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We show that, for ultracold neutral bosonic atoms held in a three-dimensional periodic potential or optical
lattice, a Hubbard model with dominant, attractive three-body interactions can be generated. In fact, we derive
that the effect of pairwise interactions can be made small or zero starting from the realization that collisions occur
at the zero-point energy of an optical lattice site and the strength of the interactions is energy dependent from
effective-range contributions. We determine the strength of the two- and three-body interactions for scattering
from van der Waals potentials and near Fano-Feshbach resonances. For van der Waals potentials, which for
example describe scattering of alkaline-earth atoms, we find that the pairwise interaction can only be turned off
for species with a small negative scattering length, leaving the 88Sr isotope a possible candidate. Interestingly,
for collisional magnetic Feshbach resonances this restriction does not apply and there often exist magnetic fields
where the two-body interaction is small. We illustrate this result for several known narrow resonances between
alkali-metal atoms as well as chromium atoms. Finally, we compare the size of the three-body interaction with
hopping rates and describe limits due to three-body recombination.
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I. INTRODUCTION

In 1998 Jaksch et al. [1] suggested that laser-cooled
atomic samples can be held in optical lattices—periodic
potentials created by counterpropagating laser beams. These
three-dimensional lattices have spatial periods between 400
and 800 nm and depths V0 as high as V0/h ∼ 1 MHz, where h

is Planck’s constant. An ensemble of atoms then realize either
the fermionic or bosonic Hubbard model, where atoms hop
from site to site and interact only when on the same site. The
interaction-driven quantum phase transition of this model was
first realized in Ref. [2].

Today, optical lattices are seen as a natural choice in which
to simulate other many-body Hamiltonians. These include
Hamiltonians with complex band structure such as double-well
lattices [3–6], two-dimensional hexagonal lattices [6–9], as
well as those with spin-momentum couplings possibly leading
to topological matter [10,11]. Quantum phase transitions in
these Hamiltonians enable ground-state wave functions with
unusual order parameters, such as pair superfluids and striped
phases [12–14]. Phase transitions in Hamiltonians with long-
range dipole-dipole interactions using atoms or molecules with
large magnetic or electric dipole moments can also be studied.
Finally, atoms in optical lattices can be used to measure
gravitational acceleration (g) [15–17] and to shed light on
nonlinear measurements [18–21] and can be used for quantum
information processing.

Over the past ten years ultracold-atom experiments have
also investigated few-body phenomena. In particular, three-
body interactions have been studied through Efimov physics

of strongly interacting atoms observed as resonances in three-
body recombination, where three colliding atoms create a
dimer and a free atom [22–24]. Here, recent developments
include the prediction of a minimum in the recombination rate
coefficient K3 for scattering of a van der Waals potential with
a d-wave shape resonance [25]. Moreover, Ref. [26] presented
advanced numerical simulations that can quantitatively model
observed recombination rates, while Ref. [27] showed empiri-
cally that, for a broad 7Li Feshbach resonance, K3 is controlled
by the effective range correction of the atom-atom scattering.

Proposals that suggest ways to create atomic gases dom-
inated by elastic three-body interactions have also been
made. In Refs. [28,29] this was achieved by adding resonant
radiation to couple internal states of an atom or by driving
the lattice at rf frequencies. Some of us showed that the
low-energy behavior of atoms in complex lattice geometries
(i.e., double-well optical lattices) can also be engineered to lead
to large three-body interactions [30]. Interestingly, after the
observation of the formation of droplets [31] in a ferromagnetic
atomic dysprosium condensate induced by a rapid quench to
attractive pairwise interactions, Refs. [32,33] independently
suggested that the origin of this instability is large repulsive
elastic three-body collisions.

In this paper we propose a way to create dominant
three-body interactions in Hubbard models. We rely on two
ingredients. The first relies on the analytical analysis of
scattering from a van der Waals potential [34,35] as well as
analytical modeling of Fano-Feshbach resonances, where the
energy of molecular states is tuned with a magnetic field [36].
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This analysis confirms that ultracold scattering is describable
in terms of a scattering length a and effective range re that
are uniquely specified by the van der Waals coefficient and
resonance parameters. The second ingredient is the realization
that two-, three-, and higher-body interaction energies of atoms
in an optical lattice site can under certain assumptions be
computed analytically [37,38].

We show that for two atoms in a lattice site, with
a non-negligible zero-point energy, a cancellation of the
contribution from the scattering length and effective range
contribution can occur while simultaneously three atoms have
a finite inseparable three-body interaction that is of sufficient
magnitude that an experimental observation is possible.

This paper is organized as follows. In Sec. II we introduce
δ-function interactions between atoms with strength defined
by the scattering length and effective range and review
results for the ground-state energy of a few atoms held in
a site of an optical lattice. We also examine the quality
of a harmonic approximation of the lattice site potential.
In Sec. III we derive the relationship between a and re

for which the two-body interactions cancel and three-body
interactions remain. Sections IV and V describe how this
relationship can be met for a van der Waals potential and for
Feshbach resonances, respectively. For scattering from a van
der Waals potential we show that the 88Sr isotope is a promising
candidate. For Feshbach resonances we work out four cases,
one each for 23Na, 39K, 52Cr, and 133Cs scattering. We also
compare the expected three-body interaction energies with
tunneling energies between lattice sites. Section VI describes
two methods to determine lattice parameters for which there
are no on-site two-body interactions and discusses limits set
by three-body recombination.

II. PSEUDOPOTENTIAL FOR LOW-ENERGY
COLLISIONS, OPTICAL LATTICES, AND EFFECTIVE

FIELD THEORY

In 1957 Huang [39] showed that the low-energy scattering
of two neutral atoms of mass m with an isotropic interatomic
potential can be modeled by the equivalent three-dimensional
δ-function pseudopotential

Vpseudo( �R) = 4π
�

2

2μ

(
a − 1

2
rea

2∇2

)
δ( �R)

∂

∂R
R, (1)

where �R describes the separation and orientation of the
atom pair, ∇ is the gradient operator for the relative motion,
μ = m/2 is the reduced mass, and � = h/(2π ). The scattering
length a and the effective range re parametrize the effect of the
physical interaction potential. (This derivation was revisited
in Refs. [40–42].) Crucial for this paper is that a and re

have a simple relationship and can be tuned near Feshbach
resonances.

Our atoms are held in a three-dimensional periodic potential
created by counterpropagating laser beams with wave vectors
kL. For simplicity we assume a cubic lattice with potential
V (�x) = V0

∑
i cos2(kLxi), where �x = (x1,x2,x3) is the atomic

location and V0 is the lattice depth. The potential has period-
icity π/kL and a minimum in each unit cell with harmonic

0 10 20 30 40 50
V0 (units of ER)

0

5

10

15

20

Z
er

o 
P

oi
nt

 E
ne

rg
y 

(u
ni

ts
 o

f E
R
)

(a)

0 10 20 30 40 50
V0 (units of ER)

10
-5

10
-4

10
-3

10
-2

10
-1

T
un

ne
lin

g 
E

ne
rg

y 
(u

ni
ts

 o
f E

R
)

(b)

0 10 20 30 40 50
V0 (units of ER)

0

5

10

15

20

25

30

U
2/(

k La)
 (

un
its

 o
f E

R
) (c)

FIG. 1. (a) Zero-point energy, (b) tunneling energies, and (c) the
scaled first-order two-body interaction strength U2/(kLa) with no
effective-range correction as a function of lattice depth V0 for a
cubic, three-dimensional optical lattice. Solid red curves are based
on exact band-structure calculations and exact Wannier functions.
Dashed blue lines are based on oscillator solutions of the isotropic
harmonic approximation around the lattice minima [43].

frequency and single-atom oscillator length given by

�ω = 2
√

V0ER and � =
√

�/(mω) = 1/(kL
4
√

V0/ER),

respectively. Here ER = �
2k2

L/(2m) is the recoil energy.
We rely on this harmonic approximation near the lattice

minima. Figures 1(a) and 1(b) show that for sufficiently
large V0 this is qualitatively correct. Figure 1(a) compares
the zero-point energy of the harmonic approximation, 3�ω/2,
with that of the on-site energy of the lowest band obtained
from our exact band-structure calculation. The exact on-site
energy is always smaller since anharmonic corrections are
attractive. Similarly, Fig. 1(b) shows a comparison of the
tunneling energies between nearest-neighbor unit cells. Here,
the perturbative (harmonic) result underestimates the tunneling
energy because anharmonic corrections delocalize the Wannier
functions.

The harmonic approximation also simplifies the calculation
of the interaction energies between atoms. Nonperturbative
eigenenergies for two atoms interacting via a δ-function
potential were derived in Ref. [44]. Moreover, Refs. [37,38]
perturbatively calculated the ground-state energy En=2,3,... of
two, three, or more atoms based on effective-field theory [45].
In fact, up to second-order perturbation theory when a � � and
rea

2/2 � �3 they showed En = 3n�ω/2 + U2n(n − 1)/2 +
U3n(n − 1)(n − 2)/6, where U2 and U3 are the two- and
three-body interaction strengths

U2/�ω = ξ + 3

2
ε + (1 − ln 2)ξ 2 + 2

(
2 − 3

2
ln 2

)
ξε

+
(

15

4
− 9

4
ln 2

)
ε2, (2)

and

U3/�ω =
{
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√
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with dimensionless quantities

ξ =
√

2

π

a

�
and ε =

√
2

π

1

2

rea
2

�3
,

and ln z is the natural logarithm. Four- and higher-body
interaction strengths are zero at this order of field theory.
Reference [46] performed similar calculations for a box with
periodic boundary conditions. We ignore small corrections
from nonzero partial wave and anisotropic magnetic dipole-
dipole scattering.

For completeness Fig. 1(c) compares the two-body interac-
tion strength in a harmonic trap evaluated to first order in a

and re = 0 [i.e., U2 = √
2/π (a/�)�ω] with the corresponding

matrix element based on the energetically lowest Wannier
function of the three-dimensional optical lattice. The curves
are in sufficiently good agreement such that a harmonic
approximation with its analytical results up to second-order
perturbation theory can be confidently used for the analysis of
U2 and U3.

III. CANCELLATION OF THE TWO-BODY INTERACTION

We can now search for parameter regimes where U2 is small
compared to U3 and, in particular, look for the case U2 = 0.
In fact, by factorizing U2 and requiring that ξ � 1 and ε � 1
we realize that if we can achieve

ε = − 2
3ξ or 1

2 rea
2 = − 2

3a�2 (4)

the two-body interaction strength U2 vanishes as the contri-
butions from the scattering length and the effective range
cancel. Equation (4) can be shown to hold to all orders
in a and re from Ref. [44] [by making the replacement
a → a + rea

2(2μE/�
2)/2 in Eq. (16) of that article]. More

importantly, the three-body interaction strength does not
vanish and is

U3/�ω = −16

9

1√
3
ξ 2 = − 32

9π
√

3

a2

�2
, (5)

which is always attractive and remains of the same order of
magnitude as in Eq. (3). The next two sections describe ways
in which we can achieve this cancellation.

IV. van der Waals POTENTIAL

Ultracold scattering between structureless ground-state
atoms, such as the alkaline-earth atoms, or between more-
complex atoms away from any scattering resonance, such as
alkali-metal atoms in an external magnetic field, is controlled
by its long-range isotropic −C6/R

6 potential, where C6 is the
van der Waals coefficient. This follows from the fact that for
separations where deviations from this van der Waals potential
due to electron bonding are significant, its depth is already
orders of magnitude larger than the initial kinetic energy of
the atoms [34,36]. References [47,48] then showed that when
the potential has a scattering length a its effective range is

1

2
rea

2 = 1

3c2
e

ā[(a − ā)2 + ā2], (6)

where ā = ce(2μC6/�
2)1/4 is the mean scattering length [35]

and ce = 2π/[	(1/4)]2 = 0.4780 . . ., and 	(z) is the gamma
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FIG. 2. The effective range volume rea
2/2 (solid red curve) as

a function of scattering length a for a van der Waals potential.
All lengths are expressed in units of the mean scattering length ā.
The dashed blue curves correspond to −2a�2/3 for two values of
�. At intersections of rea

2/2 and −2a�2/3 the effective two-body
interaction is tuned to zero.

function. For typical atoms ā lies between 30a0 and 100a0,
where a0 = 0.0529 nm is the Bohr radius. Figure 2 shows
the effective range volume rea

2/2 as a function of a. It is
always positive, has a minimum at a = ā, and for a → 0 equals
rea

2/2 = 2.918 . . . ā3, which implies that re diverges for a zero
scattering length.

In order to find regimes where U2 is small compared to
U3, we investigate whether Eq. (4) can hold. This equality
is graphically solved in Fig. 2 for two ratios �/ā � 1,
corresponding to typical circumstances in current experiments.
We immediately observe that solutions exist for negative
scattering lengths that are small compared to ā. In fact, a
Taylor expansion for large �/ā gives

a

ā
= − 1

c2
e

(
ā

�

)2

+ O(1/�4) (7)

and thus |a/ā| � 1 and |a/�| � 1, consistent with our
assumptions.

For a van der Waals potential a is fixed. Hence, Eq. (7)
is a constraint on � or the trapping frequency ω (and thus on
the lattice depth V0). Moreover, there exist only a few atomic
species with the small negative scattering length needed to
have a small or vanishing U2. In fact, we are only aware of
the strontium isotope 88Sr to satisfy |a/ā| � 1, since it has
a scattering length of a = −2.0(3)a0 and ā = 71.76a0 [49].
(Numbers in parentheses are one-standard-deviation uncer-
tainties.) Hence, we find that U2 = 0 requires � = 900a0 and
thus ω/(2π ) = 50 kHz. Assuming a realistic Sr optical lattice
with a photon recoil energy of ER/h = 4.0 kHz, we read from
Fig. 1(a) that V0 ≈ 40ER and that from Fig. 1(b) the tunneling
energy J ≈ 10−4ER or J/h ≈ 0.4 Hz. This tunneling energy
is comparable to the three-body strength U3/h ≈ −0.15 Hz
calculated from Eq. (5).

V. FESHBACH RESONANCES

Ultracold scattering of alkali-metal atoms [36] in a mag-
netic field B contains collisional resonances, where the scat-
tering length can be tuned. Recently, interest has also focused
on resonances with atoms with large magnetic moments, such
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as Cr [50], Er [51], and Dy [52,53], as the long-range magnetic
dipole-dipole interaction influences their collective behavior.

At ultracold collision energies E = �
2k2/(2μ) resonant

scattering is described by the scattering amplitude [54–56]

f (k) = fbg(k) − e2iδbg(k) 	(E)/2

E − Eres(B,E) + i	(E)/2
, (8)

where fbg(k) = eiδbg(k){sin δbg(k)}/k is the background scat-
tering amplitude away from the resonance and δbg(k) is
the background phase shift. We assume that the low-energy
behavior of fbg(k) is that of a van der Waals potential
with scattering length abg as discussed in Sec. IV. The
dispersive second term of Eq. (8) describes the resonance with
a magnetic-field- and energy-dependent resonance location
Eres(B,E) = μe(B − B0) + βE and positive energy width
	(E) = 2(kabg)	0(1 + αE/	0), where μe is the magnetic
moment of the resonant state, B0 is the magnetic field at
resonance, and 	0 is the resonance strength. Finally, the
field-independent coefficients α and β describe additional
energy dependencies of 	(E) and Eres(E) and will affect the
effective range.

We note that by definition Ref (k) = −a −
{rea

2/2 − a3}k2 + · · · and a Taylor expansion of Eq. (8) in k

then leads to the scattering length a = abg − abg	0/Eres(B,0)
and effective range volume

1
2 rea

2 = 1
2 rbga

2
bg + aabg(a − abg) − (1 − β)(a − abg)2ā/sres

+α(a − abg)āabg/sres (9)

≡ Vq + gq(a − aq)2, (10)

where rbg is the background effective range given in Eq. (6)
when evaluated at scattering length abg. We have eliminated the
dependence on Eres(B,0) in favor of a and the dimensionless
sres ≡ abg	0/(āĒ) > 0 characterizes the resonance strength
in terms of the mean scattering length ā and energy Ē =
�

2/(2μā2) of a van der Waals potential [36]. A resonance
is narrow when sres � 1 and broad otherwise. Moreover, the
volume rea

2/2 → rbga
2
bg/2 when a → abg as expected and

1
2 rea

2 → 1
2 rbga

2
bg − (1 − β + α)āa2

bg/sres

for a → 0, showing that rea
2/2 can be negative. For narrow

resonances this was already noted in Ref. [57].
The effective-range volume near a resonance is a quadratic

polynomial in a with coefficients defined by Eq. (10). This
dependence agrees with the coupled-channels calculations
with rigorous interatomic potentials of Ref. [58]. Their Vq,
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FIG. 3. Effective volume rea
2/2 of the Feshbach resonances

listed in Table I as a function of scattering length a with lengths
in units of ā. Solid lines correspond to volumes based on Eq. (9) with
α,β �= 0 or equivalently the coupled-channels calculation of [58].
Dashed lines follow from Eq. (9) with α = β = 0.

gq, and aq for a narrow 39K and broad Cs resonance are
tabulated in Table I. The corresponding effective-range volume
as well as that for a narrow Na resonance based on Eq. (9) with
α = β = 0 are shown in Fig. 3 as a function of a as it is tuned
with a magnetic field. For narrow resonances α,β � 1 and
α,β have negligible effect on rea

2/2. For broad resonances
with larger α,β their effect is large. For both cases rea

2/2 is
negative and orders of magnitude larger than that for van der
Waals potentials.

The model for the effective-range volume now enables us
to find scattering lengths where U2 is small compared to U3.
We set U2 = 0 and Eq. (4) gives

Vq + gq(a − aq)2 = − 2
3a�2, (11)

where both a and � can be tuned. Coefficients Vq, gq, and aq

are fixed by the resonance. Consequently, choosing a fixes
the harmonic trapping frequency and vice versa. Crucially
and unlike for a van der Waals potential, rea

2/2 is mostly
negative and large compared to ā3 so that U2 = 0 can occur
for positive a on the order of ā. We must, however, also
require that |rea

2/2| � �3. This cannot be guaranteed for all
resonances. For example, Fig. 3 implies that for the narrow
39K resonance and a > ā the volume |rea

2/2| � �3 assuming
typical � between 10ā and 100ā. The narrow Na and broader
Cs resonances show more promise.

In Fig. 4 we make these observations more precise by
plotting U2 and U3 as a function of a for four narrow Feshbach

TABLE I. Parameters for five Feshbach resonances. Columns represent the atomic species, B0 in gauss, the background scattering length
abg, resonance strength sres, coefficients Vq, gq, and aq, where available from Ref. [58], and dimensionless α and β found from a fit to Vq, gq,
and aq in Eq. (10). Lengths and volumes are in units of ā and ā3, respectively, and 1 G = 0.1 mT. (Finally, ā = 42.95a0, 61.65a0, 43.63a0, and
96.51a0 for 23Na, 39K, 52Cr, and 133Cs, respectively.)

B0 abg sres Vq gq aq α β

39K 745 − 0.541 0.00062 4.7 −1540 −0.55 0.0354 0.0468
133Cs 227 21.34 0.19 1000 −4.19 29 − 3.55 − 3.85
23Na 853 1.47 0.0002 0 0
52Cr 500 2.45 0.03 0 0
133Cs 19.8 1.66 0.002 0 0
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FIG. 4. (a) Two-body interaction strength U2 and (b) minus one
times the three-body strength −U3 in a harmonic trap with ω/(2π ) =
50 kHz as a function of the scattering length a for a narrow 23Na
(black lines), 39K (red lines), 52Cr (orange lines), and 133Cs (green
lines) Feshbach resonance tabulated in Table I. Solid circles in both
panels and arrows in (b) indicate where U2 = 0.

resonances (with sres � 0.1) tabulated in Table I and assuming
a harmonic trap with frequency ω/(2π ) = 50 kHz. For all four
resonances U2 = 0 for at least one value of a. The second,
broader 133Cs resonance with B0 = 227 G and sres = 0.19 has
no such point and is not shown. The cases where both U2 = 0
and |U3|/(�ω) � 1 are indicated in the figure with markers.
For the Na and Cs resonances U2 = 0 when a ≈ ā or 2ā and
−U3/(�ω) � 0.001. For the 39K resonance a zero crossing
occurs at a ≈ 2ā but U3/(�ω) � 1, outside the validity range
of the theory.

Finally, we compare the expected value of U3 with the
tunneling energy J , depicted in Fig. 1, in an optical lattice.
Noting that for commonly used lasers in and near the optical
domain the recoil energy ER/h lies between 2 and 10 kHz
for alkali-metal atoms, we find that for ω/(2π ) = 50 kHz the
tunneling energy J is about ten times smaller than |U3|. For
a shallower lattice and thus smaller ω the tunneling energy
increases exponentially, while U3, maintaining the condition
that U2 = 0, decreases much more slowly.

VI. DETECTION AND THREE-BODY RECOMBINATION

Several observations can be made about the feasibility and
limitations of the proposal. These range from the detection
of the point where U2 = 0, the behavior of Bose-Hubbard
models, and three-body recombination. The next two sections
briefly address these points.

A. Detection of U2 = 0?

We can locate lattice parameters where U2 = 0 with two
types of experiments. The simplest is to perform vibrational
spectroscopy on two or three isolated bosonic atoms held in a
dipole trap or in an optical lattice where tunneling is negligible.
For pairs of fermionic alkali-metal atoms as well as for one
fermion and one boson in an optical lattice site this has been

shown to work near a Feshbach resonance by Refs. [59,60].
Based on predictions of Ref. [61] they found a new class of
confinement-induced bound states for large scattering lengths.
An accurate study for smaller scattering lengths on the order
of the mean scattering length or less, however, is lacking for
both fermionic and bosonic alkali-metal atoms. For 88Sr with
its small, negative scattering no such measurements have been
performed. Finally, no spectroscopic experiments for three
atoms exist.

A second type of experiments that can locate U2 = 0 are
so-called collapse-and-revival experiments in optical lattices,
where changes of the lattice parameters induce nonequilibrium
dynamics. Specifically, realizations where after a sudden and
large increase of the lattice depth tunneling is negligible, the
values for U2 and U3 can be inferred from measurements of
the momentum distribution as a function of delay after the
ramp [37,62–64]. In these experiments the initial state is a su-
perfluid and, hence, to good approximation each site contains
a superposition of atomic Fock states in the lowest trap level.
After the sudden lattice-depth increase this superposition starts
to evolve and measurement of the momentum distribution is
sensitive to differences of the energies En for different n.
These measurements have not been repeated near Feshbach
resonances.

B. Three-body recombination

Atom loss from the lattice can limit the realization of our
proposal. Loss of one atom at a time, due to collisions with
background molecules in the vacuum or light-induced loss
from the lattice lasers, can be mitigated by improving the
vacuum pressure and a careful choice of laser frequencies.
Two-body loss can always be removed by choosing the
hyperfine state with the lowest internal energy. This leaves
inelastic three-body recombination as an intrinsic loss mech-
anism. An ultracold homogeneous thermal gas with number
density n loses atoms according to the rate equation dn/dt =
−3K3n

3. For scattering from short-range potentials [23,65]
the event rate coefficient K3 � Cmax�a4/m with Cmax = 67
when the scattering length |a| � ā, while K3 ≈ C0�ā4/m

with C0 = 25 for |a| ∼ ā. Recently, Refs. [25,26] showed
that for longer-ranged van der Waals potentials and near
collisional resonances C0 depends on atomic species and
resonance and can be much larger than 25. Finally, Ref. [27]
showed empirically that for a broad 7Li resonance with a
negative effective range K3 ≈ Cmax�(a3 − rea

2/2)4/3/m gives
a reasonable description of experimental data close to the
resonance.

In a lattice site recombination can be included as an imag-
inary contribution to U3. That is, we use U3 → U3 − i	3/2,
where 	3 = �K3

∫
d3 �x|�(�x)|6 and �(�x) is the normalized

single-atom ground-state wave function in a lattice site. For an
isotropic harmonic trap and |a| ∼ ā this leads to

	3 = C0

3π3

ā4

�4
�ω (12)

when U2 = 0. Losses are acceptable when 	3 � |U3| and thus

|a|
ā

�
√

3
√

3C0

32π2

ā

�
= 0.64

ā

�
(13)
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for C0 = 25. Since typically � > 10ā, a scattering length on
the order of ā is required. This condition can be met with
Feshbach resonances but also indicates that an experiment with
88Sr will be hard. A similar analysis with a more restrictive
estimate of Ref. [27] suggests that weaker trapping potentials
with � � 10ā will be required.

VII. CONCLUSION

We have proposed a means to create an ultracold gas of
bosonic atoms in an optical lattice that only interacts via
on-site three-body interactions. This is achieved by a careful
cancellation of two contributions in the pairwise interaction
between two atoms, one proportional to the zero-energy scat-
tering length and a second proportional to the effective range.
We predict that this cancellation can occur for the strontium-88
isotope as well as near narrow magnetic Feshbach resonances
in alkali-metal atoms or chromium collisions.

For optical lattice depths and/or magnetic field strengths
where the pairwise interaction has been canceled, i.e., U2 = 0,
we have also shown that the three-body interaction strength can
be of the same order of magnitude as the tunneling energy of

atoms hopping between neighboring lattice sites. Three-body
recombination can limit the practical duration of coherent atom
evolution.

Although the purpose of this paper has not been the char-
acterization of the many-body ground state or the dynamical
properties of a system near U2 = 0, a brief remark is in order.
For a small number of atoms per lattice site we predict that
the three-body interaction is attractive. For a Hubbard model
with finite tunneling J on the order of U3 this can indicate that
the ground state corresponds to a state with all atoms in one
site and, in essence, the system would “collapse,” similar to
the instability of systems with a negative two-body strength
U2. To prevent this collapse a weak global trapping potential
must be added. On the other hand, we expect that it is realistic
to perform dynamical experiments where initially the ground
state for positive U2 is prepared and, subsequently, the lattice
parameters are changed to ones where U2 = 0.
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[49] A. Stein, H. Knöckel, and E. Tiemann, Eur. Phys. J. D 57, 171

(2010).
[50] J. Werner, A. Griesmaier, S. Hensler, J. Stuhler, T. Pfau, A.

Simoni, and E. Tiesinga, Phys. Rev. Lett. 94, 183201 (2005).
[51] A. Frisch, M. Mark, K. Aikawa, F. Ferlaino, J. L. Bohn, C.

Makrides, A. Petrov, and S. Kotochigova, Nature (London) 507,
475 (2014).

[52] A. Petrov, E. Tiesinga, and S. Kotochigova, Phys. Rev. Lett.
109, 103002 (2012).

[53] K. Baumann, N. Q. Burdick, M. Lu, and B. L. Lev, Phys. Rev.
A 89, 020701 (2014).

[54] U. Fano, Phys. Rev. 124, 1866 (1961).
[55] J. R. Taylor, Scattering Theory, 1st ed. (Wiley, London, 1972).
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