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Heisenberg-scaled magnetometer with dipolar spin-1 condensates
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We propose a scheme to realize a Heisenberg-scaled magnetometer using dipolar spin-1 condensates. The
input state of magnetometer is prepared by slowly sweeping a transverse magnetic field to zero, which yields a
highly entangled spin state of N atoms. We show that this process is protected by a parity symmetry such that the
state preparation time is within the reach of the current experiment. We also propose a parity measurement with
a Stern-Gerlach apparatus which is shown to approach the optimal measurement in the large atom number limit.
Finally, we show that the phase estimation sensitivity of the proposed scheme roughly follows the Heisenberg
scaling.
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I. INTRODUCTION

The detection of ultralow magnetic fields plays an important
role in diverse areas of research ranging from the fundamental
physics [1–4] to a wide range of practical applications in
sciences and technologies [5–11]. Following the development
of quantum metrology [12–14], it is realized that utilizing
quantum resources such as entanglement [15–18] can improve
the precision of parameter estimation from the shot-noise limit
(standard quantum limit) to the Heisenberg limit [19–21]. In
the context of quantum metrology, state preparation (together
with parametrization) often represents an important step for
precision measurement as it determines the amount of the
quantum Fisher information (FI) that can be extracted from
a quantum state. Through the Cramér-Rao inequality, the FI
then set the lower bound for the uncertainty of the parameter
estimation such that a parameter can be estimated with higher
precision if the state has a larger FI. It has been shown that
states such as NOON states [22–24], spin squeezed states
[25,26], twin Fock states [20,27–29], and entangled coherent
states [30–32] are candidates for achieving the beyond shot-
noise-limit measurements. In recent years, quantum-enhanced
magnetometers are proposed in various systems [33–47].

In this work, we propose a magnetometer based on the
adiabatic protocol that produces the maximally entangled spin
states using dipolar spin-1 condensates [48]. Under the single-
mode approximation (SMA), we discover a parity symmetry
which divides the Hilbert space of a spin-1 condensate of
N atoms into even- and odd-parity subspaces; in particular,
the maximally entangled spin state (the input state of our
magnetometer) belongs to the even-parity subspace. We show
that, in the state preparation stage, the Hamiltonian of the
system conserves the parity symmetry, which significantly
loosen the adiabatic condition required for generating the
maximally entangled spin state. As a result, the time required
for state preparation is within the reach of current experiments.
We also propose a parity measurement scheme using a Stern-
Gerlach apparatus, which approaches the optimal measure-
ment in the large N limit. Finally, we show that the phase
estimation sensitivity roughly scales with 1/N , indicating that
the proposed magnetometer is at the level of the Heisenberg
limit. We notice that spinor-condensate-based magnetometers
are experimentally demonstrated recently [49,50].

This paper is organized as follows. In Sec. II, we introduce
the model Hamiltonian and the scheme for the Heisenberg-
scaled magnetometer. In the context of quantum metrology,
we present a detailed analysis about each stage of the
magnetometer in Sec. III. The numerical simulations about
the performance of the magnetometer are presented in Sec. IV.
Finally, we conclude in Sec. V.

II. MODEL

We consider N Bose condensed spin F = 1 atoms confined
in an axially symmetric potential whose symmetry axis is
chosen as the quantization axis, ẑ, of the system. Under the
SMA, all three spin components α = 0, ± 1 share a common
spatial mode ψ(r). The Hamiltonian for the condensate
subjected to an external magnetic field B′ takes the form [51]

H ′ = (c′
2 − c′

d )Ŝ2 + 3c′
d

(
Ŝ2

z + n̂0
) − gF μBB′ · Ŝ, (1)

where Ŝ = ∑
αβ â†

αFαβ âβ is the many-body total spin operator
with âα being the annihilation operator of the αth spin state
and F the angular momentum operator, Ŝz is the z component
of Ŝ, and n̂0 = â

†
0â0 is the number operator of the α = 0 spin

component.
In Hamiltonian Eq. (1), the spin-exchange interaction

strength is

c′
2 = c2

2

∫
dr|ψ(r)|4,

where c2 = 4π�
2(a2 − a0)/(3M) with M being the mass of

the atom and af (f = 0,2) the s-wave scattering length for
two spin-1 atoms in the combined symmetric channel of total
spin f . The dipolar interaction is characterized by

c′
d = cd

4

∫
dr dr′|ψ(r)|2|ψ(r′)|2 1 − 3 cos2 θr−r′

|r − r′|3 ,

where θr−r′ is the polar angle of the vector (r − r′) and cd =
μ0μ

2
Bg2

F /(4π ) is the strength of the magnetic dipole-dipole
interaction with μ0 being the vacuum magnetic permeability,
μB the Bohr magneton, and gF the Landé g factor.

Although the sign of c′
2 is determined by that of c2,

the sign of c′
d depends on the geometry of the trapping

potential: c′
d < 0 (> 0) for elongated (prolate) trap. In this
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FIG. 1. Schematic plot of the scheme.

work, we assume that the spin-exchange collisional interaction
is ferromagnetic (c2 < 0) and the trapping potential is highly
elongated (c′

d < 0). Under these conditions, the condensate
falls into the ferromagnetic phase and the SMA holds even
when cd > |c2| in the absence of the external magnetic field
[51,52]. In particular, in Refs. [53,54], it was shown that the
SMA is valid for describing the spin dynamics of spin-1 Rb
condensates. We therefore expect that the adoption of the SMA
should not affect our conclusions.

For convenience, we rescale Eq. (1) using the energy unit
|c′

2| (the corresponding unit for time is then �/|c′
2|), which

yields the dimensionless Hamiltonian [48]

H = H0 + H1, (2)

H0 = (−1 − c)Ŝ2 + 3cŜ2
z − B · Ŝ, (3)

H1 = 3cn̂0, (4)

where c = c′
d/|c′

2| and B = gF μBB′/|c′
2|. Although n̂0 does

not commute with Ŝ2, its contribution is often negligible in
the ferromagnetic state. In the absence of external field, the
ground states of H0,|N, ± N〉z, are doubly degenerate, where
|S,m〉z denotes the simultaneous eigenstates of Ŝ2 and Ŝz with
S = N,N − 2, . . . � 0 and |m| � S [55].

A particularly attractive feature of this system is that the
twofold degeneracy of the ground state can be employed to
create the maximally entangled state of N atoms [48]. Specif-
ically, we prepare the condensate under a strong transverse
magnetic field, B = Bx x̂, which polarizes all spins along the x

axis. As a result, the wave function of the condensate becomes∣∣�(0)
A

〉 = |N,N〉x, (5)

where |S,m〉x denote the simultaneous eigenstates of Ŝ2 and
Sx . We then gradually reduce Bx to zero with a constant rate
vB = dBx/dt < 0. For sufficiently small vB , the wave function
of the system evolves into a maximally entangled state [48]

∣∣�(0)
B

〉 = 1√
2

(|N,N〉z + |N, − N〉z), (6)

which can be used as the input state for the magnetometer.
As schematically shown in Fig. 1, we follow the general

protocol for parameter estimations to complete the construc-
tion of the magnetometer. In the parametrization, we switch
on a longitudinal magnetic field B = Bzẑ (Bz is the unknown
field strength) for a period of time τ . This longitudinal field
induces a dynamic phase θ = −Bzτ which is the parameter to
be estimated. In the measurement stage, we let the condensate
pass through a Stern-Gerlach apparatus which is composed

Bx
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FIG. 2. Transverse field dependence of the lowest 10 energy
levels of the Hamiltonian (2) for N = 20 and c = −0.145. The
magnetic field strength Bx is a dimensionless quantity.

of an inhomogeneous magnetic field along the x axis. This
allows us to measure Ŝx of the condensate. Finally, we estimate
the uncertainty of the whole process. In the next section, we
discuss each stage in detail.

III. QUANTUM METROLOGY WITH DIPOLAR
SPIN-1 CONDENSATES

In this section, we shall only consider the Hamiltonian H0

for simplicity. The effects of H1 will be discussed in the next
section. For the Hamiltonian H0,Ŝ2 is conserved. Since the
total angular momentum of the initial state, |�(0)

A 〉, is S = N ,
the system can only evolve in the S = N subspace. Therefore,
we shall also adopt the shorthand notation |m〉x,z for |N,m〉x,z

in this section.

A. State preparation

To analyze the process of initial state preparation, we
plot, in Fig. 2, energy spectrum of the Hamiltonian (3)
subjected to a transverse field Bx . At Bx = 0, |S,m〉z is the
eigenstate of H0 and the states |S, ± m〉z (m �= 0) are doubly
degenerate. In particular, the ground states in the absence of
the external field are |N, ± N〉z. In the large Bx limit, let
us focus on the lowest two energy levels. Since the term
−BxŜx dominates in H0, the ground and first excited states
are |N,N〉x and |N,N − 1〉x , respectively. Treating the spin Ŝ
classically, it can be easily shown that the system saturates at
a critical magnetic field Bx = −6cN such that the spins are
completely polarized, while for Bx < −6cN the ground state
is doubly degenerate [48]. Although, quantum mechanically,
this twofold degeneracy is lifted by quantum tunneling, the
energy gap between the ground, |N,N〉z + |N, − N〉z, and
the first excited, |N,N〉z − |N, − N〉z, states is negligibly
small for small Bx , which may invalidate the adiabatic
condition. Consequently, one would naively expect that the
real state obtained at the state preparation stage, |�B〉, is
an arbitrary superposition of |N,N〉z and |N, − N〉z. And
even worse, it may also contain the contributions from higher
excited states at Bx = 0. The numerical simulations however
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indicate that the ideal initial state |�(0)
B 〉 is very robust against

different sweeping rates vB [48]. Below, we show that the
maximally entangled state |�(0)

B 〉 is partially protected by a
parity symmetry of the system.

To introduce this parity symmetry, we consider the Fock
state basis, |n1,n0,n−1〉, where nα denotes the occupation
number of the αth spin component satisfying the constraint
N = ∑

α nα . We then define the parity operator P̂ through
the equation

P̂|n1,n0,n−1〉 = |n−1,n0,n1〉. (7)

Namely, P̂ exchanges the occupation numbers of the α = 1
and −1 spin states. Clearly, P̂ is Hermitian. It can be further
shown that

P̂ âα = â−αP̂, (8)

which leads to

[P̂,Ŝ2] = [P̂,Ŝ2
z ] = [P̂,Ŝx] = [P̂,n̂0] = 0. (9)

Therefore, in the state preparation stage, both H0 and H1

commute with P̂ . Furthermore, it can be shown that Ŝy and Ŝz

anticommute with P̂ , i.e.,

{P̂,Ŝy} = {P̂,Ŝz} = 0. (10)

In particular, because of P̂2 = 1, the eigenvalues of P̂ are
ξ = ±1. Thus, based on the eigenvalues of P̂ , we may partition
the Hilbert space into even- (ξ = 1) and odd- (ξ = −1) parity
subspaces. In fact, as shown in the Appendix III C, the parity
operator P̂ can be constructed explicitly as

P̂ =
∑
S,m

|S,m〉zz〈S, − m|. (11)

Therefore, the states |φ(e)
S,m〉

z
≡ (|S,m〉z + |S, − m〉z)/

√
2

(m > 0) and |φ(e)
S,0〉z = |S,0〉z have even parity, while the parity

of the states |φ(o)
S,m〉

z
≡ (|S,m〉z − |S, − m〉z)/

√
2 (m > 0) is

odd. Moreover, because P̂ commutes with Ŝ2 and Ŝx , the state
|S,m〉x has a definite parity. It is shown in the Appendix III C
that the parity of |S,m〉x is even (odd) if N − m is even (odd).

Now, since the initial state of the condensate |�(0)
A 〉 has

an even parity and the Hamiltonian H0 commutes with P̂ ,
the final state at Bx = 0 must also have an even parity. This
constraint significantly loosens the adiabatic condition as it
is now determined by the energy gap between the ground
and the second excited states, which is finite for all Bx . The
above analysis explains why we always obtain the maximally
entangled state |�(0)

B 〉 under a sufficiently small constant
sweeping rate. We remark that it can be shown that similar
parity symmetry can also be found in other systems [56].

Experimentally, it is preferable to have the state preparation
time as short as possible. Therefore, it is necessary to consider
the sweeping rate beyond the adiabatic condition. When the
adiabatic condition is violated, we end up with a general even-
parity state

|�B〉 = √
p0|0〉z +

N∑
m=1

√
pm

2
eiϕm (|m〉z + | − m〉z), (12)

where the probability pm and the phase ϕm can only be obtained
numerically for a given sweeping rate.

B. Parametrization

Starting with |�B〉, we enter the stage of parametrization
by applying a longitudinal magnetic field for a period of time
τ . The wave function of the condensate then evolves into

|�C〉 = √
p0|0〉z +

N∑
m=1

√
pm

2
eiϕm (e−imθ |m〉z

+ eimθ | − m〉z), (13)

where we have included the contribution from the 3cŜ2
z term

into ϕm. The Fisher information of this state is

F = 4
N∑

m=0

pmm2, (14)

which determines the lower bound of the variance of the
estimator. The maximal Fisher information, 4N2, is attained
for a maximally entangled state.

It should be noted that, in the state preparation stage, the
parity symmetry not only prohibits the transition from the
ground state to odd parity subspace, but also guarantees the
states |m〉z and | − m〉z in Eq. (13) are equally populated. This
property prevents the fast dropping of the Fisher information
when the adiabatic condition is violated.

C. Measurement

Now, we turn to consider the measurement. In general,
the Fisher information Eq. (14) can only be achieved with
the optimal measurement, which is unknown for our system.
Here, we propose to measure the observable operator Ô =
(−1)N̂−Ŝx , which can be performed using the Stern-Gerlach
apparatus depicted in Fig. 1. A close inspection of Ô indicates
that measurement of Ô is of the parity-measurement-type since
(see the Appendix)

Ô =
∑
S,m

(−1)N−m|S,m〉xx〈S,m| = P̂. (15)

To calculate the mean value of Ô, we rewrite Eq. (13) based
on the parities

|�C〉 =
√

Pe

∣∣�(e)
N

〉 + √
Po

∣∣�(o)
N

〉
. (16)

Here Pe = ∑N
m=0 pm cos2(mθ ), Po = ∑N

m=1 pm sin2(mθ ),
and

∣∣∣�(e)
N

〉
=

N∑
m=0

eiϕm

√
pm

Pe

cos(mθ )
∣∣∣φ(e)

N,m

〉
z
,

∣∣∣�(o)
N

〉
=

N∑
m=1

ei(ϕm+3π/2)

√
pm

Po

sin(mθ )
∣∣∣φ(o)

N,m

〉
z
. (17)

Since, for a reasonable sweeping rate, only those levels with
m close to N are populated in Eq. (17) (see the numerical
simulations in Sec. IV), it is convenient to introduce the
notation,  ≡ N − m, for the index of the energy levels.
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By assuming that pN− �= 0 only when  � ̄, the quantum
mechanics mean value and the variance of Ô are, respectively,

f (θ ) ≡ 〈Ô〉 =
̄∑

=0

pN− cos [2(N − )θ ] (18)

and

δ2O = 1 −
⎛
⎝ ̄∑

=0

pN− cos [2(N − )θ ]

⎞
⎠

2

. (19)

D. Parameter estimation

Experimentally, the measurement of Ô will be repeated
for ν times for a given set of parameters, which leads
to the outcomes ξ1,ξ2, . . . ,ξν . The average value of these
measurement results, Oest = ν−1 ∑ν

i=1 ξi , is the estimator
of 〈Ô〉. Furthermore, the statistical average of Oest and its
mean-square error are 〈Oest〉av = 〈Ô〉 and δ2Oest = ν−1δ2O,
respectively. To find the value of θ from these measurements,
we need to define its estimator, θest, which can be most
conveniently obtained by inverting Eq. (18). It should be
noted that, for f to be invertible, we must have an interval
of θ within which f is a monotonic function. Although it
is impossible to predict the monotone interval theoretically
as pN− are unknown, it can be achieved by experimentally
measuring Ô as a function of τ . From this, we can determine
the monotone interval of f in principle. Now, let us formally
define the unbiased estimation function of θ as the inverse
function of f , i.e.,

θest ≡ f −1(Oest), (20)

whose mean-square error is

δ2θest = δ2O
ν
(
∂〈Ô〉/∂θ

)2

= 1 − ( ∑
 pN− cos[2(N − )θ ]

)2

4ν
( ∑

 pN−(N − ) sin[2(N − )θ ]
)2 . (21)

In the limiting case ̄ = 0, we reproduce the well-known
Heisenberg limit, δ2θest = 1/(4νN2), which also indicates that
θest is the optimal estimator if a maximally entangled state is
prepared.

For the general case, one has to make a further assumption
to find how δ2θest scales with N from Eq. (21). Here, we
assume that ̄θ � Nθ < π/4, which can always be fulfilled
for sufficiently small τ . As a result, to the first oder of ̄θ ,
Eq. (18) becomes approximately

〈Ô〉 ≈ g(θ ) ≡ cos(2NLθ ), (22)

where

L ≡
̄∑

=0

pN−

(
1 − 

N

)
� 1 (23)

is the average value of (1 − /N). Equation (22) inspires us to
define the estimator of θ as

θ ′
est ≡ g−1(Oest) = cos−1 Oest

2NL . (24)

By noting that the variance, Eq. (19), can be approximated as

δ2O ≈ 1 − g2(θ ), (25)

we obtain

δ2θ ′
est = δ2O

ν[∂g(θ )/∂θ ]2
≈ 1 − g2(θ )

ν[∂g(θ )/∂θ ]2

= 1

4νN2L2
. (26)

Clearly, to ensure that δ2θ ′
est is at the level of the Heisenberg

limit, L should roughly be independent of N , which can be
achieved if l̄ � N .

For convenience, we define the reduced Fisher information

F ≡ F

4N2
=

̄∑
=0

pN−

(
1 − 

N

)2

� 1. (27)

Since L2 � F , using Eq. (26), we find

δ2θ ′
est � 1

4νN2F = 1

νF
, (28)

which indicates that Ô is generally not an optimal measure-
ment.

It should be noted that the estimator θ ′
est is biased because

of the approximation adopted in Eq. (22). Taking into account
the bias, the Cramér-Rao bound for the biased estimator is [57]

〈(θ ′
est − θ )2〉av = δ2θ ′

est + b2, (29)

where the bias b is defined by b2 = 〈(〈θ ′
est〉av − θ )2〉av. It can

be shown that b is bound by

|b| < (2NL)−1 ̄2θ2

2|tan(2Nθ )| .

Combined with our assumption, ̄θ � Nθ < π/4, we imme-
diately see that |b| � 1/(2NL). Clearly, when δ2θ ′

est 
 b2, or
equivalently ν � 4 tan2 (2Nθ )/(̄θ )4, the bias is ignorable.

IV. NUMERICAL SIMULATION AND DISCUSSION

As seen from the previous section, the most important stage
for the proposed Heisenberg-scaled magnetometer is the state
preparation. Here we numerically simulate the process of state
preparation by considering a realistic system. Specifically, we
consider a condensate of 87Rb atoms trapped in a harmonic
potential

U (r) = 1

2
Mω2

⊥(x2 + y2 + κ2z2), (30)

where ω⊥ is radial trap frequency and κ is the trap aspect ratio.
To obtain the interaction parameters c′

2 and c′
d , we assume

the spatial mode of the condensate is the ground state of the
trapping potential, i.e.,

ψ(r) =
(

κ

π3a6
⊥

)1/4

exp

[
− 1

2a2
⊥

(x2 + y2 + κz2)

]
, (31)

where a⊥ = √
�/(Mω⊥) is the length of the radial harmonic

oscillator. It can then be evaluated that [48,51]

c′
2 = c2

2(2π )3/2

κ1/2

a3
⊥

, c′
d = cd

6(2π )1/2

κ1/2

a3
⊥

χ (κ),
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FIG. 3. (a) F and L2 as functions of N with the Hamiltonian
H0. (b) Comparison of the reduced Fisher information obtained with
Hamiltonian H0 and H . The sweeping rate is |vB | = 10N .

where χ (κ) = (κ − 1)−1[2κ + 1 − 3κg(κ)] with g(κ) =
tanh−1

√
1 − κ/

√
1 − κ . We point out that χ (κ) is a mono-

tonically increasing function of κ , bounded between −1 and
2, and passing through zero at κ = 1.

For 87Rb atom, we have gF = −1/2, a0 = 5.40 nm, and
a2 = 5.32 nm, which leads to c2 < 0 and cd � 0.1|c2|. To
set up the ratio c = c′

d/|c′
2|, we take κ = 0.1 which results

in c � −0.145. Finally, to fix the unit of time, �/|c′
2|, the

radial trap frequency is chosen as ω⊥ = (2π )1000 Hz such
that �/|c′

2| � 17.4 s. The numerical simulations are carried
out as follows. The initial state |�A〉 is taken as the ground
state under the magnetic field Bx = N , which is larger than the
classical saturation field, −6cN , and is sufficient to polarize
all spins of the condensate. Subsequently, by linearly lowering
Bx to zero with a constant sweeping rate vB , we obtain the
wave function |�B〉. Typical sweeping rate is chosen such that
the total time for the state preparation is achievable in the
present-day experiments. Once |�B〉 is obtained, it is trivial to
find |�c〉 and calculate the Fisher information.

In Fig. 3(a), we plot F and L2 as functions of N for the
Hamiltonian H0. The sweeping rate is chosen as |vB | = 10N ,
such that the total time for the state preparation (0.1�/|c′

2|)
is independent of N and is reachable in current experiments.
Surprisingly, we find that both F and L2 approach unit for
large N . This behavior can be roughly understood as follows.
At the small Bx end of the Hamiltonian H0, the energy gap
between neighboring levels of the lowest few energy levels
roughly scale as N . Meanwhile, the sweeping rate vB is also
proportional to N . Consequently, the occupation probability
pN− and the highest occupied level ̄ should roughly remain
unchanged for different N . Therefore, according to Eqs. (23)
and (27), F and L2 approach unit at the large N limit. The
result also suggests that the measurement of Ô approaches
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FIG. 4. (a) F and L2 as functions of vB for the Hamiltonian H0

with N = 1000. (b) Comparison of the reduced Fisher information
obtained via Hamiltonian H0 and H with N = 100. The sweeping
rate vB is a dimensionless quantity.

the optimal measurement for sufficiently large N . Figure 3(b)
compares the Fisher information of the state |�c〉 obtained via
the Hamiltonian H0 and H , respectively. As can be seen, these
two curves become visually indistinguishable for N � 100,
indicating that our results obtained with H0 are applicable to
the real system with sufficiently large N .

Next, we explore the sweeping rate dependence of the
Fisher information. Figure 4(a) plots F and L2 versus the
sweeping rate vB for a state prepared with H0 containing
N = 1000 atoms. We find that the reduced Fisher information
can be as high as 0.8 even for |vB | up to 40N , which indicates
that we may significantly reduce the time for state preparation.
Moreover, the comparison of the F(vB) for the states prepared
with H0 and H in Fig. 4(b) further confirms that the full
Hamiltonian H can be well approximated by H0.

In practice, it is inevitable to have stray magnetic fields
that break the parity symmetry and thus lead to initial states
significantly deviated from the maximally entangled state. For-
tunately, as shall be shown, the Zeeman effect of the stray fields
can be eliminated via the dynamical decoupling techniques
[54,58]. To see this, we redecompose the Hamiltonian (3) into

H = Hx + δH,

Hx = (−1 − c)Ŝ2 + 3c
(
Ŝ2

z + n̂0
) − BxŜx,

δH = −δB · Ŝ,

where Hx represents the Hamiltonian required for the initial
state preparation and δH is the Zeeman term due the stray
field δB which is perpendicular to the x axis. For dynamical
decoupling, we apply a sequence of πx pulses, Dx(π ) =
e−iπŜx , which rotates the spin of the condensate by π along
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FIG. 5. F vs δBz for various pulse numbers. Other parameters
are N = 2000 and |vB | = 10N . Here δBz is a dimensionless quantity
and, for simplicity, the system is evolved with the Hamiltonian H0.

the x axis. It can be easily verified that D†
x(π )HxDx(π ) = Hx

and D†
x(π )δHDx(π ) = −δH . Now, assuming that the πx is an

instantaneous pulse and the time interval between two adjacent
pulses is τ , the time evolution operator after two pulses is

U (t = 2τ ) = U0(τ )Dx(π )U0(τ )Dx(π ), (32)

where U0(τ ) = e−iτH ≈ e−iτHx e−iτ δH for small τ (i.e.,
||H ||τ � 1). By noting that D†

x(π ) = Dx(π ), it can be shown
that U (2τ ) ≈ e−i2τHx . Straightforwardly, after periodically
applying 2K pulses, the evolution operator becomes

U (t = 2Kτ ) ≈ e−itHx (33)

to the leading order of τ . The effect of the stray field is clearly
removed.

In Fig. 5, we plot the Fisher information as a function of
the stray field for different pulse numbers. For simplicity, we
have neglected the n̂0 term in the Hamiltonian such that we
may simulate a condensate with N = 2000 atoms. Without
loss generality, we assume that the stray field is along the z

axis. As can be seen, for K = 0, the Fisher information quickly
drops to zero even for a very weak stray field. However, the
πx pulse sequence dramatically changes the situation such that
the effect of the stray field becomes negligible for K = 2000.

Finally, an important issue regarding the initial state prepa-
ration is that highly entangled states are fragile against atom
losses [59,60]. Consequently, Heisenberg-scaled precision
may become unattainable with our configuration. A strict
discussion on how atom losses in our system change the
precision of the measurement requires a quantitative study
which is out of the scope of the present work. Here, we remark
that three-body loss can be suppressed by using dynamical
decoupling technique [61] or Zeno effect [62]. In addition,
a recent theoretical study shows that moderately entangled
spin cat states are more robust against particle losses and the
measurement precision achievable with these states can still
outperform the standard quantum limit [63]. With our system,
spin cat states can be easily prepared if the transverse field
Bx is not reduced to zero in state preparation [48]. Based on

these discussions, quantum enhanced magnetometer of dipolar
spinor condensates may seem plausible.

V. CONCLUSION

To conclude, we have proposed a Heisenberg-scaled
magnetometer using spin-1 Rb condensates. Our scheme is
based on a protocol which generates the maximally entangled
spin state by adiabatically sweeping the transverse magnetic
field. We show that the Hamiltonian in the state preparation
stage conserves the parity symmetry of the system which
significantly shorten the time required for preparing the initial
state. We have also proposed a parity measurement scheme
using a Stern-Gerlach apparatus, which approaches the optimal
measurement in the large N limit. Finally, we show that the
phase estimation sensitivity roughly scales with 1/N .
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APPENDIX : CONSTRUCTION OF EVEN- AND
ODD-PARITY STATES

Here we construct the explicit form of the parity operator
P̂ and determine the parity of the state |S,m〉x . To this end,
let us first consider the state in the |S,m〉z representation. As
shown in Ref. [64], a basis state can be expressed as

|S,m〉z = Z
−1/2
S,m (Â†)(N−S)/2(Ŝ−)S−m(â†

1)S |0〉, (A1)

where ZS,m is the normalization constant, Â† ≡ [(â†
0)2 −

2â
†
1â

†
−1]/

√
3 creates a pair of atoms in the singlet state, Ŝ± ≡

(Ŝx ± iŜy)/
√

2, and |0〉 is the vacuum state. Using Eq. (8), it
can be easily verified that P̂Â†P̂ = Â† and P̂ Ŝ+P̂ = Ŝ−, from
which we derive

P̂|S,m〉z = Z
−1/2
S,m (Â†)(N−S)/2(Ŝ+)S−m(â†

−1)S |0〉. (A2)

On the other hand, we note that

|S, − m〉z = eiϑDy(π )|S,m〉z, (A3)

where Dy(π ) = e−iπŜy is the rotation operator and ϑ is
an arbitrary phase. Utilizing Dy(π )â±1D†

y(π ) = â∓1 and
Dy(π )â0D†

y(π ) = −â0, it can be shown that

|S, − m〉z = eiϑ (−1)S−mZ
−1/2
S,m (Â†)(N−S)/2

×(Ŝ+)S−m(â†
−1)S |0〉. (A4)

Adopting the Condon-Shortley-Wigner phase convention, ϑ +
(S − m)π = 0, we obtain

P̂|S,m〉z = |S, − m〉z (A5)

by comparing Eqs. (A2) and (A4), which immediately leads
to Eq. (11). Next, to determine the parity of the state
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|S,m〉x , we note that

|S,m〉x = Dy(π/2)|S,m〉z =
∑
m′

d
(S)
m′m(π/2)|S,m′〉z, (A6)

where d
(S)
m′m(π/2) = z〈S,m′|Dy(π/2)|S,m〉z, which satisfies the relation d

(S)
m′m(π/2) = (−1)S−md

(S)
−m′m(π/2). Now, by P̂ acting on

|S,m〉x , we find

P̂|S,m〉x =
∑
m′

d
(S)
m′m(π/2)P̂|S,m′〉z =

∑
m′

d
(S)
m′m(π/2)|S, − m′〉z = (−1)S−m|S,m〉x. (A7)

Since N − S is always an even integer, the parity of |S,m〉x is even (odd) if N − m is even (odd). Finally, in the |S,m〉x
representation, the parity operator can be expressed as

P̂ =
∑
S,m

(−1)N−m|S,m〉xx〈S,m|. (A8)
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