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One-dimensional Bose-Hubbard models are well known to obey a transition from regular to quantum-chaotic
spectral statistics. We are extending this concept to relatively simple two-dimensional many-body models. Also
in two dimensions a transition from regular to chaotic spectral statistics is found and discussed. In particular, we
analyze the dependence of the spectral properties on the bond number of the two-dimensional lattices and the
applied boundary conditions. For maximal connectivity, the systems behave most regularly in agreement with
the applicability of mean-field approaches in the limit of many nearest-neighbor couplings at each site.
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I. INTRODUCTION

State-of-the-art experimental techniques allow the exper-
imentalist today to directly study a plethora of minimal
models that have been developed in a solid-state physics
context [1]. Bose-Einstein condensates loaded into optical
lattices, which realize spatially periodic structures, are used,
e.g., to implement many-body models such as the celebrated
Bose-Hubbard model (BHM) in one, two, or even three
dimensions. Other possible realizations of lattice systems with
controllable couplings and interactions are based on arrays
of optical cavities [2,3] or superconducting circuits [4], for
instance.

Already in 2003 and 2004, the spectral statistics of
one-dimensional BHM were studied [5,6]. Later, extended
models were also investigated (see, e.g., Refs. [7–11]), which
essentially confirmed these results. Recently, a semiclassi-
cal theory has been developed to understand the chaotic
behavior of one-dimensional BHMs and to put the results
mentioned above onto a firmer ground [12]. The knowledge
of the spectral characteristics in a many-body system can
be exploited to understand, engineer, and control the sys-
tem’s dynamics, making such models and their experimental
realizations interesting for the study of quantum thermal-
ization and nonequilibrium transport phenomena; see, e.g.,
Refs. [5,11,13–16].

In this paper, we want to extend the spectral analysis to
the case of two-dimensional BHMs with strong interparticle
interactions. The dynamics of two-dimensional tight-binding
systems was studied before in the noninteracting case [17], or
in the specific case of a four mode interacting system [18].
Analyzing different minimal models of up to a 3 × 3 square
lattice, we will see how the geometry of the lattice and the
number of permitted couplings (i.e., the number of bonds)
determines the spectral properties of the systems. We restrict to
such small numbers of lattice sites but treat particles numbers
N = 6 . . . 20, such that the size of the total Hilbert space is
sufficiently large for obtaining good statistics. This still allows
for a full diagonalization of the many-body quantum problem
and the scanning of a broad parameter space.

The next section presents our class of models and the
studied lattices. It introduces all the spectral measures we
computed as well. Section III reports our main results,

showing the transition from regular to chaotic spectral statistics
in dependence on the lattices structures and the system
parameters. Section IV concludes the paper discussing also
experimental ramifications of our work.

II. TWO-DIMENSIONAL BOSE-HUBBARD-MODELS

The most general form of the types of Hamiltonians we are
studying is

H =
∑

R

[
εRnR + U

2
nR(nR − 1)

]

−
∑
R,R′

JR,R′ (a†
RaR′ + a

†
R′aR). (1)

Here the vector R = (i,j ) describes one point in the
two-dimensional plane of a quadratic lattice, with the indices
running from i = 1, . . . ,L and j = 1, . . . ,M . The matrix of
on-site energies εR is assumed to be identical to zero. aR and a

†
R

are the annihilation and creation operators, respectively, and
nR = a

†
RaR is the number operator. The specific geometries

we investigate in the following are sketched in Fig. 1. For all
connected bonds the tunneling coupling JR,R′ = J = const.,
otherwise it is zero.

The particle number N is chosen according to the number
of lattice sites LM such that the total dimension d of the
many-particle Fock space is

d =
(

N + LM − 1

N

)
. (2)

Typical dimensions of the systems studied here are d =
1.8 . . . 5.5 × 103, which provide us with sufficient statistics
over the eigenvalues at numerically easily affordable compu-
tation times.

A. Symmetries and unfolding

When doing spectral statistics with Hubbard models, we
must consider the symmetries of the systems; see, e.g.,
Refs. [5,7,19]. Typical symmetries are translation invariance
in the presence of period boundary conditions, mirror symme-
tries, and parity. Which symmetries are simultaneously present
depends on the form of the lattice and the number of bonds. In
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(a) 2x2 (b) 2x3 (c) 3x3

FIG. 1. Sketch of the lattice geometries used here. We study three
basic settings of a 2 × 2 (a), a 2 × 3 (b), and a 3 × 3 lattice (c). The
minimal bonds are always present (solid lines), while the additional
diagonal bonds (green dotted and red dashed lines) are gradually
added. In (b) and (c) we allow also for periodic boundary conditions
(represented by the blue dot-dashed lines).

the case of the 2 × 3 lattice sketched in Fig. 1(b), for instance,
we have the symmetries discussed in detail in Fig. 2. The
four symmetry reduced subspaces shown in Fig. 2(a) have
dimensions ranging between dS = 728 . . . 784, and in (b) we
have dS = 1491 and 1512 for the two subspaces, respectively.
In Fig. 2(c) the dimensions of the subspaces vary between
dS = 88 . . . 434. The larger variation of the dimensions in the
latter case is due to the fact that some subspaces decompose
further than others. The reason for this is the presence of an
additional symmetry not commuting with all the other ones.
Note that in the cases where diagonal bonds are present, the
periodic boundary conditions also involve diagonal bonds such
that translational invariance is respected.

With the right choice of the basis, the Hamiltonian of
Eq. (1) can be written in block-diagonal form corresponding
to the irreducible representation, which takes care of all sym-
metries that simultaneously commute with the Hamiltonian.
Then we can focus our analysis on just one of these blocks,
so that level crossing due to states from different symmetry
sectors are excluded. For large problems, this reduces the
numerical complexity by about the number of independent
blocks. For achieving optimal statistics we can analyze the
individual blocks separately and then we collect in one plot all
data thus obtained.

Before analyzing the eigenvalues of a symmetry reduced
block, we must unfold the spectrum such that global trends
in the spectrum are taken out. The effect of the unfolding
procedure is that we can directly study the local spectral

fluctuations, which are crucial in any comparison with random
matrix theory; see, e.g., Ref. [20] for details. The unfolding
procedure we use is described as follows. After normalizing
the spectral range to the interval [0,1], we take the differences
between consecutive energies Sn = En+1 − En and divide
them by a local average: sn = Sn/ 〈S〉W where 〈〉W averages
over the window W = [n − l,n + l]. The window size is
typically l = 5 . . . 25. We use in practice a smoothed energy-
level density, obtained by replacing the δ functions in its
definition by gaussian peaks of a width σ . Then the parameter
σ can be optimized such that we obtain good statistics without
loss of relevant spectral information.

B. Spectral measures

After reducing the system into block-diagonal form, finding
the eigenvalues by diagonalizing and unfolding the such
obtained spectra, we analyze them using several methods,
which we are describing now. It is well known that symmetry-
reduced (sub)systems can show regular, mixed, and chaotic
signatures, which manifest in their spectral distributions [20].
Typically, one compares them to the predictions coming
from the theory of random matrices (RMT) [20]. This is
also what we do here. The standard measure for short-range
spectral correlations is the distribution of the distances s of
nearest-neighbor levels. For regular (pseudo-)random spectra,
one expects a Poisson distribution:

PPois(s) = e−s . (3)

Fully chaotic spectra do not allow for level crossings, which are
suppressed by level couplings. The corresponding distribution
for our type of systems is the Wigner-Dyson one for time-
invariant systems without spin (GOE):

PWD(s) = sπ

2
e− π

4 s2
. (4)

For mixed systems, an interpolating distribution is usually
seen. One of the standard candidates is the so-called Brody
distribution with the Brody parameter β,

PB(s) = a(1 + β)sβe−as1+β

, (5)

where a ≡ �( 2+β

1+β
)1+β . The unfolding procedure mentioned in

Sec. II A guarantees a mean level spacing 〈s〉 = 1. Hence,
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FIG. 2. Symmetries of our 2 × 3 lattice system: Pij denotes the transposition (exchange of the occupation numbers) of the corresponding
sites: (a) without diagonals, two discrete symmetries: The exchange of the upper and lower row P14P25P36 and the exchange P13P46. Since each
of theses symmetries is self-inverse, and therefore has the 2 eigenvalues ±1, the corresponding Hamiltonian decomposes in 2 × 2 subblocks. (b)
With two diagonals, only a point-symmetry P16P25P34 giving rise to two subblocks. (c) This case has most symmetries: each of the permutations
P14, P25, and P36 is a symmetry on its own, allowing a decomposition into 2 × 2 × 2 blocks. There exists another symmetry P13P46, which
commutes with P25 but not with the other two. It therefore only decomposes the blocks corresponding to equal eigenvalues for P14 and P36.
Since these are 4 of our 8 subblocks, we end up with 12 subblocks after the whole decomposition.
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the numerical data is readily fitted with the normalized
distributions above. We tested also the measure P (r) intro-
duced in Ref. [21]. It is based on the ratio of consecutive
nearest-neighbor spacings sn and sn−1, defined by

0 < rn = min(sn,sn−1)

max(sn,sn−1)
< 1. (6)

This measure has the advantage that no unfolding is needed
(because of the ratios of consecutive distances) and, therefore,
statistical fluctuations are better controlled. The limiting case
for Poisson spectra [21] is

PPois(r) = 2

(1 − r)2
, (7)

and for GOE Wigner-Dyson spectra [22]

PWD(r) ∼ 27

4

r + r2

(1 + r + r2)5/2
. (8)

To test also the long-range correlations in the spectra we
analyze in parallel to the short-range measures mentioned
above the number variance of levels defined by

�2(L) = 〈[N (E,E + L) − L]2〉E, (9)

where 〈〉E denotes the average over the studied energy interval.
N (E,E + L) is the number of unfolded levels with the interval
[E,E + L]. RMT predicts [20]

�2
Pois(L) = L (10)

and

�2
WD(L) = 2

π2

[
ln(2πL) + γ + 1 − π2

8

]
+ O

(
1

L

)
, (11)

respectively. γ ≈ 0.57722 is the Euler constant.
Finally, in order to scan over a wide range of parameters, it

turned out that it is useful to quantify the spectral correlations
by a single number (i.e., averaged over an entire spectrum). We
use here a χ2 test to measure the distance from the obtained
numerical data to the theoretical predictions from Eqs. (3) and
(4), respectively:

χ2
∗ ≡ log10

{ ∫ ∞

0
ds [P∗(s) − Pnumerical(s)]2

}
. (12)

Here * stands for Poisson (Pois) or Wigner-Dyson (WD),
respectively. Moreover, we define the new measure based on
the number variance:

Lrel(q) ≡ max

{
L :

∣∣�2(L) − �2
WD(L)

∣∣
�2

WD(L)
< q

}
. (13)

This correlation length characterizes up to which L the
numerical �2(L) follows the predictions for quantum chaos.
Since the Poissonian case corresponds to a totally uncorrelated
spectrum, we can indeed interpret it as a measure of the
correlation length in the spectrum. The “typical” choice q = 1
is justified by the fact that due to the unfolding procedure the
energy scale of distances is normalized to unity.

III. SPECTRAL ANALYSIS

A first overview over the spectral behavior of the systems is
presented in Fig. 3. Only open (Dirichlet) boundary conditions
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FIG. 3. Spectral analysis of 2D BHMs using the measures P (r)
[left panels: (a), (c), (e)] and P (s) [right panels: (b), (d), (f)]. Each
panel exemplifies one regular (blue/black dotted lines) and one
chaotic case (red/gray solid lines). The lattice structures are 2 × 2
(upper panels, N = 20 with U/J = 2.42 for regular and U/J = 0.87
for chaotic case), 2 × 3 (middle panels, N = 10, U/J = 15.0 and
U/J = 1.51), and 3 × 3 (lower panels, N = 6, U/J = 1000, and
U/J = 1.71), all with open (Dirichlet) boundary conditions and
without diagonal couplings. The RMT predictions are shown by the
dashed lines by comparison, cf. Eqs. (3) and (4) (left) and (7) and
(8) (right). The transition from regular to chaotic statistics is clearly
visible. In the shown case it is controlled by the system parameter
U/J . In panel (b), for the regular case, we do not have a fully regular
spectrum for this parameter U/J . This fact is indicated by a Brody
parameter β ≈ 0.3 significantly larger than zero, cf. Eq. (5).

are applied in theses cases. Please note that the Hamiltonian
Eq. (1) effectively has just one parameter since we may divide
by J for instance. Hence we denote the control parameter here
by U/J . The transition from regular to chaotic statistics is
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FIG. 4. χ 2 statistical tests for the regular-to-chaotic transition for
a 2 × 3 lattice at N = 10. Small χ 2

Pois and χ 2
WD values indicate a good

correspondence with PPois(s) or PPois(s), respectively. (a, b) show
results for no diagonal coupling in Fig. 1, (c, d) for the red dashed
diagonal couplings, and (e, f) for a maximal number of diagonal
couplings at open (a, c, e) and periodic (b, d, f) boundary conditions.
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FIG. 5. �2 measure for the three cases: (a) 2 × 2 lattice N =
20; (b) 2 × 3 lattice N = 10; (c) 3 × 3 lattice N = 6. The control
parameter U/J is chosen to minimize χ 2

WD . Displayed in each panel
are data for: lattice without diagonal coupling (triangles) with U/J =
0.87 (a), U/J = 1.57 (b), and U/J = 1.71 (c)—with one diagonal
per plaquette, i.e., per square unit cell, (squares) at U/J = 0.955 (a),
U/J = 0.88 (b), and U/J = 1.92 (c)—maximal number of bonds at
open boundary conditions (filled circles) at U/J = 1.385 (a), U/J =
1.67 (b), and U/J = 1.65 (c)—and periodic boundary conditions
without diagonals (filled diamonds) at U/J = 0.79 (b) and U/J =
3.3 (c). In (a) also a regular case with no diagonal bonds and U/J =
6.136 (crosses) is presented for comparison.

clearly visible and controlled by U/J at fixed particle number
N and at fixed lattice structure. Because of the unfolding, the
definition of the parameter r , see Eq. (6), and since U/J is
dimensionless all plotted quantities are dimensionless in the
following.

For the next plot we pick the structure of the 2 × 3 lattice as
a paradigm for the other geometries. Figure 4 shows the relative
deviations of the numerically obtained distributions P (s) from
the regular and chaotic expectations, respectively. The data is
for fixed particle number N = 10, for a large window of U/J

and various configurations of bonds and different boundary
conditions. We observe that the spectral characteristics are
controlled by the number of bonds to the nearest neighbors.
Figure 4 highlights, in particular, that the systems are much
more regular when periodic boundary conditions are applied,
i.e., when more bonds are effectively present. Moreover, the
Figs. 4(a)–4(c) confirm the expectation of most chaoticity in
the region around U/J ≈ 1 at average atom numbers per site
of order one [5–11].

After the short-range correlations, we analyze also the
long-range correlations. Figure 5 collects numerical results in
particular for quantum chaotic spectra. The various plots show
data for the three lattices sketched in Fig. 1, again for different
numbers of nearest-neighbor bonds. Here the systems with
connectivity in Fig. 5(a) and in addition with periodic boundary
conditions in Figs. 5(b) and 5(c) are also worst approximated
by the chaotic prediction from RMT.
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FIG. 6. Overview over the χ 2 tests (left axes) and the analysis of long-range correlations with Lrel(q = 1) from Eq. (13) (right axes).
Lattices structures: 2 × 2 with N = 20 (upper panels), 2 × 3 with N = 10 (middle panels), and 3 × 3 with N = 6 (lower panels). The left
panels are for the minimal couplings without any diagonal bonds in Fig. 1. The central column shows the cases of one diagonal bond (upper)
and four diagonals with open boundary conditions (middle and lower panel). For the lower middle panel this corresponds to the red dashed
lines in Fig 1(c). The right panels are for two diagonals in the case 2 × 2 (upper), and no diagonals with periodic boundary conditions (middle
and lower panel).
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Our systems—represented by the Hamiltonian of Eq. (1)
and the geometries sketched in Fig. 1—allow for a large
variety of possible choices of parameters (N and U/J ) and
bond numbers (including the choice of boundary conditions).
Figure 6 collects most of the possible cases for fixed N at a
given lattice structure. The individual plots show scans over a
wide range of U/J . The different lines present the χ2 tests for
the correspondence with the chaotic PWD(s) (blue dotted) and
the regular PPois(s) (red dashed). Also our newly introduced
measure Lrel(q = 1) is shown by the black solid lines. In
all cases, we find a more or less broad chaotic region, for
which UN/J ∼ 1, a well-known condition for strong mode
coupling in the one-dimensional BHM [5–12]. Both measures
χ2 and L(q) agree in indicating the most chaotic regions; and
again the correspondence is optimal for the cases shown in the
leftmost panels in Fig. 6. This nicely corroborates the results
described in the caption of Fig. 5. The chaotic regions are
the less broad, the more bonds are present in the structures.
This fact is in agreement with the well-known expectation
that mean-field approaches typically work best when all sites
are coupled to as many nearest neighbors as possible; see,
e.g., Ref. [23] in the context of generalized one-dimensional
BHMs.

IV. DISCUSSION AND CONCLUSIONS

In this paper we analyzed the spectra of a class of small
two-dimensional BHMs, scanning a broad range of parameters
and lattices structures. We found a transition from regular-to-
chaotic behavior in almost all cases, which is controlled by
the system parameters U/J and N as well as by the number
of coupled bonds in the models. Our work naturally extends
studies of the one-dimensional BHM [5–12,16] and related
Hubbard models for fermonic particles [24].

Minimal systems as investigated here could be realized
experimentally by coupled one-dimensional chains of BHMs;
see, e.g., Ref. [25] for recent experiments in this direction, or
by optical two-dimensional lattices, see a similar theoretical
proposal in Ref. [3]. Such experimental implementations
could study quantum chaos of simple but strongly interacting
indistinguishable bosons, complementary to recent scattering
experiments with more complex ultracold erbium atoms [26].
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