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Onsager vortex formation in Bose-Einstein condensates in two-dimensional power-law traps
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We study computationally dynamics of quantized vortices in two-dimensional superfluid Bose-Einstein
condensates confined in highly oblate power-law traps. We have found that the formation of large-scale Onsager
vortex clusters prevalent in steep-walled traps is suppressed in condensates confined by harmonic potentials.
However, the shape of the trapping potential does not appear to adversely affect the evaporative heating efficiency
of the vortex gas. Instead, the suppression of Onsager vortex formation in harmonic traps can be understood in
terms of the energy of the vortex configurations. Furthermore, we find that the vortex-antivortex pair annihilation
that underpins the vortex evaporative heating mechanism requires the interaction of at least three vortices. We
conclude that experimental observation of Onsager vortices should be the most apparent in flat or inverted-bottom
traps.
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I. INTRODUCTION

Nonequilibrium physics of quantum gases has attracted
significant activity recently [1]. Quantum turbulence (QT) is
an archetype of nonequilibrium dynamics, which manifests
as a chaotic motion of large numbers of quantized vortices
and features an intriguing interplay between chaos and order.
In three-dimensional QT, vortex filaments form tangles—
a phenomenon which has been widely studied but only
imaged directly in recent years in superfluid helium [2–4].
Remarkably, despite the fact that the microscopic behavior
of three-dimensional QT is driven by Kelvin waves [5–9],
Crow instabilities [10–12], vortex reconnections [9,13,14],
phonon radiation [15,16], and mutual friction between the
normal and superfluid components [17], statistically the
dynamics is thought to yield the same Kolmogorov scaling of
incompressible kinetic energy as in classical fluid turbulence.

Restricting the motion of the quantized vortices in one
of the spatial dimensions results in two-dimensional (2D)
quantum turbulence, in which the vortex tangle reduces to
a chaotic configuration of pointlike vortices. Recent studies
have focused on observing the decay of QT in Bose-Einstein
condensates, both experimentally [18–20] and using computer
simulations [21–30]. Two-dimensional systems have attracted
particular interest due to a prediction of an inverse energy
cascade [31,32] from small to large spatial scales, which
originates from the theory of classical fluid turbulence. Using
a statistical model of point vortices, Onsager [33] predicted for
such systems the emergence of large-scale vortex structures,
such as those seen in geophysical systems [34]. Similarly,
in 2D QT, the inverse cascade is anticipated to lead to the
clustering of like-sign vortices into large-scale Onsager vortex
structures.

Recent experimental advances in producing [20,35–37],
imaging [38], and controlling [39] quantized vortices in
ultracold atomic dilute gas Bose-Einstein condensates (BECs)
have resulted in detailed measurements of vortex dynamics
in these superfluid systems [19,40–42]. However, the debate
continues regarding whether or not an inverse cascade and
associated Onsager vortices should emerge in compressible 2D
QT [18,19,24,26–30,43,44]. Numasato et al. [24] simulated
quantum turbulence in a uniform 2D superfluid and found

evidence of a direct cascade pushing incompressible kinetic
energy towards small length scales. In accordance with this
finding, a recent experiment [19] and simulation [30] of a
turbulent harmonically trapped highly oblate BEC did not find
evidence for the formation of Onsager vortices. By contrast,
Simula et al. [27] observed strong evidence of vortex clustering
in their quasi-2D simulations in a flat trap with steep walls.

One key difference between these studies which could
explain the disparity between their findings is the trapping
potential used for confining the condensate. The aim of this
paper is therefore to investigate the role of the trap geometry
with regard to the emergence of Onsager vortices. We focus
on numerical studies of decaying two-dimensional quantum
turbulence in power-law traps, with a particular emphasis
on comparing harmonically trapped condensates to those
in uniform disk potentials with steep walls. A variety of
techniques exist for producing such steep-walled trapping
potentials experimentally [45–47].

We simulate BEC dynamics using a Gross-Pitaevskii model
and also study their thermodynamic properties using a Markov
chain Monte Carlo technique, interpreting the vortex dynamics
in each trap in terms of vortex evaporative heating [27].
In addition, we examine in detail the microscopic process
of vortex-antivortex annihilation, an essential aspect of the
decaying turbulence in these systems. In Sec. II, we introduce
the numerical model and computational techniques. In Sec. III,
we present the key findings from our simulations of decaying
superfluid turbulence in different trapping potentials and inter-
pret our observations using a statistical mechanics framework.
We then examine the vortex dynamics on a microscopic scale,
focusing in particular on vortex-antivortex annihilation in 2D
QT, showing it to be a many-vortex process. Finally, Sec. IV
is devoted to discussion.

II. MODEL

A. System parameters

The vortex dynamics of two-dimensional dilute gas Bose-
Einstein condensates are inherent in the time-dependent
condensate wave function ψ(r,t), whose evolution is modeled
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here using the Gross-Pitaevskii equation (GPE):

i�
∂

∂t
ψ(r,t) =

[−�
2

2m
∇2 + Vtrap(r) + g2D|ψ(r,t)|2

]
ψ(r,t),

(1)

where m is the mass of an atom, and Vtrap(r) is the trapping
potential which radially confines the condensate. The effective
interaction parameter g2D = gN

∫ |ψz(z)|4dz accounts for
reduction of dimensionality of the Gross-Pitaevskii equation
from three to two, where ψz is the normalized axial wave
function, N is the total number of atoms in the condensate,
and g = 4π�

2as/m is the interaction parameter for the three-
dimensional system being modeled, defined in terms of the s-
wave scattering length as . For a uniform cylindrical trap, g2D =
gN/lz, where lz is the axial length of the three-dimensional
condensate. In a sufficiently tight axial harmonic trap, the
axial wave function is well approximated by a Gaussian, and
hence g2D = gN/

√
2πaz, where az = √

�/mωz is the axial
harmonic oscillator length with an effective harmonic trapping
frequency ωz. The wave function ψ3D(r,z) = ψ(r)ψ(z) is
normalized such that

∫ |ψ(r)|2dxdy = ∫ |ψ(z)|2dz = 1.
We consider general power-law trapping potentials

Vtrap(r) = 1

2
mω2

r R
2
o

( |r|
Ro

)α

, (2)

where ωr is the radial harmonic trapping frequency, α is a
parameter which defines the steepness of the trap walls, and
Ro is the effective system radius. For α = 2 this potential is a
standard harmonic trap V (r) = 1

2mω2
r |r|2 with Thomas-Fermi

radius RTF = Ro. In the limit of infinite steepness (α → ∞) it
approaches a cylindrically symmetric well of radius Ro.

Our system parameters correspond to a two-dimensional
23Na BEC with a radial trapping frequency of ωr = 2π ×
15 Hz, and a Thomas-Fermi radius of RTF ≈ 70 μm ≈
12.79aosc, where the radial harmonic oscillator length scale
is defined as aosc = √

�/mωr . To this end we choose g2D =
21 000 �

2/m. Hence, the radial extent of our system is similar
to those used in the recent experiment by Kwon et al. [19] and
simulations by Stagg et al. [30].

B. Numerical techniques

In the beginning of our simulations we solve for the
approximate ground state of the system using imaginary-
time evolution of the GPE. We then imprint Nv(t = 0) =
120 vortices in the condensate by multiplying the ground
state wave function by a phase factor

∏Nv

k exp(iθk), where
θk(x,y) = skarctan[(y − yk)/(x − xk)]. Here, the coordinate
(xk,yk) defines the position of the kth vortex, whose circulation
sign is sk . We imprint equal numbers of vortices (sk = 1) and
antivortices (sk = −1).

We choose initial conditions which approximate high-
entropy, highly randomized states which could be produced by
stirring the condensate. To this end, we first construct a density
of states distribution D(E) for our chosen vortex number
by iteratively generating random vortex configurations and
calculating their energy E using a point-vortex Hamiltonian
[27]. The maximum entropy state corresponds to the peak of
this distribution; hence, we ensure that all initial conditions

generated have an energy lying within 10% of this maximum
entropy value [48].

After the vortex imprinting step, the wave function is
evolved further in imaginary time for 0.05ω−1

r to establish the
structure of the vortex cores. This can lead to the annihilation
of vortices near the boundary, as well as vortex-antivortex
pairs if they were imprinted very close together. The number
of vortices at the start of the real-time evolution is therefore
on average seven fewer than the 120 that were originally
imprinted.

We solve the GPE using a fourth-order split-step Fourier
method on a 1024 × 1024 spatial grid with spacing �x ≈
0.05aosc (approximately 0.65 condensate healing lengths)
unless otherwise stated. The locations of the vortices in
the system are detected by measuring the positions of the
phase singularities in the wave function at predetermined
time intervals. The direction of the phase winding about each
singularity determines the circulation sign of the vortex. The
vortex locations are only measured in a region |r| < 0.9Ro

in order to avoid detection of ghost vortices [49] in the
low-density region of the traps with lower α values.

III. RESULTS

A. Macroscopic dynamical behavior

We first compare the results of decaying turbulence in the
two traps discussed in the literature: a harmonic trap (α = 2)
and a uniform trap with steep walls (α = 100), which has
constant density to within ∼5 healing lengths of the boundary.
For each simulation, we monitor the number of vortices
Nv(t), which decreases over time due to vortex annihilation
events. We also measure the dipole moment d(t) of the vortex
distribution, defined as d = |d| = |∑i qiri |, where ri is the
position of the ith vortex, and qi = siκ = sih/m is its charge.
For the confined systems being studied here, it is convenient
to scale d with the system size Ro and the number of vortices
Nv . If the vortices are randomly distributed, d will approach
zero for large systems. A large d, on the other hand, signals
the presence of two Onsager vortex clusters in our system.

Figure 1 shows the characteristic time evolution of the
vortex distribution in the two traps, along with the respective
dipole moments. In agreement with previous simulations
and experiments [19,30], we observe no significant vortex
clustering in the α = 2 harmonic trap. However, and also in
agreement with previous 3D simulations [27], the uniform
trap exhibits a strong tendency to form Onsager vortices, as
indicated by the increasing dipole moment. Thus, we conclude
that the shape of the trapping potential has a strong influence on
the vortex clustering behavior, partially resolving the apparent
contradiction in the existing literature.

B. Statistical mechanics interpretation

The spontaneous formation of Onsager vortices found in
Ref. [27] was attributed to the evaporative heating mechanism
of vortices. When a vortex-antivortex pair annihilates, the in-
compressible kinetic energy Einc of the system is redistributed
among the vortices remaining in the system. This process can
lead to evaporative heating of the vortex gas, whereby the mean
energy per vortex increases each time an annihilation occurs.
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FIG. 1. Comparison of the time evolution of the vortex con-
figuration between the α = 2 harmonic trap (a)–(c) and α = 100
uniform trap (d)–(f). The gray-scale value represents the superfluid
density, and the color bars are normalized to the maximum density:
4.3 × 10−3 a−2

osc and 2.7 × 10−3 a−2
osc for the top and bottom rows,

respectively. Vortices and antivortices are denoted by blue (dark) and
green (light) circles, respectively. The red line represents the effective
dipole moment of the vortex distribution. Movies S1 and S2 in the
Supplemental Material [50] show the dynamics of each simulation.

When the mean energy per vortex crosses a critical value, a
transition into the Onsager vortex state is possible [27].

The absence of strong clustering in the harmonic trap could
be due to (i) the rate of evaporative heating per annihilation
event being too low, leading to inefficient evaporative heating
of the vortex gas, (ii) the critical energy per vortex for the
Onsager vortex transition in a harmonic trap being out of reach
despite the vortices being evaporatively heated, or (iii) the
critical value of the dipole moment for harmonic traps being
too small to allow a clear distinction to be made between
the disordered and clustered vortex configurations. In the
following we argue that the combined effect of (ii) and (iii)
may explain the observed behavior.

1. Dynamical statistical behavior

Figure 2 shows little difference between the vortex number
decay in the two traps. This suggests that the evaporation of
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FIG. 2. Comparison of the vortex number decay and dipole
moment evolution (inset) for the harmonic (red/light) and uniform
(blue/dark) traps. The black circles in the inset correspond to the time
frames displayed in Fig. 1. The fluctuations in the vortex number are
due to vortices crossing the counting radius of 0.9Ro, in addition to
occasional vortex-antivortex pair creation.

FIG. 3. Comparison of statistical behavior between (a) the har-
monic trap and (b) the uniform trap. For each dynamical simulation,
the dipole moment of the vortex configuration is shown as a function
of the incompressible kinetic energy per vortex number squared. The
initial state in each plot is the bottom-left corner, and the evaporative
heating increases the energy per vortex number squared over time. The
data appear as columns because each vortex annihilation increases the
energy per vortex number squared by a discrete amount.

vortices is only weakly affected by the details of the trapping
potential. However, the dipole moment shows quantitatively
different behavior between the two traps, and indicates
strongly enhanced clustering in the uniform trap. To better un-
derstand this difference, we construct a probability distribution
of different vortex configurations generated by the dynamics
in the space spanned by the dipole moment and energy per
vortex number squared by taking the vortex configuration at
each time step to correspond to an independently sampled
microstate. We choose to normalize the energy to the square
of the vortex number to cancel out the N2

v scaling which
occurs in the Onsager limit, as the system tends towards a
multiquantum vortex dipole configuration. Figure 3 shows the
resulting histograms for each trap. In the harmonic trap (a),
the dipole moment shows no significant variation over the
measured range of energy per vortex number squared, and
hence there is no evidence that the system crosses the Onsager
vortex transition. Conversely, the trend in the uniform trap (b)
is a clear indication that the evaporative heating is on average
increasing the dipole moment, causing the system to evolve
towards the Onsager vortex state.

2. Monte Carlo thermodynamics

In order to determine the statistical behavior of the vortex
gas beyond the range accessible via the dynamics, we imple-
ment a Markov chain Monte Carlo (MCMC) algorithm for the
two traps on a 256 × 256 grid. The algorithm is initialized
by imprinting a random configuration of Nv vortices into the
condensate ground state using the imaginary-time propagation
method described in Sec. II B. We set Nv = 12 (six vortices
of each sign) to approximate the late-time configurations of
the dynamical simulations presented in Figs. 1 and 2. Keeping
Nv fixed, each step in the algorithm shifts a single randomly
chosen vortex in the configuration and calculates the value of a
predetermined weighting function w. This new configuration
is then either accepted or rejected based on the change in
the weighting function. Here, we use a Boltzmann factor
w = exp(−Einc/kBT ) as our weighting function, defining T as
the statistical temperature of the vortex gas (which in this case
is negative—see Refs. [27,51,52] for details). The choice of T
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FIG. 4. Statistical data obtained from 100 000-step Markov chain Monte Carlo simulations for a harmonic (red/light) and a uniform
(blue/dark) trap for a total of 12 vortices with equal numbers of vortices and antivortices. The panels show (a) the specific heat, (b) the
incompressible kinetic energy per vortex number squared, and (c) the dipole moment of the configuration, each plotted as a function
of the statistical temperature. The shaded regions in (b) and (c) correspond to the standard deviation of each observable at a given
temperature. The maximum in the specific heat indicates the transition to the Onsager vortex state in each trap, and is accompanied by
an increase in both the energy per vortex number squared and the dipole moment. Panels (d)–(e) and (f)–(g) show typical vortex configurations
at the temperature extremes in the harmonic and uniform traps, respectively, with labeling as in Fig. 1. The temperatures shown in these frames
are indicated in (c) with vertical dashed lines.

determines the most probable vortex configuration. Hence, we
can vary T to alter the statistical behavior of the system—this
is the basis of the evaporative heating interpretation of the
dynamics. To characterize the temperature dependence, we
measure three observables: the energy per vortex number
squared, the dipole moment, and the specific heat, defined
as cv = var(Einc)/(NvT )2. The system is evolved for 110 000
Monte Carlo steps, the first 10 000 of which are disregarded
as the initial condition is, in general, unrepresentative of the
chosen temperature. The results for both traps are shown
in Fig. 4. This MCMC data show the transition from the
disordered state to the Onsager vortex state in each trap,
characterized most obviously by a maximum in the respective
specific heat curves in Fig. 4(a). In addition, both the energy
per vortex number squared and dipole moment begin to
rapidly climb around this critical temperature, signaling the
formation of vortex clusters. For a uniform system with
superfluid density ρs, the critical temperature is predicted to be
Tc = −0.25Nvρs�

2/m2kB [27,51]. For Nv = 12 vortices, this
yields a critical temperature of Tc ≈ −0.019 �ωr/kB , which
agrees well with our data. In a harmonically trapped system,
Fig. 4 shows that Tc will be shifted towards lower temperatures
compared to the uniform system.

The key differences between the two traps are evident
in Fig. 4. Figure 4(c) shows that the dipole moment climbs
to a significantly higher value at the highest temperatures
in the uniform trap compared to the harmonic trap—the

respective vortex configurations are displayed in panels (e)
and (g). In fact, the dipole moment shows only a weak
temperature dependence in the harmonic trap, the most marked
effect being a decrease in its variance at high temperatures.
This suggests that, even if the harmonically trapped system
transitions to the Onsager state, the resulting dipole moment
would remain relatively small when compared to the steeper
traps. Figure 4(b) also shows that the energy per vortex number
squared required to cross the transition is significantly higher
in the harmonic trap. This provides further support for the
absence of clustering in the GPE dynamics in the harmonic
trap, as the evaporative heating does not supply enough energy
to drive the system to these temperatures.

3. Maximum achievable dipole moment

We can predict numerically the maximal separation of the
two Onsager vortex clusters in a given system by calculating
the energy of a vortex dipole as a function of the separation
of the vortex and the antivortex. This yields further insight
as to why the two traps show different clustering behavior.
In an infinite system, increasing the dipole separation will
logarithmically increase the energy of the Onsager dipole
without bound. However, for a bounded system, there exists
a separation which maximizes the energy. For a harmonic
trap, this maximum energy configuration also corresponds to
a stationary state [40,53–55]. The dipole energy landscapes
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FIG. 5. Incompressible kinetic energies of a vortex-antivortex
pair for a range of power-law traps computed using the GPE. The
pair is placed symmetrically in the trap and both vortices are an equal
radial distance from the center. In order of peak location from left to
right, the power-law exponents are α = 2 (red), α = {4,6,8,14,30}
(thin black lines), and α = 100 (blue). In addition, the dipole energy
for an inverted trap (as described in the main text) is shown in light
green (far right peak). The maximal separation is indicated on each
curve with a circle, and is emphasized further on the two extreme
power-law traps, as well as the inverted trap, with a vertical dashed
line.

obtained for various trap steepnesses are presented in Fig. 5,
showing that the energy-maximizing separation increases as a
function of the steepness. This result explains why the MCMC
dipole moments in Fig. 4(b) asymptote to different values in the
high-temperature limit, as the two systems reach their highest
energy at differing cluster separations. In addition to various
power-law traps, Fig. 5 shows the energy in an “inverted” trap.
This trap consists of a steep wall (α = 100) and an additional
repulsive Gaussian potential with a width of Ro/3 which
causes the condensate density to dip in the center. By pushing
the fluid radially outwards, the energy-maximizing separation
of a vortex dipole increases significantly, suggesting that an
Onsager state in this trap should have an even greater dipole
moment than that in the α = 100 trap. We have confirmed
this prediction with a dynamical GPE simulation presented as
movie S3 in the Supplemental Material [50].

C. Vortex annihilation is a many-vortex process

The microscopic underpinning of the evaporative heating
mechanism of vortices is vortex-antivortex annihilation [27].
Scalar Bose-Einstein condensates with quantized vortices have
two types of low-lying excitations—Bogoliubov phonons and
vortex waves [56–58]. Such modes can resonate, mediating
vortex-sound interactions [59,60]. In principle such vortex-
phonon interactions could cause vortex-antivortex pairs to
annihilate via sound-wave emission, which would account for
the conservation of energy and momentum. However, for a
single vortex-antivortex pair this does not occur as has been
supported experimentally [42] and shown theoretically [61].
If such vortex-antivortex pair annihilations are forbidden, this
raises the question of how the vortex number can decay over
time as observed both in the simulations and experiments [19].

The answer must be that vortex-antivortex annihilation
is a many-vortex process. Figure 6 shows a three-vortex
process whereby a vortex-antivortex pair has formed a neutral

FIG. 6. A vortexonium state (formed from a vortex-antivortex
pair) highlighted in (a) with a dashed oval colliding with an antivortex
and dissipating into fluid sound waves which disperse radially,
indicated in (b) and (c) with dashed circles. The vortices and color bar
are labeled as per Fig. 1. Supplemental movie S4 shows the dynamics
of this event [50], including the wave function phase.

vortexonium state (a rarefaction pulse), in which the individual
vortex phase singularities are no longer discernible yet the
excitation retains its identity as a spatially localized bound
state. This excitation is reminiscent of positronium—a neutral
bound state of an electron and a positron. The vortexonium,
which is identifiable by a phase step, travels close to the
speed of sound until it eventually scatters off an additional
vortex or antivortex, as shown in Figs. 6(b) and 6(c). This
decay process irreversibly disperses the energy and momentum
of the vortexonium into sound waves [22,62]. Until this
secondary process occurs, the vortexonium can also re-form
as a vortex-antivortex pair, an event which frequently occurs
when a vortexonium state travels into the low-density region
near the boundary of the trap. The formation of vortexonium
as a precursor to the vortex-antivortex annihilation process in
2D BECs has been discussed previously [19,30,63,64]. Here,
we identify the three-vortex collision to be an essential part of
the annihilation process in 2D superfluid turbulence.

The question remains how these vortexonium states form
to begin with. In a uniform system free from dissipation,
an isolated vortex-antivortex pair will travel with constant
velocity and intervortex separation. Therefore, some mecha-
nism other than sound-induced interaction must be responsible
for reducing the pair’s separation and forming vortexonium.
In our simulations, we observe two ways this bound state
can form. First, a vortex-antivortex pair traveling towards a
higher density region will reduce its separation in order to
satisfy energy conservation, often forming a vortexonium state.
However, this process only occurs in traps with shallow walls,
where the density variation is significant. The second process
we observe is the shrinking of a vortex-antivortex pair via
a long-range interaction with a third vortex. By giving up
some of its energy to this catalyst vortex, the pair can reduce
their separation, ultimately resulting in a vortex-antivortex
fusion event and the formation of a vortexonium state. We
note that this latter process is ubiquitous in all traps studied.
However, in the presence of dissipation, both the formation
and annihilation of vortexonium would be possible without
additional interactions, as the loss of energy would gradually
drive vortex dipoles closer together regardless (see Sec. III D).
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FIG. 7. Feynman diagram depicting the entire vortex-antivortex
annihilation process observed, with time flowing from left to right.
The straight lines represent vortices (v+) and antivortices (v−), the
double line represents vortexonium (v∗), and the wavy line denotes
the sound waves emitted at each vertex (the magnitude of the second
burst of sound is far greater than the first). The light blue lines indicate
participating catalyst vortices, which are not annihilated during the
process.

Combining these observations, we obtain a picture of the
vortex-antivortex annihilation process, depicted as a Feynman
diagram in Fig. 7 which shows how four vortices are involved
in the annihilation. Movie S4 in the Supplemental Material [50]
shows one such four-vortex process. In the first stage a vortex-
antivortex pair interacts with a catalyst vortex to produce a
vortexonium state and in the second stage the vortexonium
scatters off a catalyst vortex leading to the ultimate destruction
of the vortex-antivortex pair and the emission of sound. The
catalysts can be any vortex or antivortex in the system.

D. Rate equation for evaporative heating of vortices

Attempts have previously been made to fit a universal law
to the vortex number decay [19,25,30,65]. Kwon et al. [19]
proposed a phenomenological model of the form dNv/dt =
−�1Nv − �2N

2
v , comprised of a linear term to model vortex

drift out of the condensate and a nonlinear term to account
for vortex-antivortex annihilation, where the �1 and �2 are the
one-body and two-body decay constants, respectively.

We find that, due to the zero temperature of the GPE
simulations, this equation does not provide an adequate fit
to our vortex number decay curves. Instead, for t � 30ω−1

r ,
the vortex number decay is well described by a power law
of the form Nv(t) ∝ (ωrt)−1/3 in all traps. This is evident
in Fig. 8, which shows the number decay in a harmonic
trap averaged over five simulations at 512 × 512 resolution.
This power law was also observed by Schole et al. [25],
who further suggested that the vortex number rate equation
should have the form dNv/dt ∼ −N4

v . This would reflect the
importance of a four-body loss process at zero temperature,
in contrast to the one- and two-body loss observed in Kwon
et al.’s experiments [19]. The four-vortex annihilation events
discussed in Sec. III C are consistent with this four-body loss
mechanism.

To study the effect of the thermal cloud, we model nonzero
temperatures using a damped Gross-Pitaevskii equation [66]:

(i − γ )�
∂

∂t
ψ(r,t) =

[−�
2

2m
∇2 + Vtrap(r)

+ g2D|ψ(r,t)|2 + iγμ

]
ψ(r,t), (3)
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FIG. 8. Ensemble-averaged vortex number decay curves for
harmonically trapped systems at zero temperature (γ = 0, solid
red/dark line) and nonzero temperature (γ = 10−3, solid green/light
line). The fits for each curve to Eq. (4) are shown as black dashed
lines, with �1 = 0.14 s−1, �2 = 0.044 s−1, �3 = �4 = 0 for the
nonzero-temperature case, and �1 = �2 = 0, �3 = 1.2 × 10−4 s−1,
�4 = 8.1 × 10−7 s−1 for the zero-temperature case.

where γ is the temperature-dependent dimensionless damping
parameter, and μ is the chemical potential. We propose a
general rate equation for vortex loss at all temperatures:

dNv

dt
= −�1Nv − �2N

2
v − �3N

3
v − �4N

4
v − · · · , (4)

where �n is the decay constant corresponding to a particular
n-body loss mechanism. This model combines the one- and
two-body loss processes observed in experiments [19] with the
higher order three- and four-vortex loss processes observed
in our zero-temperature simulations. Strictly, a three-vortex
decay process is not possible since it would violate the vortex
charge conservation law. We instead interpret the three-body
term as the loss of two vortices arising from the collision of
three (i.e., a vortexonium colliding with a catalyst vortex, as
discussed in Sec. III C).

We have chosen the damping parameter γ = 10−3 to study
the vortex number decay behavior at nonzero temperature.
Figure 8 shows the decay curves for zero temperature (γ = 0)
and nonzero temperature (γ = 10−3), each averaged over five
simulations in a harmonic trap using a 512 × 512 numerical
grid. We model both cases using Eq. (4). For the γ = 10−3

case, we find that the decay is best described by a one- and
two-body model, with �1 = 0.14 s−1, �2 = 0.044 s−1, and
�3 = �4 = 0. These values are in good agreement with those
found by Kwon et al. [19]. By contrast, the γ = 0 case is best
described by a three- and four-body decay model with decay
constants �1 = �2 = 0, �3 = 1.2 × 10−4 s−1, and �4 = 8.1 ×
10−7 s−1. We conclude that the three- and four-body vortex loss
processes are characteristic of zero-temperature systems, and
that one- and two-body events become dominant at sufficiently
high temperature. Quantifying the transition between these two
behaviors at intermediate temperatures is left for future study.

E. Interaction between vortices and boundaries

In our harmonic trap simulations, the multivortex collision
process described in Sec. III C is the only mechanism of vortex
annihilation, excluding a small proportion of vortices which
drift out of the condensate. By contrast, the presence of a
hard boundary in the steeper traps allows for a number of
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additional phenomena relating to the dynamics and decay of
vortex-antivortex pairs. In particular, we observe three distinct
vortex-boundary collision processes, two of which give rise to
additional vortex decay branches.

When a single vortex is near the boundary, it will pair up
with its image vortex of opposite sign beyond the wall and
travel around the circumference of the trap at high velocity.
If the separation reduces sufficiently, this vortex-image pair
can form a vortexonium with a phase step along the tangent
of the wall. As this bound state travels around the boundary, it
can either unbind and reform the vortex-image pair, or it can
annihilate in much the same way as a vortexonium in the fluid
bulk—by colliding with another vortex.

We observe a similar process involving the collision of
a vortex-antivortex pair with the boundary. When the pair
collides with the wall, it unbinds into two separate vortex-
image pairs, which then travel around the boundary in opposite
directions, as shown in Figs. 9(a)–9(c). If traveling at high
enough velocity, one or both of these new vortex-image pairs
can form vortexonium excitations, which can then decay as
described above. Often, the collision will be violent enough
to cause one of the vortices in the initial pair to annihilate
immediately, while the other one is left to travel around the
boundary.

If the initial conditions are such that the vortex-antivortex
pair which is incident on the boundary has already fused
and formed a vortexonium excitation, the collision dynamics
become markedly different. Figures 9(d)–9(f) show that the
vortexonium will not separate at the boundary, but rather reflect
from it, reversing its propagation direction. This effectively
changes the sign of the vortices in the bound state, and can be
understood as an exchange of locations with the image vortices
beyond the boundary. Effectively, the image vortexonium
travels into the condensate, while the real vortexonium leaves.

FIG. 9. (a)–(c) Unbinding of a vortex pair at the boundary in
the uniform trap; (d)–(f) reflection of a vortexonium state at the
boundary in the uniform trap. The green arrows show the direction
each excitation is traveling. The insets in (a) and (d) show the phase
of the wave function in the corresponding frame, showing the two
singularities in (a) and the phase step in (d). The sound wave produced
by each collision event propagates outwards in (c) and (f). The color
bar is normalized to the maximum condensate density, as in Fig. 1.
Movies S6 and S7 in the Supplemental Material [50] show each event
in full.
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FIG. 10. Comparison of dipole moment evolution in traps of
varying steepness. Each curve is averaged over five simulations. The
trap steepnesses are (from bottom to top) α = 2 (solid red line), α = 8
(dot-dashed black line), α = 14 (dotted black line), α = 30 (dashed
black line), α = 100 (solid blue line), and an α = 100 inverted trap
(solid green line).

Remarkably, for the steepest potentials, the proportion of
vortices annihilated at the boundary (i.e., via one of the first two
processes described above) accounts for approximately half of
the total vortex loss. Despite this clear spatial dependence of
annihilation behavior which is absent in the harmonic trap, the
vortex number decays at the same rate (see Fig. 2) and the
evaporative heating does not appear to be any more efficient.
It seems plausible that boundary annihilations would increase
evaporative heating efficiency, as less energy should be lost
per annihilation (as the energy of a vortex in the low density
close to the system’s boundary is less than in the fluid bulk),
leaving more for the remaining vortices. However, we have
found no strong evidence of this effect.

F. Onsager vortex formation as a function of trap steepness

We repeated our Gross-Pitaevskii simulations of decaying
turbulence for a number of trap steepnesses ranging between
the two extremes examined in Secs. III A and III B by varying
the value of α in Eq. (2). Five GPE simulations were performed
in each of the chosen trap geometries using a 512 × 512 grid,
and the dipole moment curves obtained for each steepness
were combined by taking averages at each point in time. These
averaged dipole moment curves are shown in Fig. 10. On
average, a steeper trap produces a larger dipole moment and
thus a greater separation of vortex charge. As predicted from
energy considerations in Sec. III B, an inverted trap produces
even stronger clustering than any of the power-law traps. For
the power-law traps, it appears that the clustering behavior
saturates beyond a steepness of α ≈ 30. The dipole moments
in Fig. 10 should be compared with their predicted maximum
values shown in Fig. 5.

IV. DISCUSSION

We have studied decaying two-dimensional quantum turbu-
lence using the Gross-Pitaevskii model. We have considered
Bose-Einstein condensates confined in generic power-law
traps which, in particular, enables a comparison to be made
between vortex dynamics in harmonically trapped condensates
and in condensates confined in (nearly) uniform density disk
traps. When an initial random vortex configuration is left
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to decay, we find that in uniform traps the vortices and
antivortices arrange into Onsager vortex clusters due to the
evaporative heating mechanism posited in Ref. [27]. However,
when a harmonic trapping potential is used, the emergence
of Onsager vortices is not obvious—a finding which agrees
with experimental observations [19]. To verify that these
results are not specific to our randomly sampled initial vortex
configurations, we repeated our simulations in both traps
using a repulsive Gaussian laser potential to stir the fluid and
produce the initial state vortex configuration, as in Ref. [30].
Considering both lateral and circular stirring motions, the
qualitative vortex evaporative heating behavior in the harmonic
and uniform traps was unaffected. This result was expected
since a turbulent system should rapidly forget its history,
washing out any initial state dependence.

We also performed Monte Carlo calculations to study
equilibrium vortex configurations in harmonic and uniform
traps. These calculations showed that the transition from
disordered vortex configurations to the clustered Onsager
vortex states exist also in harmonic traps but the resulting
vortex dipole moment is significantly smaller than for uniform
traps, which partly explains why the Onsager vortex clusters
have not been observed to emerge in harmonically trapped
Bose-Einstein condensates.

To obtain an improved understanding of the vortex evapora-
tive heating mechanism [27], we carefully tracked the vortex-
antivortex annihilation events in the simulations. At zero
temperature, we found that vortex-antivortex pair annihilation
in these quantum turbulent systems occurs via a combination of
three- and four-body processes, involving one or two catalyst

vortices, respectively, in addition to the annihilating pair.
Firstly, a vortex-antivortex pair forms a vortexonium bound
state by either travelling through varying density (three-body)
or interacting with a catalyst vortex (four-body). In both cases,
this bound state then has to interact with a catalyst vortex for it
to irreversibly decay into phonons. Indeed, it has been shown
both experimentally [42] and theoretically [61] that an isolated
vortex-antivortex pair is resistant to sound-induced decay. By
adding dissipation to the Gross-Pitaevskii model, we simulated
a nonzero temperature system and found that the three- and
four-body annihilation mechanisms become less important,
and instead one- and two-body annihilation events begin to
dominate, in agreement with experimental observations [19].

By considering power-law traps of varying steepnesses, we
found that the vortex clustering tendency becomes stronger
as the trap steepness is increased. Finally, we found that
a locally and weakly antitrapping potential [67–69] should
provide the most promising route to experimental observation
of the emergence of the Onsager vortices, which could possibly
be detected using the vortex gyroscope imaging technique
proposed in Ref. [70].
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Weitenberg, S. Nascimbène, J. Beugnon, and J. Dalibard, Nat.
Commun. 6, 6162 (2015).

[47] J. Lee, S. Eckel, F. Jendrzejewski, C. J. Lobb, G. K. Campbell,
and W. T. Hill III, arXiv:1506.08413.

[48] The evaporative heating mechanism does not rely on starting
with a specific vortex configuration—the initial condition simply

determines how much heating is required to reach the clustered
Onsager vortex states.

[49] M. Tsubota, K. Kasamatsu, and M. Ueda, Phys. Rev. A 65,
023603 (2002).

[50] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevA.93.043614 for corresponding movies.

[51] R. H. Kraichnan and D. Montgomery, Rep. Prog. Phys. 43, 547
(1980).

[52] J. A. Viecelli, Phys. Fluids 7, 1402 (1995).
[53] S. Middelkamp, P. G. Kevrekidis, D. J. Frantzeskakis, R.
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