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Nondestructive probing of means, variances, and correlations of ultracold-atomic-system
densities via qubit impurities
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We show how impurity atoms can measure moments of ultracold-atomic-gas densities, using the example
of bosons in a one-dimensional lattice. This builds on a body of work regarding the probing of systems by
measuring the dephasing of an immersed qubit. We show that this dephasing is captured by a function resembling
characteristic functions of probability theory, of which the derivatives at short times reveal moments of the system
operator to which the qubit couples. For a qubit formed by an impurity atom, in a system of ultracold atoms,
this operator can be the density of the system at the location of the impurity, and thus means, variances, and
correlations of the atomic densities are accessible.
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I. INTRODUCTION

The impressive quantum control and versatility achieved
in cold quantum gas experiments [1] exemplify their use
for quantum technologies, such as quantum simulation [2,3]
and quantum information processing [4]. Typical methods for
measuring these systems, such as time-of-flight imaging of the
momentum distribution [1,5–8] and in situ imaging of density
[9–12], require destroying the system. Each measurement is
of a single shot of the system state, and hence finding averages
requires repeated trapping and cooling of the system.

In this work, we propose an alternative method where
trapped atomic impurities forming qubit probes are immersed
in the system, entangling system and probes. Each qubit is
dephased, and measuring this dephasing reveals information
about the system [13–18]. The dephasing relates to the system
operator to which the probes couple, and for typical low-
energy interactions between cold atoms this is the density
of the system at the location of the impurity. We show
that this enables measurement of not only the mean density
but also density variances and correlations between different
locations. This exploits the similarity of the dephasing function
to characteristic functions of probability theory, allowing
moments of the density to be determined. A major advantage
of this scheme is that it is potentially nondestructive, leaving
the system intact and allowing for repeated measurements.

As our example, we consider a gas of bosons in a one-
dimensional lattice, described by the Bose-Hubbard model.
We demonstrate, by simulating the gas and impurity atoms for
typically accessible experimental parameters, that our protocol
can faithfully capture, even in the presence of errors, the
behavior of density-related properties, over a range of phases
of the system, thus providing an additional tool for measuring
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ultracold atoms. Moreover, since we develop the protocol
generically, independent of the particular system, our work
contributes to and furthers the ongoing development of meth-
ods for characterizing systems using coupled nonequilibrium
dynamics, in cold atom and other setups, by observing the
dephasing of a qubit in an environment [19–26].

II. GENERIC QUBIT PROBE

A. Extracting the dephasing function

We consider a qubit with Hamiltonian Hq = ωq |1〉〈1|
immersed in a system with Hamiltonian Hsys. Here ωq is the
energy difference between the qubit states {|0〉,|1〉}. State |1〉
couples with strength κ to system operator Hint, which we call
the interaction Hamiltonian, such that the combined system is
described by the Hamiltonian

H = I ⊗ Hsys + Hq ⊗ I + κ|1〉〈1| ⊗ Hint, (1)

where I is the identity operator. We define the Hamiltonians
H0 = Hsys and H1 = Hsys + κHint, describing the system
evolution for each qubit state [27].

In a Ramsey-like scheme (Fig. 1), we initialize the qubit at
times t < 0 in the noninteracting state |0〉 and the system in
state ρsys. At t = 0, the qubit is suddenly switched to the state
(|0〉 + |1〉)/√2 [28]. For times t � 0, the system and qubit
then evolve according to the Hamiltonian (1), such that at time
t the qubit state is

ρq(t) = 1

2

(
1 eiωq tL(t)

e−iωq tL∗(t) 1

)
.

Here we define the dephasing function (sometimes called
the overlap function) L(t) = 〈eiH1t e−iH0t 〉, with expectations
taken for the initial system state ρsys. Values of the dephasing
function L(t) are related to the expectations of the Pauli
operators: 〈σx〉 = Re[eiωq tL(t)] and 〈σy〉 = Im[eiωq tL(t)].

The dephasing function has been investigated previously to
study properties such as the orthogonality catastrophe in ultra-
cold fermions [19,20], the Luttinger parameter [13], and su-
perfluid excitations [18], as a method of thermometry [14–17],
and to extract work distributions [23–25]. In this work, we
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FIG. 1. Quantum circuit for obtaining the dephasing function
from measurements of the probe qubit. Here, H = (σx + σz)/

√
2

is the Hadamard gate, and Uj = e−iHj t is the evolution of the system
under Hamiltonians Hj for a time t .

proceed by investigating the derivatives of the dephasing
function, motivated by the similar structure it shares with the
characteristic function of a probability distribution [29].

B. Derivatives of the dephasing function

In a strong-coupling limit, where energies associated with
the interaction Hamiltonian κHint are much larger than those
of the system Hamiltonian, at sufficiently short times that
〈eiHsyst 〉 ≈ 1 the dephasing function tends towards Lstrong(t) =
〈eiκHintt 〉. This is the characteristic function of the interaction
Hamiltonian. Thus, like such functions in probability theory,
from this all moments of Hint can be obtained directly from
derivatives:

〈
Hn

int

〉 = 1

(iκ)n
dnLstrong(t)

dtn

∣∣∣∣
t=0

.

The drawback of this limit is that it may not be easily
accessible in experiment for some systems, as it requires
a large coupling strength to be engineered between system
and probes. Increasing the coupling strength also decreases
the time scales over which L(t) evolves, and hence requires
sufficiently quick switching of the qubit state or ramping of κ ,
and sufficiently fine time resolution of the qubit measurements
that the derivatives at t = 0 are resolvable.

Positively, it is possible to extract the first two moments
of Hint for arbitrary κ . Considering the derivatives of L(t)
directly,

〈Hint〉 = 1

iκ

dL(t)

dt

∣∣∣∣
t=0

, (2)

and

〈
H 2

int

〉 = −1

κ2
Re

(
d2L(t)

dt2

∣∣∣∣
t=0

)
, (3)

where we have used that the commutator [H0,H1] is anti-
Hermitian and thus has a purely imaginary expectation value.
We now focus on these first two moments of the interaction
Hamiltonian Hint, as they can be extracted from derivatives of
L(t) for any κ , allowing more experimental flexibility.

C. Estimation protocol and errors

At short times, the first and second derivatives Eqs. (2) and
(3) dominate the imaginary and real parts of the dephasing
function derivatives, respectively, and thus it is possible to
extract the first two moments 〈Hint〉 and 〈H 2

int〉 by fitting
linear and quadratic functions to the initial behavior of
Im[L(t)] and Re[L(t)], respectively, using that L(0) = 1.
More precisely, we first obtain estimates L̄(n�t) of values

L(n�t) at discrete times n�t , for integer n up to a maximum
Nε corresponding to time tε = Nε�t . We then perform two
least-squares estimations, minimizing

Nε∑
n=1

{Im(L̄(n�t)) − αn�t}2,

Nε∑
n=1

{
Re(L̄(n�t)) − 1 − β

2
(n�t)2

}2

,

with respect to α and β, and take the minimizing values ᾱ and
β̄ as our estimates of κ〈Hint〉 and κ2〈H 2

int〉, respectively [30].
The choice of tε should be such that it optimizes the number of
points used in the fit without being so large that the imaginary
and real parts of L(t) stop behaving approximately linearly
and quadratically, respectively [31].

Each estimate L̄(n�t) of L(n�t) is obtained by estimating
〈σμ〉 (μ = {x,y}), by averaging outcomes of N repeated
measurements of σμ. The resulting estimate will be unbiased,
and for enough measurements will be Gaussian with a variance
that can be calculated from L(n�t), given by (1 + L)(1 − L)/
4N , and hence attenuates to a few percent for a reasonable
number of measurements. In our examples, we will treat
this finite number of measurements as the main source of
error in estimating L(n�t), though other noise-based errors
(such as imprecision in the time at which measurements are
made and stochastic imperfections in the gate implementation)
will behave in the same manner, and so can be considered
equivalently. We will also implicitly account for the error
arising from the discrete and finite nature of the time steps
at which measurements are made, and in the backaction of
the system-probe interaction on the system state. Other errors
that we will not directly account for in our simulations are
the finite time required to implement gates (which may be
neglected when this occurs on time scales much shorter than
that at which the measurements are made) and systematic
imperfections in the gate implementation, which result in a
deterministic multiplicative factor to the dephasing function
[17], and may be accounted for by the corrective factor needed
to ensure L(0) = 1.

III. IMPLEMENTATION IN ULTRACOLD
ATOMIC SYSTEMS

We now consider a possible implementation of the protocol
for probing ultracold (single species) atomic gases. A probe
qubit is formed by two internal states of an impurity atom
of a different species [20], trapped deeply such that its
spatial wave function ψq(x) is fixed [32]. The necessary
gates may be applied to the impurity qubit using a Rabi
laser pulse, and measurements performed using gates and
state-dependent fluorescing. With interparticle interactions
suppressed within the impurity gas, multiple probes can be
active simultaneously, as illustrated in Fig. 2; such mixtures
of quantum gases have already been achieved experimentally
[33–36]. Repeat measurements do not require the gas and
impurities to be retrapped, and can hence be nondestructive,
though the measurement will perturb the system and is hence
not nondemolition.

The impurity qubit and atoms comprising the system inter-
act through s-wave scattering, potentially controlled through
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FIG. 2. Implementation of the protocol with ultracold atoms. The
quantum gas is represented by the blue cloud, while the red atoms
are the impurity probes. Moments of the interaction Hamiltonian
are found through measurements of the impurities’ internal states,
represented by arrows.

Feshbach resonances [8,37]; hence we have an interaction of
the form

Hint =
∫

dxn(x)|ψq(x)|2 ≡ ñ(x),

where n(x) is the density of atoms in the system, and ñ(x) is the
system density course-grained over the impurity density. Our
protocol thus allows probing of the moments of this course-
grained density. When the impurity is highly localized around
xi ,ñ(x) is then given by the gas density at this point, n(xi).
In this case, our protocol will estimate the moments of the
density at this point, 〈n(xi)〉 and 〈n(xi)2〉 [Eqs. (2) and (3)].
Additionally, since impurity atoms can be localized to regions
smaller than the wavelength of light, the spatial resolution is
potentially higher than for in situ imaging.

If the impurity is in a superposition of being localized to two
distinct locations xi and xj (for example, by placing it in a lat-
tice potential, and using tunneling as a beamsplitter operation
[38]), then ñ(x) = [n(xi) + n(xj )]/2, and our protocol will
then estimate 〈n(xi) + n(xj )〉 and 〈(n(xi) + n(xj ))2〉. Using
these and the previous results, an estimate for the correlation
function 〈n(xi)n(xj )〉 is obtained. Alternatively, this can also
be achieved using two qubits localized at xi and xj with
entangled internal states (|00〉 + |11〉)/√2, thus behaving as a
single effective qubit with a density equal to the sum of that of
the individual probes.

IV. SIMULATION FOR ULTRACOLD ATOMS
IN A LATTICE

We now simulate an example application of the protocol
to a Bose gas trapped in an optical lattice, obeying the one-
dimensional Bose-Hubbard Hamiltonian [2,39]

Hsys = −J
∑
〈i,j〉

(b†i bj + b
†
j bi) + U

∑
i

b
†
i b

†
i bibi . (4)

Here bi (b†i ) annihilates (creates) a boson localized at site
i (with number operator ni = b

†
i bi), and 〈i,j 〉 denotes a sum

over nearest-neighbor sites. The energies J and U parametrize
hopping between neighboring sites and on-site interactions,
respectively. We simulate a one-dimensional system with 101
lattice sites and unit filling factor, and we examine the system
for U/J in the interval 0.1 : 6, spanning the whole phase
diagram of the model at this filling factor [2]. We are concerned
entirely with investigating the ground state ρsys of the system.

We use parameters that assume a realistic time-resolution
in the measurements of the probe qubit dephasing. We
choose κ = J , and �t = 0.05J , allowing us to take Nε � 20

measurement points in our fit. For typical J ∼ 103
�Hz [39],

this corresponds to a measurement interval �t ∼ 50 μs [40].
With these parameters, we simulate application of our

protocol to the Bose-Hubbard model, by calculating L(n�t),
adding stochastic noise to these values to simulate how
estimates L̄(n�t) would be obtained in a real experiment,
then estimate one- and two-site correlations of site occupation
numbers from these simulated values. These estimated values
are then compared to exactly calculated equivalents. For both
parts, calculating dephasing function L(t) and ground-state
expectation values, we use the time-evolving block decimation
(TEBD) algorithm [41–43] (see the Appendix for details).

We begin our analysis by considering an impurity localized
at some point xi near the central site i = 51 such that Hint = ni .
We plot the real and imaginary parts of the dephasing function
L(t) for U/J = 3 in Fig. 3(a), together with their simulated
noisy estimates L̄(n�t) obtained from N = 104 measurements
of the qubit. We apply our fitting procedure to estimate the
derivatives of the dephasing function and thus the moments
of the interaction Hamiltonian, giving estimates of 〈ni〉 and
〈n2

i 〉. In Fig. 3(b) we analyze the choice of tε = Nε�t to use
in estimating the expected occupation 〈ni〉, by averaging over
many noisy trajectories. As expected, the accuracy initially
increases with Nε , benefiting from an increase in the number
of points used in the fit due to a corresponding decrease in
random error. However, for larger tε the accuracy decreases
with Nε as times are included for which higher-order terms in
L(t) beyond the linear fit begin to play a significant role and
thus introduce a systematic error. The same is shown for 〈n2

i 〉
in Fig. 3(c), with the slight decrease in accuracy highlighting
the increasing difficulty in estimating higher-order derivatives
and thus moments. We find tεJ = 0.2 to be approximately
optimal for estimating the moments.

With this tε we assume the protocol is repeated with the
impurities configured so as to probe Hint = nj and ni + nj .
We then estimate the mean 〈ni〉 and variance 〈n2

i 〉 − 〈ni〉2

of occupation at the central site, and the correlations Ci,j =
〈ninj 〉 − 〈ni〉〈nj 〉 between this central site and neighboring
site j = i + 1. The results are plotted in Fig. 3(d). The markers
show the value calculated from a single run of a noisy trajectory
at each U/J , and the dashed lines show a cubic smoothing
spline fit [44] over varying interaction strength for these data,
while solid lines show the exact values. We observe that,
though individual data points display a noticeable error, fitting
over the whole parameter range the quantitative values can be
obtained faithfully to a high degree of accuracy.

V. SUMMARY AND OUTLOOK

We have investigated a method of using a qubit to probe
properties of a system to which it is coupled. In particular,
we have introduced a way to calculate moments of a so-called
interaction Hamiltonian through the derivatives of a dephasing
function that can be obtained through measurements of solely
the qubit state, even for a weakly interacting qubit. Further,
we have discussed how this protocol could be implemented
for ultracold atomic systems, to reveal properties of the gas
density. We trialed the protocol by applying it successfully
to simulations of atoms trapped in an optical lattice in one
dimension.
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FIG. 3. Example application of the protocol. (a) The effect of Gaussian white noise on the dephasing function, with error bars denoting the
standard deviation. The fractional error in the calculated (b) density and (c) square of density with increasing length of time used for the fit.
(d) Fluctuations and correlations; solid lines show exact values, markers show the calculated values, and dashed lines show the fits to calculated
values. (a–c) simulate a system with U = 3J , and for all plots κ = J with a measurement resolution �tJ = 0.05.

A direct application of this would be to probe phase
transitions in the Bose-Hubbard model; for example, mean-
field treatments, valid in higher dimensions, have found 〈bi〉 to
be a suitable order parameter [45,46] for the superfluid-Mott
insulator transition. The density fluctuations reveal whether
this is nonzero, and hence also map out the phase diagram.
Since our protocol is valid in any number of dimensions,
this suggests that it could potentially be used as a way to
nondestructively probe the transition. Our protocol could be
extended beyond the current system, perhaps by manipulating
the interaction between probe and system to allow other
quantities to be probed, not just those related to density. For
example, for bosons with spin, if κ is sensitive to the spin (i.e.,
κ ∝ Sz), then magnetization properties could also be probed.
Alternatively, as the protocol has been derived generically, it
could also be applied to other systems outside of cold atoms
where similar probe-system interactions can be achieved,
such as trapped ions [23] and nuclear magnetic resonance
spins [25].
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APPENDIX: TEBD ALGORITHM

TEBD allows for the efficient classical simulation of
the dynamical evolution of a pure quantum system on a
one-dimensional lattice [41–43]. The algorithm operates by
storing the state as a matrix product state (MPS) [47]. An
arbitrary quantum state may require an exponential scaling in
the bond dimension χ of this MPS. However, ground states
and low-lying states (including short-time quenches from a
ground state, as considered here) of local one-dimensional
Hamiltonians may be very accurately represented by an MPS
with a small bond dimension O(1 − 102) [48], resulting in a
tractable representation of the state. The MPS is then evolved
for each discrete time step δt according to a Hamiltonian
H formed of single-site and two-site nearest-neighbor terms,
after performing a Suzuki-Trotter decomposition [49] of the
evolution operator e−iHδt . The algorithm can also be used to
find the ground state of a Hamiltonian, by performing the
evolution in imaginary time. Expectation values of single-site
and two-site operators can be calculated for an MPS after
decomposing them into a matrix product representation.

The one-dimensional Bose-Hubbard model is well suited to
such simulation, as the Hamiltonian (4) consists only of one-
and two-site nearest-neighbor operators. We have here used
imaginary time evolution to obtain the ground-state MPS, and
evolved this state according to each of H0 and H1. The overlap
of these evolved states then gives us an expression for the
dephasing function (up to a known phase). We also found
the expectation values for the observables ninj (ni = b

†
i bi),
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for the purpose of providing exact values for comparison to
the results obtained from the protocol. In our simulations we

limited the maximum occupation per site to four bosons, with
χ = 50 and time step δtJ = 10−3.
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Nature (London) 462, 74 (2009).

[11] J. F. Sherson, C. Weitenberg, M. Endres, M. Cheneau, I. Bloch,
and S. Kuhr, Nature (London) 467, 68 (2010).

[12] C. Weitenberg, M. Endres, J. F. Sherson, M. Cheneau, P. Schauß,
T. Fukuhara, I. Bloch, and S. Kuhr, Nature (London) 471, 319
(2011).

[13] A. Recati, P. O. Fedichev, W. Zwerger, J. von Delft, and P. Zoller,
Phys. Rev. Lett. 94, 040404 (2005).

[14] M. Bruderer and D. Jaksch, New J. Phys. 8, 87 (2006).
[15] C. Sabı́n, A. White, L. Hackermuller, and I. Fuentes, Sci. Rep.

4, 6436 (2014).
[16] D. Hangleiter, M. T. Mitchison, T. H. Johnson, M. Bruderer,

M. B. Plenio, and D. Jaksch, Phys. Rev. A 91, 013611 (2015).
[17] T. H. Johnson, F. Cosco, M. T. Mitchison, D. Jaksch, and S. R.

Clark, arXiv:1508.02992 (2015).
[18] F. Cosco, M. Borrelli, F. Plastina, and S. Maniscalco,

arXiv:1511.00833 (2015).
[19] J. Goold, T. Fogarty, N. Lo Gullo, M. Paternostro, and Th.

Busch, Phys. Rev. A 84, 063632 (2011).
[20] M. Knap, A. Shashi, Y. Nishida, A. Imambekov, D. A. Abanin,

and E. Demler, Phys. Rev. X 2, 041020 (2012).
[21] M. Borrelli, P. Haikka, G. De Chiara, and S. Maniscalco,

Phys. Rev. A 88, 010101 (2013).
[22] P. Haikka, S. McEndoo, and S. Maniscalco, Phys. Rev. A 87,

012127 (2013).
[23] R. Dorner, S. R. Clark, L. Heaney, R. Fazio, J. Goold, and V.

Vedral, Phys. Rev. Lett. 110, 230601 (2013).
[24] L. Mazzola, G. De Chiara, and M. Paternostro, Phys. Rev. Lett.

110, 230602 (2013).
[25] T. B. Batalhão, A. M. Souza, L. Mazzola, R. Auccaise, R. S.

Sarthour, I. S. Oliveira, J. Goold, G. De Chiara, M. Paternostro,
and R. M. Serra, Phys. Rev. Lett. 113, 140601 (2014).

[26] P. Haikka and S. Maniscalco, Open Syst. Inf. Dyn. 21, 1440005
(2014).

[27] More generally, we can define Hj = 〈j |H|j〉 for j = 0,1.
Additionally, while here we have H0 = Hsys and H1 = Hsys +
κHint, the crucial quantity in our analysis is H1 − H0, here equal

to κHint. Thus, the state |0〉 can also be allowed to interact with
the system, provided H1 − H0 has the desired form.

[28] Equivalently, the qubit can be initialized in the |+〉 state with
κ = 0 for t < 0, with κ then ramped up quickly at t = 0.

[29] L. Fusco, S. Pigeon, T. J. G. Apollaro, A. Xuereb, L. Mazzola,
M. Campisi, A. Ferraro, M. Paternostro, and G. De Chiara,
Phys. Rev. X 4, 031029 (2014).

[30] It is possible to further increase the accuracy of the fit by using
an initial estimate of L(n�t) to estimate the variances of L̄(n�t)
and then weighting the least-squares fit accordingly.

[31] Deviations from linear and quadratic behavior, respectively,
could be accounted for by including higher-order terms in the
fit, the corresponding coefficients of which are discarded after
the fit is made.

[32] Thus, ψq (x) may be treated as a c-number function. This
approximation is valid when the trapping potential is much
stronger than the interaction energy κ .

[33] G. Roati, F. Riboli, G. Modugno, and M. Inguscio, Phys. Rev.
Lett. 89, 150403 (2002).

[34] S. Inouye, J. Goldwin, M. L. Olsen, C. Ticknor, J. L. Bohn, and
D. S. Jin, Phys. Rev. Lett. 93, 183201 (2004).
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