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Analytical study of parameter regions of dynamical instability for two-component Bose-Einstein
condensates with coaxial quantized vortices
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The dynamical instability of weakly interacting two-component Bose-Einstein condensates with coaxial
quantized vortices is analytically investigated in a two-dimensional isotopic harmonic potential. We examine
whether complex eigenvalues appear on the Bogoliubov–de Gennes equation, implying dynamical instability.
Rather than solving the Bogoliubov–de Gennes equation numerically, we rely on a perturbative expansion with
respect to the coupling constant which enables a simple, analytic approach. For each pair of winding numbers
and for each magnetic quantum number, the ranges of intercomponent coupling constant where the system
is dynamically unstable are exhaustively obtained. Corotating and counter-rotating systems show distinctive
behaviors. The latter is much more complicated than the former with respect to dynamical instability, particularly
because radial excitations contribute to complex eigenvalues in counter-rotating systems.
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I. INTRODUCTION

Dynamical instability is one of the most interesting
phenomena in Bose-Einstein condensates of cold atomic
gases. This instability is observed experimentally in various
situations whose typical examples include the splitting of a
multiply quantized vortex [1] and the decaying of a condensate
flowing in an optical lattice [2]. Theoretically, the dynamics of
condensates are well described by the time-dependent Gross-
Pitaevskii (TDGP) equation [3], and theoretical studies solving
the TDGP equation successfully explained the experiment of
vortex splitting [4,5]. When judging whether the condensate
is dynamically unstable, we may employ the Bogoliubov–de
Gennes (BdG) equation [6–8], which is obtained by linearizing
the TDGP equation. The BdG equation is a non-Hermitian
eigenvalue problem, giving complex eigenvalues as well as
real eigenvalues, and we interpret the presence of complex
eigenvalues as an indication of dynamical instability. By
solving the BdG equation under given physical conditions,
we can find regions of parameters in which the system is
dynamically unstable.

The dynamical instability of a single component system
with multiply quantized vortex [1,4,5,9–12], and also of a
multicomponent system without vortex [13–18], has been
widely investigated. In this study, we consider multicomponent
systems with quantized vortices because understanding the
instabilities in these systems is a difficult problem. Previous
works on this matter numerically solve the differential equa-
tions (see Refs. [19–22]. The intercomponent interaction and
mutual influence between multiple vortices make the dynam-
ical behavior of this system diverse and nontrivial. Therefore,
it is not practical to solve the BdG equation numerically in
the entire parameter space or to find all parameter regions
of the dynamical instability. Such an exhaustive numerical
study of the BdG equation on dynamically unstable regions is
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not easy even for a single component system with a multiply
quantized vortex because some regions may be too small to be
identified [12].

The general properties of the BdG equation are well in-
vestigated [12,19,23]. To address its non-Hermiticity, an inner
product must be introduced with an indefinite metric, which
guarantees orthonormality to the eigenfunction set. Then,
eigenfunctions belonging to real eigenvalues are classified
according to the sign of its squared norm into positive-
and negative-norm eigenfunctions. On the other hand, the
squared norm of an eigenfunction with a complex (nonreal)
eigenvalue is always zero. The degeneracy between positive-
and negative-norm eigenfunctions, a kind of resonance, has
been shown both numerically and analytically to be necessary
for the emergence of complex eigenvalues [11,12,19,24]. In
our previous study [25], we proposed a systematic method
based on perturbation theory to find parameter regions in
which complex eigenvalues emerge, namely regions where
the system is dynamically unstable, starting from regions
without complex eigenvalues. Because this method is simple
in essence, it can be extended to multicomponent systems.

The aim of this paper is to investigate the dynamical
instability of two-component systems with two quantized
vortices whose cores overlap according to the method in
Ref. [25]. Determining whether such systems are unstable
by solving the TDGP and BdG equations demands a heavy
load of numerical calculations. In our method, we analytically
solve algebraic equations, which are much simpler than the
differential equations, and we can cover a wide area of
parameters to exhaustively determine regions of dynamical
instability without overlooking small regions. The only restric-
tions of our current study are that the coupling constants of the
respective self-interactions and the intercomponent interaction
are assumed to be so small that the perturbative approach with
respect to these coupling constants is allowed.

In Sec. II, a general formulation of the TDGP and
BdG equations is reviewed for the two-dimensional, two-
component condensate system trapped by a harmonic po-
tential. We also review our analytic method based on the
perturbation method in Ref. [25], originally for a sin-
gle component system, and consider its extension to a
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multicomponent system in Sec. III. There, we emphasize
that the degeneracy between the unperturbed positive- and
negative-norm eigenstates is a necessary prerequisite to the
emergence of complex eigenvalues. Section IV is the main
part of this paper in which the formulations in the preceding
sections are applied to a trapped two-component system with
two coaxial quantized vortices. The unperturbed states are
those with the vanishing intra- and intercomponent coupling
constants. A summary is given in Sec. V.

II. GENERAL FORMULATION OF GROSS-PITAEVSKII
AND BOGOLIUBOV–de GENNES EQUATIONS FOR

TWO-COMPONENT CONDENSATE SYSTEM

We consider two-component condensates in the x-y plane
at zero temperature, trapped by a two-dimensional isotropic
harmonic potential with trap frequency ω. This condensate
system can be realized as the limit of pancake-shaped con-
densates in a three-dimensional cylindrical harmonic potential
with a very large trap frequency along the z axis. The system
is characterized by the order parameters, denoted by ψj (x,t)
[j = 1,2 and x = (x,y)], which satisfy the coupled TDGP
equations,

i
∂

∂t
ψj (x,t) = {h0 − μj + gNβjj |ψj (x,t)|2

+ gNβjj |ψj (x,t)|2}ψj (x,t). (1)

Here, we use the notation of h0 = −∇2/2m + mω2(x2 +
y2)/2 and j = 2,1 for j = 1,2, and μj stands for the chemical
potential of each component j . Throughout this paper, � is
set to unity. For simplicity, the masses and the condensate
populations of the two species are taken to be the same and are
denoted by m and N , respectively. All interactions are assumed
to be represented by two-body contact-type potentials, and
the three independent coupling constants are gβ11, gβ22, and
gβ12 = gβ21 . The order parameters are normalized as∫

dx dy|ψj (x,t)|2 = 1. (2)

For the stationary Gross-Pitaevskii equations, the solutions are
represented by ξj (x),

(h0 − μj + gNβjj |ξj (x)|2 + gNβ12|ξj (x)|2)ξj (x) = 0. (3)

We suppose time evolution of the order parameters that
slightly deviate from ξ (x), i.e., ψj (x,t) = ξj (x) + δψj (x,t).
Substituting these parameters into Eq. (1) and linearizing the
TDGP equations with respect to δψj , we obtain

i
∂

∂t
δψj (x,t)

= {h0 − μj + 2gNβjj |ξj |2 + gNβ12|ξj |2}δψj (x,t)

+ gNβjj ξ
2
j δψ∗

j (x,t) + gNβ12ξ
∗
j
ξj δψj (x,t)

+ gNβ12ξj ξj δψ
∗
j

(x,t). (4)

Then, δψj are expanded as

δψj (x,t) =
∑

q

{uqj (x)e−iEq t + v∗
qj (x)eiE∗

q t }. (5)

Here, uqj and vqj are eigenfunctions of the following BdG
equation:

T uq = Eq uq, (6)

where the quartet representation is introduced,

uq =

⎛
⎜⎝

uq1

uq2

vq1

vq2

⎞
⎟⎠, T =

(
L M

−M∗ −L∗

)
, (7)

L =
(
L11 L12

L21 L22

)
, M =

(
M11 M12

M21 M22

)
, (8)

Ljj = h0 − μj + 2gNβjj |ξj |2 + gNβ12|ξj |2, (9)

Mjj = gNβjj ξ
2
j , (10)

L12 = L∗
21 = gNβ12ξ

∗
2 ξ1, (11)

M12 = M21 = gNβ12ξ2ξ1. (12)

We define the indefinite inner product for any pair of quartets
s(x) and t(x) by

(s,t) =
∫

dx dy s†(x)τ3 t(x), τi = σi ⊗ 1 =
(

I 0
0 −I

)
,

(13)

where σi (i = 1,2,3) are the Pauli matrices, operating on the
space of the doublet (uj ,vj ), and I is a 2 × 2 unit matrix with
respect to the index j . The symmetric property,

τ3T τ3 = T †, (14)

leads to the pseudo-Hermiticity of T ,

(s,T t) = (T s,t). (15)

The squared norm of s(x),

‖s‖2 = (s,s), (16)

can be positive, negative, and zero. Because the unperturbed
eigenfunctions relevant to our discussion belong solely to real
eigenvalues, we do not repeat the properties of eigenfunctions
belonging to complex and zero eigenvalues. The symmetric
property,

τ1T τ1 = −T ∗, (17)

implies that, for each eigenfunction yq (T yq = Eq yq) belong-
ing to a real eigenvalue that is normalized as ‖ yq‖2 = 1, there
is an eigenfunction zq̃ = τ1 y∗

q such that T zq̃ = −Eq zq̃ with
‖zq̃‖2 = −1 . Note that zq̃ may be denoted simply by zq , but
we adopt the notation zq̃ to make our expressions simpler. The
explicit form of q̃ will be given below Eq. (40) in Sec. IV. The
set of { yq , zq} is orthonormal,

( yq, yq ′ ) = −(zq,zq ′ ) = δqq ′ , ( yq,zq ′ ) = 0, (18)

and complete,∑
q

[ yq(x) y†q(x′) − zq(x)z†q(x′)] = τ3δ(x − x′). (19)
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III. GENERAL ANALYTIC FORMULATION BASED
ON PERTURBATION THEORY

The complex eigenvalue in the BdG equations (6) indicates
the dynamical instability of the system. In this study, we seek
the parameter regions of the emergence of complex eigen-
modes following the analytical method in Ref. [25], which was
originally applied to a single component system. We extend the
work of Ref. [25] to a two-component system as follows. We
suppose the vicinity of a boundary in the parameter space and
divide it into regions with and without complex eigenvalues.
We solve the stationary GP Eq. (3) and BdG Eq. (6) to obtain
their eigenvalues and eigenfunctions at a point belonging to
the region without complex eigenvalues. These eigenvalues
and eigenfunctions are regarded as unperturbative eigenvalues
and eigenfunctions. We then consider small variations in
the parameters and develop a perturbative expansion to find
complex eigenvalues in the first order of the expansion when
the parameter variation crosses the boundary.

We develop the perturbative expansion as follows. First,
ξj (x) and μj in the GP equation (3) are expanded as

ξj (x) = ξ
(0)
j (x) + εξ

(1)
j (x) + O(ε2), (20)

μj = μ
(0)
j + εμ

(1)
j + O(ε2), (21)

where ε is an infinitesimal parameter that characterizes the
parameter variation. The expansion of the matrix T , which
involves both ξj and μj , is

T = T0 + εT ′ + O(ε2), (22)

where

L = L0 + εL′ + O(ε2), M = M0 + εM′ + O(ε2), (23)

and

T0 =
(

L0 M0

−M∗
0 −L∗

0

)
, T ′ =

(
L′ M′

−M′∗ −L′∗

)
. (24)

Note that the symmetric properties (14) and (17) are respected
in the perturbative expansion and that the properties of the
indefinite inner product are preserved at any order of the
perturbation.

Likewise, the eigenfunctions and eigenvalues of the BdG
equations are expanded as u(0)

q + εu(1)
q + O(ε2) and Eq =

E(0)
q + εE(1)

q + O(ε2), respectively. The zeroth-order equa-
tions are

T0u(0)
q = E(0)

q u(0)
q , (25)

and the first-order equations are organized as(
T0 − E(0)

q

)
u(1)

q = (
E(1)

q − T ′)u(0)
q . (26)

Assuming that E(0)
q is real, we examine whether E(1)

q is
complex. According to Ref. [25], the necessary prerequisite
to complex E(1)

q is a degeneracy between y(0)
q and z(0)

q but
not between y(0)

q ’s nor z(0)
q ’s. For a single E(0)

q , consider a

general situation in which there are r-fold degenerate y(0)
qi (i =

1,2, . . . ,r) and s-fold degenerate z(0)
q ′i ′ (i ′ = 1,2, . . . ,s), i.e., a

total of r + s degenerate states. Here, z(0)
q ′ is the solution of

T0 z(0)
q ′

( = −E
(0)
q̃ ′ z(0)

q ′
) = E(0)

q z(0)
q ′ . (27)

Then, u(0)
q is generally given by their linear combination,

u(0)
q =

r∑
i=1

cyi y(0)
qi +

s∑
i ′=1

czi ′ z
(0)
q ′i ′ . (28)

Substituting this linear expression into Eq. (26), we obtain the
secular equation for E(1)

q ,∣∣∣∣∣∣∣∣∣∣

(
y(0)
q1 ,T ′ y(0)

q1

) − E(1)
q · · · (

y(0)
q1 ,T ′z(0)

q ′1
) · · ·

...
. . .

...
. . .(

z(0)
q ′1,T ′ y(0)

q1

) · · · (
z(0)
q ′1,T ′z(0)

q ′1
) + E(1)

q · · ·
...

. . .
...

. . .

∣∣∣∣∣∣∣∣∣∣
= 0. (29)

Multiplying each row from the (r + 1)th row to the (r + s)th
row by −1, we rewrite this secular equation as∣∣T ′ − E(1)

q

∣∣ = 0, (30)

with

T ′ =
(

Ly M

−M† −Lz

)
, (Ly)ii ′ = (

y(0)
qi ,T ′ y(0)

qi ′
)

(31)

(Lz)ii ′ = (
z(0)
q ′i ,T ′z(0)

q ′i ′
)
, Mii ′ = (

y(0)
qi ,T ′z(0)

q ′i ′
)
. (32)

It can be proven from the pseudo-Hermiticity of T ′ that
L
†
y = Ly and L

†
z = Lz. When M does not vanish, T ′ is

non-Hermitian, and E(1)
q can be complex.

Our procedure for investigating the dynamical instability
of a system consists of the following four steps. (1) We find
appropriate zeroth-order BdG equations with real eigenvalues
and solve the equations to obtain y(0) and z(0). (2) The condition
for the degeneracy between y(0) and z(0) is determined. (3)
The secular equation involving degenerate y(0)

qi and z(0)
q ′i ′ is

established. (4) We verify whether the first-order eigenvalue
E(1)

q is complex or real by solving the secular equation.

IV. APPLICATION TO TWO-COMPONENT
QUANTIZED VORTICES

In this study, we consider a trapped two-component system
with quantized vortices, characterized by winding numbers
κj for component j (j = 1,2). Both vortex cores are located
at the center of the trapping potential, which is set to the
origin. We assume that all particle interactions, both intra- and
intercomponent interactions, are weak. That is, the coupling
constant g in Eq. (1) is a small parameter on the order of ε, and
a perturbation expansion with respect to g is developed. For
this purpose, we replace g with εg . Then, the vortex solutions
of the stationary GP equations with κj are

ξj (r,θ ) =
√

1

2π
eiκj θfj (r), (33)

where r and θ are the polar coordinates. Without loss of
generality, the range of κj ’s may be restricted to

κ1 � 0, κ1 � |κ2|. (34)

We call the rotations for κ2 � 0 and κ2 < 0 co- and counter-
rotations, respectively.
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A. Zeroth-order BdG equations

For g = 0, the BdG equations (25) are linear Schrödinger
equations under the isotropic harmonic potential and can be
solved analytically, irrespective of the stationary solutions of
the GP equations. All eigenvalues are real.

The zeroth-order eigenvalues and eigenfunctions of the
BdG equations are labeled by q = (n,�,j ); n,� being the
principal and magnetic quantum numbers, respectively, and j

representing the component index. To give the eigenfunctions
of the BdG and GP equations, we introduce the eigenfunctions
φn�j , {

h0 − μ
(0)
j

}
φn�j = E

(0)
n�jφn�j , (35)

which are given by

E
(0)
n�j = ω(2n + |� + κj | + 1) − μ

(0)
j , (36)

n = 0,1,2, . . . , � = 0,±1,±2, . . . , (37)

and

φn�j (ρ,θ ) =
√

1

2π
ei(�+κj )θRn�j (ρ), (38)

with ρ = √
mωr . The explicit forms of Rn�j (ρ) are presented

in the Appendix. The zeroth-order BdG eigenfunctions are

y(0)
n�1 =

⎛
⎜⎝

φn�1

0
0
0

⎞
⎟⎠, y(0)

n�2 =

⎛
⎜⎝

0
φn�2

0
0

⎞
⎟⎠, (39)

z(0)
n�1 =

⎛
⎜⎝

0
0

φ∗
n−�1
0

⎞
⎟⎠, z(0)

n�2 =

⎛
⎜⎝

0
0
0

φ∗
n−�2

⎞
⎟⎠. (40)

Note the definition q̃ = (n,−�,j ) for q = (n,�,j ), which
implies that zn�j = τ1 y∗

n−�j and that the eigenvalues of yn�j

and zn�j are E
(0)
n�j and E

(0)
n−�j , respectively. We normalize φn�j ,∫ ∞

0

∫ 2π

0
|φn�j (ρ,θ )|2 r dr dθ = 1, (41)

so

( yn�j , yn′�′j ′) = −(zn�j ,zn′�′j ′ ) = δnn′δ��′δjj ′ . (42)

B. Zeroth- and first-order GP equations

The zeroth-order stationary GP equations are

h0ξ
(0)
j = μ

(0)
j ξ

(0)
j . (43)

Their solutions, which are the lowest eigenstates, are found to
be

ξ
(0)
j (ρ,θ ) = φ00j (ρ,θ ), μ

(0)
j = ω(|κj | + 1). (44)

Next, we have the first-order stationary GP equations,{
h0 − μ

(0)
j

}
ξ

(1)
j

= −(
gNβjj

∣∣ξ (0)
j

∣∣2 + gNβ12

∣∣ξ (0)
j

∣∣2 − μ
(1)
j

)
ξ

(0)
j . (45)

Multiplying both sides by ξ
(0)∗
j and integrating them over

the whole two-dimensional space, we obtain the first-order
chemical potentials μ

(1)
j as

μ
(1)
j = mωF

(
βjj

22|κj |
(2|κj |)!
(|κj |!)2

+ β12

2(κ1+|κ2|)
(κ1 + |κ2|)!

κ1!|κ2|!
)

, (46)

with F = gN/2π .

C. First-order matrix elements

The θ dependence of the first-order matrix T ′ in Eq. (24)
can be factorized as

T ′ =
(
U 0
0 U†

)(
L′

r M′
r

−M′
r −L′

r

)(
U† 0
0 U

)
, (47)

where the r-dependent matrix is

L′
r = −

(
μ

(1)
1 0

0 μ
(1)
2

)
+ 2F

(
β11R

2
001 0

0 β22R
2
002

)

+ Fβ12

(
R2

002 R001R002

R001R002 R2
001

)
, (48)

M′
r = F

(
β11R

2
001 β12R001R002

β12R001R002 β22R
2
002

)
, (49)

and the θ -dependent unitary matrix U is

U =
(

eiκ1θ 0
0 eiκ2θ

)
. (50)

It follows from Eq. (47) that all phase factors eiκj θ in the
integrands of the matrix elements (31)–(32) are canceled out
and that only phase factors ei�θ from y(0)

q,i and z(0)
q ′,i ′ survive.

Therefore, after θ integration, the matrix elements carry δ��′ .
The matrix elements are evaluated as follows:

(
y(0)
n�j ,T ′ y(0)

n′�′j
) = (

z(0)
n−�j ,T ′z(0)

n′−�′j
)∗

= δ��′

[
− δnn′μ

(1)
j

+ 2Fβjj

∫
r dr

{
R2

00jRn�jRn′�j
}

+Fβ12

∫
r dr

{
R2

00j
Rn�jRn′�j

}]
, (51)(

y(0)
n�j ,T ′ y(0)

n′�′j

) = (
z(0)
n−�j ,T ′z(0)

n′−�′j

)∗

= δ��′Fβ12

∫
r dr{R00jR00jRn�jRn′�j }, (52)(

y(0)
n�j ,T ′z(0)

n′−�′j
) = (

z(0)
n′−�′j ,T ′ y(0)

n�j

)∗

= δ�−�′Fβjj

∫
r dr

{
R2

00jRn�jRn′−�j

}
, (53)(

y(0)
n�j ,T ′z(0)

n′−�′j

) = (
z(0)
n′−�′j

,T ′ y(0)
n�j

)∗

= δ�−�′Fβ12

∫
r dr{R00jR00jRn�jRn′−�j }.

(54)
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The above properties of the matrix elements allow matrix T ′
in Eq. (31) to be shifted to a block diagonal form. We classify
the degenerate states yq’s and zq ′ ’s into groups according to
the value of �, that is, mf groups labeled by � = �1, . . . ,�mf

. Rearranging the matrix elements according to the above
groups, we obtain the following block diagonal matrix T ′:

T ′ =

⎛
⎜⎜⎜⎝

T ′
�1

0 0 0
0 T ′

�2
0 0

0 0
. . . 0

0 0 0 T ′
�mf

⎞
⎟⎟⎟⎠. (55)

D. Patterns of degeneracy

Based on the conclusions of the previous subsection,
complex E(1) can only appear in block matrix T ′

�m
that includes

both yq and zq ′ . In addition, the matrix M�m
in T�m

must be
nonvanishing. We, therefore, seek conditions for nonvanishing
M� = ( y(0)

n�j ,T ′z(0)
n′�j ′). Hereafter, the superscript (0) for y and z

is implicit for the sake of simplicity. The eigenvalues of yn�j

and zn′�j ′ are

E
(0)
n�j = ω(2n + |� + κj | − |κj |), (56)

−E
(0)
n′−�j ′ = −ω(2n′ + | − � + κj ′ | − |κj ′ |). (57)

The degeneracy condition between yn�j and zn′�j ′ , namely

E
(0)
n�j = −E

(0)
n′−�j ′ is

2(n + n′) + |� + κj | + |� − κj ′ | − |κj | − |κj ′ | = 0. (58)

When complex E(1)
q is found, it can be shown from Eq. (14) that

E
(1)
q̃ is also complex. Therefore, without loss of generality, �

can be restricted to � � 0 when searching for the condition for
complex eigenvalues. The degeneracy is possible only when
E

(0)
n�j � 0 and/or −E

(0)
n′−�j ′ � 0, which restricts the allowed

value of � to 0 � � � −2κj for κj � 0 and 0 � � � 2κj ′ for
κj ′ � 0 . Finally, with Eq. (34), we only have to consider the
range 0 � � � 2κ1 . The solutions of Eq. (58) are categorized
into the following four types of (j,j ′).

(a) (j,j ′) = (1,1): n = n′ = 0 when 0 < � � κ1.
(b) (j,j ′) = (2,2): n = n′ = 0 when 0 < � � |κ2|.
(c) (j,j ′) = (1,2): n = n′ = 0 when 0 < � � κ2.
(d) (j,j ′) = (2,1):

(i) n = n′ = 0 when 0 < � � κ1 and 0 � κ2.
(ii) n + n′ = −κ2 when 0 � −κ2 � � � κ1.
(iii) n + n′ = � when 0 < � � −κ2.
(iv) n + n′ = −� + κ1 − κ2 when κ1 � � � κ1 − κ2.

Note that the modes with (n,�,j ) = (0,0,1),(0,0,2) are
excluded from our considerations because they are zero modes.
These modes remain as zero modes and never turn into
complex modes under perturbation that retains the global phase
symmetries ξj → ξj e

iδj [26]. From the inequality,

E
(0)
0�j + E

(0)
0−�j ′ = |� + κj | + |� − κj ′ | − |κj | − |κj ′ | � 0

(59)

for (j,j ′) = (1,1),(2,2),(1,2) and (j,j ′) = (2,1) with κ2 � 0,
we see that radial excited states n + n′ 
= 0 participate only in
(d) with κ2 < 0 implying counter-rotation.

FIG. 1. Regions with possible double degeneracy between yn�j

and zn′�j ′ in the κ2 − � plane for a fixed κ1 > 0. They are (a) y0�1 and
z0�1, (b) y0�2 and z0�2, (c) y0�1 and z0�2, and (d) yn�2 and zn′�1. The
number inside each subregion denotes the value of n + n′.

The regions with double degeneracy in the κ2 − � plane for a
fixed κ1 > 0 are depicted in Fig. 1. Collecting all these results,
we obtain all possible multiply degenerate sets that contain
both y and z. They are categorized into the following five
subregions: [A] 0 < � � κ2, [B] 0 � κ2 < � � κ1, [C] 0 <

−κ2 < � � κ1, [D] 0 < � � −κ2, and [E] κ1 < � � κ1 − κ2

in Fig. 2. For example, in subregion C, where regions (a)
and (d) with double degeneracy overlap one another but
do not overlap regions (b) nor (c), we find two types of
degenerate sets, namely ( y0�1, y−κ2�2, z0�1) and ( yn�2, zn′�1),
where n + n′ = −κ2 and n 
= −κ2. All types of degenerate sets
are summarized in Table I. The types are labeled by numbers
representing degrees of degeneracy and by the additional
indices y, z, and n in C, D, and E.

For illustration, we count all degenerate sets for κ1 = 3 in
Fig. 3. Figure 3 and Table I provide general features of the

FIG. 2. Subregions with possible multiple degeneracies involving
both y and z. The boundaries denoted by solid lines or filled circles
are included in the subregion, while those denoted by dashed lines or
open circles are excluded from the subregion.
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TABLE I. All types of possible degeneracies involving both y
and z in each subregion and the relevant eigenfunctions.

Subreg. Symbol Degenerate set of eigenfunctions

A A4 ( y0�1, y0�2, z0�1, z0�2)
B B3 ( y0�1, y0�2, z0�1)
C C3 ( y0�1, y−κ2�2, z0�1)

C2n ( yn�2, zn′�1) with n + n′ = −κ2; n 
= −κ2

D D3y ( y0�1, y��2, z0�1)
D3z ( y0�2, z��1, z0�2)
D2n ( yn�2, zn′�1) with n + n′ = �; n,n′ 
= 0,�

E E2n ( yn�2, zn′�1) with n + n′ = κ1 − κ2 − �

appearance of the degenerate sets. In corotation, i.e., for κ2 �
0, there is only one degenerate set for each pair of (κ2,�), which
are either A4 or B3, and no radially excited state is involved.
The degenerate patterns are richer in counter-rotations. The
degenerate region extends to the maximum value � = 2κ1,
which has been restricted to � � κ1 for the corotating case.
All degenerate sets involve radially excited states except for
those on the line � = −κ2 + κ1. There are plural degenerate
sets for each (κ2,�). In particular, there are 1 − κ2 sets in
subregion C, 1 + � in D, and 1 + κ1 − κ2 − � in E. These
numbers increase around � = κ1, where −E0−κ11 is positive
and reaches a maximum, and as κ2 approaches −κ1. The total
number of degenerate sets for the winding number pair (κ1,κ2),
namely for that in each column in Table I, is κ1 − κ2(κ1 + 1)
for the counter-rotating case and κ1 for the corotating case
including κ2 = 0.

E. Range of intercomponent interaction parameter
β12 of complex eigenvalues

First-order complex eigenvalues E(1)
q emerge only in subre-

gions A–E, as shown above. Note that this is a prerequisite
condition for the emergence of complex eigenvalues, and

FIG. 3. All degenerate types for κ1 = 3.

FIG. 4. Range of β12 for complex eigenvalues in each (κ1 =
3,κ2,�).

we have to verify the secular equation (30) to determine
whether its solution is complex or real. We then study how
the intercomponent interaction affects the stability of a system
with two vortices. Varying the intercomponent interaction
parameter β12 with fixed β11 = β22 = 1 for κ1 = 3, we seek the
ranges of β12 in which some eigenvalues are complex. To this
end, we manipulate only algebraic equations, which gives our
study a clear advantage in numerical calculations over those
that require solving the differential equations. Moreover, we
use the discriminant � of the polynomial in the secure equation
for doubly and triply degenerate sets and obtain the range
of β12 for �. For quadruply degenerate sets A4, we directly
solve the secure equation and find the ranges of the complex
eigenvalues. The results are shown for each (κ1,κ2,�) in Fig. 4.
We also plot the maximum value of the imaginary parts of E(1)

for κ1 = 3, κ2 = 1,−1,−3, and all possible � in Fig. 5.
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FIG. 5. Maximum values of the imaginary parts of E(1) in units
of mωF for (a) (κ1,κ2) = (3,1) with � = 1–3, (b) (κ1,κ2) = (3,−1)
with � = 1–4, and (c) (κ1,κ2) = (3,−3) with � = 1–6.

We can identify some general conclusions from Fig. 4. The
corotating systems tend to be dynamically unstable. Most of
the degenerate sets have wide ranges of β12 with complex
eigenvalues. The behaviors of counter-rotating systems of
the two vortices are more complicated because the number
of degenerate sets at each (κ1,κ2,�) is two or more. For
doubly degenerate sets, i.e., C2n, D2n, and E2n in Fig. 4, some
complex eigenvalues appear away from β12 = 0, while only
real eigenvalues appear for some (κ1,κ2,�) . Thus the sign of
β12 is not essential, but positive β12 is more likely to result
in complex eigenvalues. Ranges without complex eigenvalue
exist in subregion E over small |β12| . This fact is consistent
with the interpretation that decays of the two counter-rotating
vortices are accelerated by energy exchange between the
vortices through intercomponent interaction. On the other
hand, we also find stabilization due to the inter-component
interaction. A weakly interacting system of a single vortex
with winding number κ , which corresponds to the limiting case
of β12 = 0 in our formulation, gives complex eigenvalues for

FIG. 6. Maximum values of the imaginary parts of BdG eigenval-
ues in units of mωF , which are obtained by solving the BdG equation
numerically for a small coupling gN

√
m/ω = 1.

some � and is dynamically unstable when |κ| � 2 [9,25]. It is
remarkable that there are a few ranges of β12 where no complex
eigenvalues arise (Fig. 4), explicitly 0.24 � β12 � 0.42 for
κ2 = 0 and −1.0 � β12 � −0.69 for κ2 = −3.

Note that some of our results for κ2 = −κ1 differ from those
in Ref. [20], which were obtained by numerically solving the
differential equations. However, the results are not inconsistent
because the coupling constant g in Ref. [20] is far beyond the
value within which our perturbative method is expected to be
valid. For comparison, we directly solve the BdG equation
numerically for a small coupling constant, and give the result
of the imaginary parts of eigenvalues in Fig. 6, which is in a
good agreement with our perturbative result shown in Fig. 5.

F. Splitting patterns of vortices

Let us next consider the splitting patterns of vortices
according to the method of Ref. [12].
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FIG. 7. (a) Magnitude relationship among |κ2 − �|, |κ2 + �|, and
|κ2|. The region is divided into four areas by the lines κ2 = 0 and
� = ±2κ2. (b) Diagram of the splitting patterns of the vortices. The
pattern of the resultant winding numbers after splitting of the initial
(κ1,κ2) are classified into three shaded areas.

Because the zeroth-order degeneracy of interest is quartic
at the highest, we may express the zeroth-order eigenfunction
with a fixed �, which may involve complex eigenvalues at the
first order as

u� = cy1 yn1�1 + cz1 zn′
1�1 + cy2 yn2�2 + cz2 zn′

2�2, (60)

where the c coefficients are determined from the eigenequation
for T ′

� . One or two of c coefficients are zero for triple or
double degeneracy in the subregions B–E. When a mode
associated with the eigenfunction u� is excited, the change
in the j -component order parameter is, for example,

δψ�j ∝ cyjφnj �j + czjφ
∗
nj −�j , (61)

which grows exponentially in time. Then, the condensate
density of the j component deforms as

|ψj + δψ�j |2 � |ψj |2 + 2 Reψ∗
j δψ�j , (62)

which has an �-fold rotational symmetry.
The asymptotic form of the j th-component order parameter

in the limit of ρ → 0 is controlled by the winding number κj

as ξj ∼ ρ|κj |. Inversely, the exponent of the asymptotic form
of the order parameter informs the winding number. Because
the asymptotic form of φn�j is proportional to ρ|κj +�|, the
winding number of the j th-component vortex with exponential
growth results in |κj ± �| or remains |κj |. This restriction on
the change in κj is crucial. For j = 1, we always have |κ1 −
�| < |κ1| < |κ1 + �|. The restriction for j = 2 is depicted in
Fig. 7(a). Combining these results with Fig. 2, we finally
obtain the splitting diagram shown in Fig. 7(b). For example,
in subregion A, it is predicted that the winding numbers of
the two vortices vary from (κ1,κ2) → (κ1 − �,κ2 − �) once
complex eigenvalues arise because |κj − �| are the smallest in
A. At first glance, we may conclude that the winding numbers
also change into (κ1 − �,κ2 − �) in subregion B, but this is
not true. The correct answer is (κ1 − �,κ2) because zn�2 is
not a member of the triply degenerate set in subregion B (see
Table I). Subregions C and E are divided into two respective
areas by the line � = −2κ2.

V. SUMMARY

In this study, we searched for the dynamical instability
parameter regions of a two-component system with coaxial
quantized vortices. Our analytical method applied perturbation

with respect to the coupling constants. Without numerically
solving the BdG or TDGP equations, we completely obtained
the unstable parameter ranges under the restriction of small
coupling constants. Our method consists of the following
three steps. First, we list all double degeneracies between yn�j

and zn′�j ′ at the unperturbed level, which is necessary for the
emergence of complex eigenvalues at the first order of the
perturbation. At this step, the unstable modes certainly satisfy
1 � � � κ1 for the corotating system and 1 � � � κ1 − κ2 for
the counter-rotating system. Next, all multiple degeneracies
involving both y and z are enumerated. The relevant region of
the κ2–� plane for a fixed κ1 is divided into the five subregions
A–E, as shown in Table I. Note that a variety of degeneracies
appear in the two-component system; however, in the single-
component system, only a double degeneracy is involved
for each �, but no radial excitation (no n 
= one) appears.
Finally, we can determine whether the degeneracies raise
complex eigenvalues by solving the secular equation within
each candidate degenerate set. Because the intercomponent
interaction coupling constant β12 is the most sensitive and
interesting parameter, we have searched for the range of
complex eigenvalues, and the results for κ1 = 3 are shown
in Figs. 4 and 5. There are no heavy numerical calculations
required because our secure equation is not more than a quartic
equation. Thus, even though the system is restricted to small
coupling constants, we have swept a wide parameter space,
finding all unstable ranges.

As expected, Fig. 4 shows that the corotating (κ2 > 0) and
counter-rotating (κ2 < 0) systems produce distinctive unstable
ranges. In the corotating case, the addition of the second vortex
(κ2) does not drastically change the situation in which the
highly quantized single vortex κ1 � 2 is already unstable. On
the contrary, the counter-rotating system shows complicated
behavior because the relative velocity of the two superflows
are so large that large excitation energy radial modes can be
members of degenerate sets, and complex eigenvalues appear if
energy exchange between the two fluid components is possible.
As shown in Fig. 4, complex eigenvalues appear for �, which
are larger than the winding numbers (� > κ1 � |κ2|), in subre-
gion E. This tendency becomes more pronounced for the larger
absolute value of the intercomponent coupling |β12|, which
accelerates the energy exchange between two components. We
have also found a few regions where intercomponent coupling
stabilized the system. Finally, we have estimated all possible
splitting patterns of the vortices with the aid of the degenerate
set and the asymptotic forms of their eigenfunctions.
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APPENDIX: FUNCTION RELATED TO THE
ZEROTH-ORDER BdG EIGENFUNCTION

We give a concrete expression of the function Rn�j , from
Eq. (38) of Sec. IV A,

Rn�j (ρ) = Cn�j e
− 1

2 ρ2
ρ|�+κj |S|�+κj |

n (ρ2). (A1)
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Here, S
γ
n (x) is Sonine polynomial, defined by

Sγ
n (x) =

n∑
k=0

(−1)k(n + γ )!

(n − k)!(γ + k)!k!
xk (A2)

with the orthonormal property,∫ ∞

0
Sα

m(x)Sα
n (x)xαe−x dx = �(α + n + 1)

n!
δmn. (A3)

The normalization condition on φn�j , Eq. (41), implying∫ ∞

0
|Rn�j (ρ)|2r dr = 1, (A4)

fixes the normalization factor,

Cn�j =
√

2mωn!

(n + |� + κj |)! . (A5)

[1] Y. Shin, M. Saba, M. Vengalattore, T. A. Pasquini, C. Sanner,
A. E. Leanhardt, M. Prentiss, D. E. Pritchard, and W. Ketterle,
Phys. Rev. Lett. 93, 160406 (2004).

[2] L. Fallani, L. De Sarlo, J. E. Lye, M. Modugno, R. Saers, C.
Fort, and M. Inguscio, Phys. Rev. Lett. 93, 140406 (2004).

[3] F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari, Rev.
Mod. Phys. 71, 463 (1999).
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