the two cavities are coupled
to a common reservoir, and investigate the effects of the cross
decay induced by the common reservoir on the OMIT. We find
that the cross decay enhances the transparency and widens the
transparency window, which can alleviate the suppressions of
the OMIT induced by the right coupling field. Additionally,
it is found that the temperature of the environment can im-
prove the OMIT in the quadratically coupled optomechanical
system.

The paper is organized as follows: In Sec. II we describe
the model and solve its dynamical equation. The OMIT as well
as its variations with the strengths of the two coupling fields
in the double quadratically coupled optomechanical cavities
are displayed in Sec. III. The enhancement of the OMIT by

1E

PE 2E

1a 2a

OUTE

q 0 q

FIG. 1. Sketch of the system. Two cavities are quadratically
coupled to the displacement of a membrane suspended in the cavity.
The left fixed mirror of the optical cavity is simultaneously driven
by a strong coupling field of amplitude E1 with frequency ω1 and a
weak probe field of amplitude Ep with frequency ωp . The right fixed
mirror in the quadratically coupled optomechanical system is driven
by another strong coupling field of amplitude E2 with frequency ω2.

the cross decay and the thermal temperature is investigated in
Sec. IV. Finally, in Sec. V we summarize our main results.

II. MODE AND DYNAMICAL EQUATION

Our optomechanical system, which is shown in Fig. 1,
consists of two partially transmitting mirrors fixed at ±L, and a
membrane oscillating with a very small displacement q around
its equilibrium position between the two fixed mirrors. The
membrane separates the cavity formed by the the fixed mirrors
into two subcavities with independent optical modes a1 and
a2 with frequency ωc,k (k = 1,2) and decay rate κk . The left
fixed mirror is simultaneously driven by a strong coupling field
E1 = √

2P1κ1/�ω1 (the left coupling field) with frequency ω1

and a weak probe field Ep = √
2Ppκ1/�ωp with frequency ωp,

in which Pl (l = 1,p) denotes its power. The right subcavity
is driven by another strong coupling field E2 = √

2P2κ2/�ω2

(the right coupling field) with frequency ω2 and power P2.
In the present paper, we focus on the optical response of
the probe field to the quadratic interaction by the pressure
radiations in the two-cavity optomechanical system, so we
shall neglect the linear coupling between the cavity field and
the membrane displacement by assuming that the membrane
center-of-mass position is located exactly at a node or at an
antinode of the cavity modes [41]. Then, the Hamiltonian of
the double quadratically coupled optomechanical cavities is
given by [40–42]

H =
∑
k=1,2

��ka
†
kak + p2

2m
+ 1

2
mω2

mq2

+ �(g1a
†
1a1 − g2a

†
2a2)q2 +

∑
j=1,2

i�Ej (a†
j − aj )

+ i�Ep(a†
1e

−iδt − a1e
iδt ), (1)

where �k = ωc,k − ωk (k = 1,2) is the detunings between the
cavity and the corresponding coupling field, and δ = ωp − ω1
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denotes the detuning between the left coupling field and the
probe field. The momentum and displacement operators of the
membrane with frequency ωm and a mass m are denoted by p

and q, respectively.
In Eq. (1), the first term denotes the free energy of the two

optical cavities, and the free energy of the membrane is given
by the second and third terms. The applications of the left
and right coupling fields on the two fixed mirrors are given
by the second summation term, and the last term describes
the driving of the probe field on the left fixed mirror. The
quadratic couplings between the membrane and the optical
subcavities are given by the fourth term, in which the quadratic

coupling coefficient is given by gk = 8π2c

λ2
kLk

√
R

1−R
(k = 1,2)

[41,42,48,49]. Here, c is the speed of light in a vacuum, R de-
notes the reflectivity of the membrane, and λk the wavelength
of the coupling field. It has been shown that the quadratic
optomechanical coupling constant remarkably increases with
the membrane reflectivity [41]; thus the membrane is assumed
in the limit of high reflectivity to achieve the considerable
quadratical interactions. The term with �g1a

†
1a1q

2 in Eq. (1),
which provides a positive frequency of the movable mirror,
can be realized by placing the membrane center at a node of
the left subcavity field, while the membrane center is located
at an antinode of the right subcavity field to achieve the
contribution of a negative frequency to the membrane, i.e.,
−�g2a

†
2a2q

2 [27]. The system shown by the Hamiltonian in
Eq. (1) is used to investigate the optomechanical trapping
and the dynamics of the membrane [41,42]. Recently, the
interference, entanglement, and correlation in the multimode
strong-coupling optomechanics via quadratic optomechanical
interactions with the same or opposite signs have been studied
[40].

To consider the case in which the two cavities in the double
quadratically coupled optomechanical system interact with a
common reservoir besides with their respective reservoirs,
we use the standard master equation approach to describe
the dynamics for the membrane and the cavity variables. By
tracing over the reservoir freedoms under the Born-Markov
approximation, the master equation of the reduced density for
the double quadratically coupled optomechanical cavities is
given by

dρ

dt
= − i

�
[H,ρ] +

∑
i=1,2

κi(2aiρa
†
i − a

†
i aiρ − ρa

†
i ai)

+
∑

i,j=1,2(i �=j )

κij (aiρa
†
j + ajρa

†
i − ρa

†
j ai − a

†
i ajρ)

− γm(i[qm,{pm,ρ}] + (2n + 1)[qm,[qm,ρ]]), (2)

where the normalized displacement and momentum operators
of the mechanical oscillator are given by qm = √

mωm/�q and
pm = √

1/�mωmp with the commutation relation [qm,pm] =
i, and [...] and {...} denote commutator and anticommutator,
respectively. The terms with κ1 and κ2 in Eq. (2) describe
the individual dissipation of the cavities. And the terms with
κ12 and κ21, which are named as cross decays in the later
discussions, represent a communication channel between the
cavities mediated by the common reservoir, through which
the cavity field loses excitation to the other cavity. This cross

decay channel can be realized by placing the cavities as close
as possible to each other, or by making the distance between
the cavities smaller than the mode’s wavelength [44]. The last
term describes the excitation loss of the mechanical oscillator
to its reservoir.

By using the expectation value expression 〈X〉 = Tr(ρX)
and the factorization assumption 〈AB〉 = 〈A〉〈B〉, the dynam-
ics of the system can be described by the time evolution of the
expectation values for the variables, which are given by

d〈a1〉
dt

= −i(�1 + g1〈q2〉)〈a1〉 + (E1 + Epe−iδt )

− κ1〈a1〉 − κ12〈a2〉, (3a)

d〈a2〉
dt

= −i(�2 − g2〈q2〉)〈a2〉+E2 − κ2〈a2〉−κ12〈a1〉,
(3b)

d〈q2〉
dt

= 1

m
〈qp + pq〉, (3c)

d〈pq + qp〉
dt

= 2

m
〈p2〉 − 2mω2

m〈q2〉 − 4�(g1〈a†
1〉〈a1〉

− g2〈a†
2〉〈a2〉)〈q2〉 − γm〈pq + qp〉, (3d)

d〈p2〉
dt

= −[
mω2

m + 2�(g1〈a†
1〉〈a1〉 − g2〈a†

2〉〈a2〉)
]

×〈pq+qp〉−2γm〈p2〉+2γm(1 + 2n)
m�ωm

2
.

(3e)

In Eq. (3e), the last term results from the coupling of the

membrane to the thermal environment, and n = (e
�ωm
kB T − 1)−1

is the mean thermal photon occupation number of energy �ωm

at environment temperature T , in which κB is Boltzmann’s
constant and γm the damping rate of the membrane. The terms
describing the input vacuum noise for the subcavities and the
Langevin force for the membrane disappear due to their zero
mean values.

Here, the coupling fields are much stronger than the probe
field, and we can use the linearization approach of quantum
optics to get an analytical understanding. The variables of the
membrane and the cavities are divided into the steady parts
and the fluctuation ones:

a1 = as,1 + δa1,

a2 = as,2 + δa2,

qp + pq = (qp + pq)s + δ(qp + pq) = As + δA, (4)

p2 = (p2)s + δ(p2) = Ps + δP,

q2 = (q2)s + δ(q2) = Qs + δQ,

where we redefine the variables as qp + pq = A, p2 = P , and
q2 = Q. Substituting Eq. (4) into Eqs. (3a)–(3e) and setting
all the time derivations to be zero, the steady-state solutions,
which are mainly determined by the strong coupling fields, are
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obtained as

as,1 = E1(κ2 + i�′
2) − κ12E2

(κ1 + i�′
1)(κ2 + i�′

2) − κ12κ21
,

as,2 = E2(κ1 + i�′
1) − κ21E1

(κ1 + i�′
1)(κ2 + i�′

2) − κ12κ21
,

As = 0, (5)

Ps = m�ωm

(
n + 1

2

)
,

Qs = Ps

m2ω2
m + 2m�(g1a

∗
s,1as,1 − g2a

∗
s,2as,2)

,

where �′
1 = �1 + g1Qs and �′

2 = �2 − g2Qs are the effec-
tive cavity detunings, in which the radiation pressure effects
induced by the coupling fields produce opposite contributions
to the corresponding detunings. It is shown from Eq. (5)
that the steady kinetic energy Ps

2m
of the membrane is mainly

contributed from thermal photons of the environment, and the
potential energy mω2

mQs/2 is dependent on the two coupling
powers besides on the thermal photons. The dependence of the
physics processes on the thermal photons and the temperature
of the environment comes from the two-phonon process shown
in Eq. (1). It is noted that the mean value of the displacement
for the quadratically coupled membranes is zero; this is
different from the case of the linear optomechanical coupling
where the mean value of the displacement is not zero and
determines the steady intracavity field [13]. Physically, in the
case of the linear coupling the radiation pressure gives a force
upon the mechanical resonator and displaces the oscillator
to a new equilibrium position. However, the steady-state
intracavity field as,k (k = 1,2) in Eq. (5) is independent of the
quadratic coupling constant gs,k; thus the quadratic coupling
from the radiation pressure will not affect the displacement
of the membrane through intercavity fields but change the
resonant frequency of the mechanical resonator, and the
thermal photons of the environment on average have no effects
on the motion of the mechanical resonator.

Correspondingly, the time evolution for the expectation
values of the fluctuations is given by

d〈δa1〉
dt

= −(κ1 + i�′
1)〈δa1〉 − ias,1g1〈δQ〉

+Epe−iδt − 
C〈δa2〉, (6)

d〈δa2〉
dt

= −(κ2 + i�′
2)〈δa2〉 + ias,2g2〈δQ〉

−
C〈δa1〉, (7)

d〈δQ〉
dt

= 1

m
〈δA〉, (8)

d〈δA〉
dt

= 2

m
〈δP 〉 − 2mω2

m〈δQ〉
− 4�{(g1a

∗
s,1as,1 − g2a

∗
s,2as,2)〈δQ〉

+Qs[g1(a∗
s,1〈δa1〉 + as,1〈δa†

1〉)
− g2(a∗

s,2〈δa2〉 + as,2〈δa†
2〉)]}

− γm〈δA〉, (9)

d〈δP 〉
dt

= −[
mω2

m + 2�(g1a
∗
s,1as,1 − g2a

∗
s,2as,2)

]〈δA〉
− 2γm〈δP 〉, (10)

where the cross-decay rates are assumed to be equal to each
other, i.e., κ12 = κ21 = 
C . In order to display the probe optical
properties, we make these Ansätze as follows:

〈δQ〉 = Q+e−iδt + Q−eiδt ,

〈δA〉 = A+e−iδt + A−eiδt ,

〈δP 〉 = P+e−iδt + P−eiδt , (11)

〈δa1〉 = a1+e−iδt + a1−eiδt ,

〈δa2〉 = a2+e−iδt + a2−eiδt .

Substituting these Ansätze into Eqs. (6)–(10), we obtain the
following expression:

a1+ = as1g1(δ − �′
2) + i(as1g1κ2 + as2g2
C)

�1
Q+

+ iEp(δ − �′
2) − κ2Ep

�1
, (12)

where

Q+ = �2�3�2

�1�2�4 − �1�3�1 − �2�3�3
, (13)

with

�1 = [
(δ − �′

2)(δ − �′
1) − κ1κ2 + 
2

C

]
+ i[(δ − �′

2)κ1 + (δ − �′
1)κ2], (14)

�2 = [
(δ + �′

2)(δ + �′
1) − κ1κ2 + 
2

C

]
+ i[(δ + �′

2)κ1 + (δ + �′
1)κ2], (15)

�3 = δ + 2iγm, (16)

�1 = 4m�Qs

[
a2

s2g
2
2(δ + �′

1) + a2
s1g

2
1(δ + �′

2)
]

+ 4im�Qs

(
a2

s2g
2
2κ1 + a2

s1g
2
1κ2 + 2as1as2g1g2
C

)
,

(17)

�2 = 4m�QsEp(a∗
s1g1κ2 + a∗

s2g2
C)

− 4im�QsEpa∗
s1g1(δ − �′

2), (18)

�3 = −4m�Qs

[
as1a

∗
s1g

2
1(δ − �′

2) + as2a
∗
s2g

2
2(δ − �′

1)
]

− 4im�Qs[as1g1(a∗
s1g1κ2 + a∗

s2g2
C)

+ as2g2(a∗
s1g1
C + a∗

s2g2κ1)], (19)

�4 = 8m�δ
(
as1a

∗
s1g1 − as2a

∗
s2g

2
2

) + m2δ
(
4ω2

m − δ2
)

+ 2m2γ 2
mδ + i

[
8m�γm(as1a

∗
s1g1 − as2a

∗
s2g2)

+m2γm

(
4ω2

m − δ2
) − 2m2γmδ2

]
. (20)

Further, the output field can be derived by using the input-
output relation

εout(t) = εout0 + εout+e−iδt + εout−eiδt . (21)
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The probe response to the system can be described by the
component of the output field εout+ = 2κ1a1+/Ep [13,14,48],
which oscillates at the probe frequency ωp. And the probe
absorption properties of the system are given by the real part
of the output field εR = Re[εout+].

III. OMIT AS WELL AS ITS VARIATIONS
WITH COUPLING FIELDS

In this section, we shall focus on the dependence of the
OMIT in the double quadratically coupled optomechanical
cavities on the two coupling fields as well as their intensity
difference. The influence of the cross decay on the OMIT
will be discussed in the next section. In order to numer-
ically analyze the transparency of the probe field in the
quadratically coupled double-cavity optomechanical system,
we use the parameters in Ref. [48]: ωc1 = ωc2 = 1.77 ×
1012 Hz, κ1 = κ2 = 2π × 104 Hz, γm = 2 × 10 Hz, ωm =
2π × 105 Hz, m = 1 × 10−12 kg, and L1 = 6.7 × 10−2 m.
Here, the wavelengths of the left and right coupling fields
are given by λ1 = 532 × 10−9 m [48] and λ2 = 514 × 10−9 m
[41], respectively. Without loss of generality, the two quadratic
coupling coefficients are assumed to be equal, g1 = g2, by
setting the subcavity lengths and the wavelengths of the two
coupling fields to follow the relation λ2

1L1 = λ2
2L2. At the

same time, to display the effects of the the intensity difference
between the coupling fields on OMIT we set the ratio of the
right coupling intensity to the left one as n = |E2|2/|E1|2 =
P2λ2/P1λ1. The following discussions are developed under
the two-phonon resonance, i.e., �′

1 = �′
2 = 2ωm, and the

detuning between the left coupling and probe fields is redefined
by σ = (δ − 2ωm)/ωm to display the probe transparency
properties around the two-phonon resonance.

First, we investigate the effects of the left coupling field
|E1|2 on the probe absorption properties in the system. In
Fig. 2, the right coupling field is fixed at P2 = 20.70 μW, and
the left coupling field is given by P1 = 4 μW, 20 μW, and
36 μW, which are shown by the solid, dashed, and dotted
curves, respectively. We find that there appears a narrow
transparency dip located at σ = −0.01ωm, 0, and 0.01ωm for
P1 = 4 μW, 20 μW, and 36 μW, and the transparency dip
becomes deeper and wider with increase of the left coupling
intensity. Also, it is shown that the transparency positions
for P1 = 4 μW and 36 μW are located symmetrically about
the resonant point due to their identical intensity differences
between the left and right coupling fields with opposite signs,
and the transparency position for P1 = 20 μW lies at the
resonant point because of the identical intensities for the
two coupling fields, i.e., |E1|2 = |E2|2. The extremely narrow
nature with the transparency dip is due to γm � κi (i = 1,2).
Additionally, it is shown that when increasing the intensity of
the left coupling field, the transparency dip will be shifted to
high frequency. This is because the quadratic optomechanical
interaction induced by the left coupling field provides a
positive contribution to the membrane frequency.

Now we consider the influences of the right coupling
field on the probe transparency spectrum by setting the
right coupling field with different values. It is shown in
Fig. 3 with the left coupling field fixed at P1 = 20 μW
that the transparency dip is located at σ = −0.01ωm, 0,
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FIG. 2. The probe absorption εR versus the normalized detuning
σ/ωm with the right coupling field fixed at P2 = 20.70 μW, and
the power of the left coupling field is given by different val-
ues: P1 = 4 μW (blue, solid curve); P1 = 20 μW (green, dashed
curve); P1 = 36 μW (red, dotted curve). The other values of the
parameters are given by ωc1 = ωc2 = 1.77 × 1012 Hz, κ1 = κ2 =
2π × 104 Hz, κ12 = κ21 = 0, γm = 2 × 10 Hz, ωm = 2π × 105 Hz,
m = 1 × 10−12 kg, L1 = 6.7 × 10−2 m, λ1 = 532 × 10−9 m, λ2 =
514 × 10−9 m, R = 0.95, and T = 90 K. To meet the situation of the
identical quadratic coupling coefficients, i.e., g1 = g2, the subcavity
lengths and the wavelengths of the two coupling fields obey the
relation λ2

1L1 = λ2
2L2.

and 0.01ωm for P1 = 37.26 μW, 20.07 μW, and 4.14 μW,
and the transparency dip becomes shallower with stronger
right coupling field. Additionally, the transparency position
is shifted to lower frequency with increase of the right
coupling field. The situation is contrary to the case for the
left coupling field shown in Fig. 2. This can be understood
by the quadratical couplings between the subcavity fields and
the membrane in Eq. (1): the left coupling field induces a
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R

FIG. 3. The probe absorption εR versus the normalized detuning
σ/ωm with P1 = 20 μW and with different right coupling intensities:
P2 = 4.14 μW (blue, solid curve); P2 = 20.70 μW (green, dashed
curve); P2 = 37.26 μW (red, dotted curve). The other values of the
parameters are the same as in Fig. 2.
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FIG. 4. The probe absorption εR versus the normalized detuning
σ/ωm with different powers of the left and the right coupling field:
P1 = 18 μW, P2 = 1.86 μW (blue, solid curve); P1 = 36 μW, P2 =
20.5 μW (green, dashed curve); P1 = 52 μW, P2 = 37.05 μW (red,
dotted curve). The intensity differences between the two coupling
fields in these three settings are identical, i.e., �I = |E2|2 − |E1|2 ≈
8.62 × 10−12ξ with ξ = κ/πc�. Other values of the parameters are
the same as in Fig. 2.

positive quadratical coupling and then increases the effective
frequency of the left subcavity, while the right coupling field
results in a negative one and decreases the right subcavity’s
effective frequency. Correspondingly, this will shift the probe
transparency frequency, which is resonant with the cavity’s
frequency.

In the above discussions, we consider the effects of one
coupling field on the probe absorption properties by fixing the
other coupling field. Now we shall investigate the behaviors
of the system in the case in which the two coupling fields
are both varying while their intensity difference is kept
unchanged. In Fig. 4, we increase the powers of the two
coupling fields while fixing their intensity differences at
�I = |E2|2 − |E1|2 ≈ 8.62 × 10−12ξ with ξ = κ/πc�. It is
shown that the transparency window becomes shallower and
wider with increase of the coupling fields, and the transparency
positions in these cases are located exactly at σ = 0.01ωm.
This further proves that the transparency position is determined
by the intensity difference between the two coupling fields.
From the expression of the output field in Eq. (12), we get the
analytical findings for the transparency position:

σt/ωm = 2�(g1a
∗
s,1as,1 − g2a

∗
s,2as,2)/mω2

m. (22)

We can see that the left coupling field provides a positive
value to the normalized detuning through the left intracavity
field while the right coupling field leads to the negative
value through the right intracavity field. This explains why
the transparency window shifts to the high frequency with
increase of the left coupling field, while the right coupling
field leads to the opposite shift. Thus the scheme in the
present paper can solve the problem of the transparency
frequency shift in general single-mode quadratically coupled
optomechanical system. Now we can investigate how the probe
maximal transparency varies with the coupling fields in terms
of the the analytical findings. We plot the probe absorptions

a
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FIG. 5. The probe absorption εR at the transparent position
σt/ωm = 2�(g1a

∗
s,1as,1 − g2a

∗
s,2as,2)/mω2

m versus the power differ-
ence: (a) �p1 = P1 − P2, P2 = 20 μW; (b) �p2 = P2 − P1, P1 =
20 μW. Other values of the parameters are the same as in Fig. 2.

at the transparency position σt versus the power difference
between the left and the right coupling fields in Fig. 5(a)
for �P 1 = P1 − P2 with P1 = 20 μW, and in Fig. 5(b) for
�P 2 = P2 − P1 with P2 = 20 μW. It is shown from Fig. 5(a)
that when the left coupling field is stronger than the right one
the maximal transparency in the probe absorption spectrum
becomes enhanced. However, the maximal transparency is
suppressed for the case where the right coupling field is
stronger than the left one, which is shown by Fig. 5(b).

IV. ENHANCED OMIT BY THE CROSS DECAY INDUCED
BY A COMMON RESERVOIR

In the previous section, we consider the variation of
the OMIT with two coupling fields in the case where two
subcavities of the system are only interacting with their
respective reservoirs. Now, we shall investigate the OMIT in
the present system in which two subcavities are coupling with
a common reservoir, and explore the effects of the cross decay
induced by the common reservoir on the OMIT. Without loss
of generality, it is assumed that the decay rates for the two
cavities are identical, i.e., κ1 = κ2, the two cavities are in
the resonant condition, i.e., ωc1 = ωc2, and the cross decays
κ12 and κ21 can be set to be identical and can be expressed
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FIG. 6. The same settings are used as in Fig. 2, but for η = 0.9
with the definition of 
C = κ12 = κ21 = η

√
κ1κ2.

by κ12 = κ21 = η
√

κ1κ2, with η ∈ [0,1] being the coupling
efficiency between the cavities through the common reservoir
[50]. It was shown that the cross decay can be adjusted through
the engineered reservoirs [43].

First, we consider the variation of the OMIT with the
left coupling field in the presence of the cross decay. It is
shown from Fig. 6 with η = 0.9 that the three transparency
positions for P1 = 4 μW, 20 μW, and 36 μW are still located
at σ = −0.01ωm, 0, and 0.01ωm, which is the same as those
in Fig. 2. By comparing Fig. 6 with Fig. 2, we can see that
the transparency window becomes intensely deeper and wider
in the presence of the cross decay. The strong left coupling
field leads to a remarkable blueshift of the right absorption
peak in the OMIT window, while the left absorption peak has
hardly changed. It is the blueshift that makes the transparency
window wider. The increase of the maximal transparency
with the left coupling field can be seen in Fig. 6, but with
a slighter strength than Fig. 2. Correspondingly, the variation
of the OMIT with the right coupling filed in the presence of
the cross decay is shown in Fig. 7. It is also shown that the
transparency window becomes deeper and wider than those in
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FIG. 7. The same settings are used as in Fig. 3, but for η = 0.9
with the definition of 
C = κ12 = κ21 = η

√
κ1κ2.
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FIG. 8. The probe absorption εR versus the normalized detuning
σ/ωm with P1 = 20 μW and n = 1 (|E2|2 = |E1|2) for the different
cross decays (κ12 = κ21 = η

√
κ1κ2): η = 0 (blue, solid curve); η =

0.6 (green, dashed curve); η = 0.9 (red, dotted curve). Other values
of the parameters are the same as in Fig. 2.

the absence of the cross decay shown in Fig. 3. At this time,
the wider transparency window comes from the redshift of the
left absorption peak, which is induced by the right coupling
field. The blueshifts or redshifts of the absorption peaks in the
OMIT window can be used to distinguish between the left and
right coupling fields.

Second, we shall investigate the effects of the cross decay
on the OMIT when the two coupling fields are kept unchanged
with identical intensity. This situation is shown by Fig. 8 with
different cross decays by setting the coupling efficiency as
η = 0,0.6,0.9, which correspond to solid, dashed, and dotted
curves. It is shown that the maximal transparency for η = 0.6,
shown by the dashed curve, becomes larger than the solid curve
in the absence of the cross decay. If the cross decay increases
up to η = 0.9, the transparency window gets wider and its
transparency window becomes ten times deeper than the solid
curve.

Although the OMIT in the present system is improved by
the left coupling field, the transparency position will move
with its varying intensity. How do we make the probe field
transparent to be fixed at a certain frequency ωx? From the
above discussions, we can see that the transparency position
can be fixed by additionally using the right coupling field to
meet the relation 2�(g1a

∗
s,1as,1 − g2a

∗
s,2as,2)/mωm = ωx ; i.e.,

the main function of the right coupling field is used to fix
transparency frequency for the probe field. However, the right
coupling field can suppress the transparency. In the present
system the suppressed transparency by the right coupling field
can be compensated by the cross decay induced by the common
reservoir. Now we consider the effects of the cross decays on
the minimum absorption at the transparency position ωx when
increasing the right coupling field. It is shown from Fig. 9 that
the minimal absorption for η = 0.5 shown by the dashed curve
is smaller than that shown by the solid curve with η = 0, and
the absorption for η = 1.0, the decoherence-free situation in
cavity quantum electrodynamics [44], is remarkably smaller
than dashed curve. Thus the transparency is remarkably
improved by the cross decay. Additionally, the slope of the
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FIG. 9. The probe absorption εR at the transparent position
σt/ωm = 2�(g1a

∗
s,1as,1 − g2a

∗
s,2as,2)/mω2

m versus the coupling power
difference �p2 = P2 − P1 with P1 = 20 μW, and the cross decay is
given by different values (κ12 = κ21 = η

√
κ1κ2): η = 0 (blue, solid

curve); η = 0.5(green, dashed curve); η = 1 (red, dotted curve).
Other values of the parameters are the same as in Fig. 2.

minimum absorption curve varying with the enhanced right
coupling field becomes gentler when the cross decay is
increased. This implies that the cross decay can ameliorate the
suppressed transparency induced by the right coupling field. It
is well known that OMIT in the optomechanical system comes
from the destructive interference between the probe field and
the anti-Stokes field induced by the radiation pressure, and the
transparency is mainly limited by the individual dissipations
or the decoherences from the environments surrounding the
membrane and the cavities. On the other hand, the cross
decay provides a communication channel between the cavities
mediated by the common reservoir, and scatters one optical
mode to the other without losing their coherence. The cross
decay can supply the coherence destroyed by the individual
dissipation or decoherence, which explains why the cross
decay can improve the OMIT.

Finally, we shall display the effects of the temperature
of the environment on the OMIT. We consider the variation
of the probe OMIT at the two-phonon resonance σ/ωm =
0 (or δ = 2ωm) with the temperature, which is shown by
Fig. 10. It is shown that the transparency is markedly improved
by increasing the temperature of the environment below
T = 40 K, beyond which the probe field is saturated. From
Eq. (5), it is shown that the thermal photons of the environment
are transferred to the kinetic energy of the membrane in
the quadratically coupled optomechanical system. The kinetic
energy enhances the oscillation of the membrane induced by
the simultaneous applications of the driving fields, and can
alleviate the destruction from the damping process on the
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FIG. 10. The probe absorption εR versus the temperature of the
environment T with P1 = 20 μW and n = 1 (|E2|2 = |E1|2). Other
values of the parameters are the same as in Fig. 2.

OMIT. This can explain why the temperature can improve
the OMIT. Recently, it has been shown that the environment
temperature together with the coupling field power jointly
drive the realization of slow light [49].

V. CONCLUSION

In conclusion, we have considered the OMIT in the double
quadratically coupled optomechanical cavities, in which the
two cavities are driven by the coupling fields. It is found
that the probe transparency is improved and the transparency
position (the probe frequency of the maximal transparency)
is shifted to high frequency with increase of the left coupling
field, while the coupling field applied on the coupled cavity
can attenuate probe transparency and lead to a low-frequency
shift. In fact, the transparency position is exactly determined
by the intensity difference between the two coupling fields.
Additionally, we have considered the OMIT in the case where
the two cavities are coupled to a common reservoir. Unlike the
usual dissipation into the subsystem’s own reservoir, the cross
decay induced by the common reservoir can improve the OMIT
in the quadratically optomechanical system even if the right
coupling field is stronger than the left one. Finally, the effects
of the temperature of the environment on the OMIT have
been investigated. This will help in cooling of the membrane,
squeezing and entangling the output fields.
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[12] K. J. Boller, A. Imamoğlu, and S. E. Harris, Phys. Rev. Lett. 66,

2593 (1991).
[13] G. S. Agarwal and S. Huang, Phys. Rev. A 81, 041803(R)

(2010).
[14] S. Weis, R. Riviere, S. Deleglise, E. Gavartin, O. Arcizet, A.

Schliesser, and T. J. Kippenberg, Science 330, 1520 (2010).
[15] A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield,

M. Winger, Q. Lin, J. T. Hill, D. Chang, and O. Painter, Nature
(London) 472, 69 (2011).

[16] H. Xiong, L.-G. Si, A.-S. Zheng, X. Yang, and Y. Wu, Phys.
Rev. A 86, 013815 (2012).

[17] M.-A. Lemonde, N. Didier, and A. A. Clerk, Phys. Rev. Lett.
111, 053602 (2013).

[18] K. Børkje, A. Nunnenkamp, J. D. Teufel, and S. M. Girvin,
Phys. Rev. Lett. 111, 053603 (2013).

[19] A. Kronwald and F. Marquardt, Phys. Rev. Lett. 111, 133601
(2013).

[20] S. Shahidani, M. H. Naderi, and M. Soltanolkotabi, Phys. Rev.
A 88, 053813 (2013).

[21] C. Jiang, H. Liu, Y. Cui, X. Li, G. Chen, and B. Chen, Opt.
Express 21, 12165 (2013).

[22] Kenan Qu and G. S. Agarwal, Phys. Rev. A 87, 031802(R)
(2013).

[23] J. Ma, C. You, L. Si, H. Xiong, X. Yang, and Y. Wu, Opt. Lett.
39, 4180 (2014).

[24] B. P. Hou, L. F. Wei, and S. J. Wang, Phys. Rev. A 92, 033829
(2015).

[25] J. D. Thompson, B. M. Zwick, A. M. Jayich, F. Marquardt, S. M.
Girvin, and J. G. E. Harris, Nature (London) 452, 72 (2008).

[26] J. C. Sankey, C. Yang, B. M. Zwickl, A. M. Jayich, and J. G. E.
Harris, Nat. Phys. 6, 707 (2010).

[27] M. Karuza, M. Galassi, C. Biancofiore, C. Molinelli, R. Natali,
P. Tombesi, G. Di Giuseppe, and D. Vitali, J. Opt. 15, 025704
(2013).

[28] A. Nunnenkamp, K. Børkje, J. G. E. Harris, and S. M. Girvin,
Phys. Rev. A 82, 021806(R) (2010).

[29] M. Asjad, G. S. Agarwal, M. S. Kim, P. Tombesi, G. Di.
Giuseppe, and D. Vitali, Phys. Rev. A 89, 023849 (2014).

[30] O. Romero-Isart, A. C. Pflanzer, F. Blaser, R. Kaltenbaek, N.
Kiesel, M. Aspelmeyer, and J. I. Cirac, Phys. Rev. Lett. 107,
020405 (2011).

[31] H. Shi and M. Bhattacharya, Phys. Rev. A 87, 043829 (2013).
[32] H. Tan, F. Bariani, G. Li, and P. Meystre, Phys. Rev. A 88,

023817 (2013).
[33] L. F. Buchmann, L. Zhang, A. Chiruvelli, and P. Meystre, Phys.

Rev. Lett. 108, 210403 (2012).
[34] J.-Q. Liao and F. Nori, Sci. Rep. 4, 6302 (2014).
[35] T. P. Purdy, D. W. C. Brooks, T. Botter, N. Brahms, Z.-Y. Ma,

and D. M. Stamper-Kurn, Phys. Rev. Lett. 105, 133602 (2010).
[36] J.-Q. Liao and F. Nori, Phys. Rev. A 88, 023853 (2013).
[37] A. B. Shkarin, N. E. Flowers-Jacobs, S. W. Hoch, A. D.

Kashkanova, C. Deutsch, J. Reichel, and J. G. E. Harris, Phys.
Rev. Lett. 112, 013602 (2014).

[38] M. Bhattacharya and P. Meystre, Phys. Rev. A 78, 041801(R)
(2008).

[39] X.-W. Xu, Y.-J. Zhao, and Y.-x. Liu, Phys. Rev. A 88, 022325
(2013).

[40] H. Seok, L. F. Buchmann, E. M. Wright, and P. Meystre, Phys.
Rev. A 88, 063850 (2013).

[41] M. Bhattacharya, H. Uys, and P. Meystre, Phys. Rev. A 77,
033819 (2008).

[42] J. H. Teng, S. L. Wu, B. Cui, and X. X. Yi, J. Phys. B 45, 185506
(2012).

[43] M. A. de Ponte, M. C. de Oliveira, and M. H. Y. Moussa, Ann.
Phys. 317, 72 (2005).
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