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Quantum simulation of a topological Mott insulator with Rydberg atoms in a Lieb lattice

A. Dauphin,'->3" M. Miiller,>* and M. A. Martin-Delgado?
! Center for Nonlinear Phenomena and Complex Systems-Université Libre de Bruxelles, 231, Campus Plaine, B-1050 Brussels, Belgium
2Deparmment0 de Fisica Teorica I, Universidad Complutense, 28040 Madrid, Spain
3ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
“Department of Physics, Swansea University, Singleton Park, Swansea SA2 8PP, United Kingdom
(Received 20 October 2015; revised manuscript received 20 January 2016; published 11 April 2016)

We propose a realistic scheme to quantum simulate the so-far experimentally unobserved topological Mott
insulator phase—an interaction-driven topological insulator—using cold atoms in an optical Lieb lattice. To this
end, we study a system of spinless fermions in a Lieb lattice, exhibiting repulsive nearest- and next-to-nearest-
neighbor interactions and derive the associated zero-temperature phase diagram within mean-field approximation.

In particular, we analyze how the interactions can dynamically generate a charge density wave ordered, a nematic,
and a topologically nontrivial quantum anomalous Hall phase. We characterize the topology of the different phases
by the Chern number and discuss the possibility of phase coexistence. Based on the identified phases, we propose
a realistic implementation of this model using cold Rydberg-dressed atoms in an optical lattice. The scheme,
which allows one to access, in particular, the topological Mott insulator phase, robustly and independently of
its exact position in parameter space, merely requires global, always-on off-resonant laser coupling to Rydberg
states and is feasible with state-of-the-art experimental techniques that have already been demonstrated in the

laboratory.
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I. INTRODUCTION

Topological phases of matter are attracting increasing
interest not only from a fundamental standpoint, where they
represent a new paradigm of quantum states which evade
a classification by the standard Landau theory of phases
[1,2], but also due to their potential applications in quantum
information processing [3,4]. Here, in particular, topological
insulators (TIs), being insulating in the bulk, but exhibiting
robust, topologically protected current-carrying edge states,
are a new subclass of quantum materials with topological prop-
erties [5—7]. Their existence has been confirmed in pioneering
experiments [8—10] after their theoretical prediction [11-14]
in two and three dimensions.

The discovery and study of topological insulators raise
fundamental questions, in particular calling for an understand-
ing of the various mechanisms that can lead to topological
order and the classification of topological phases according to
the symmetries of the system. For example, the topological
order can arise in the presence of background gauge fields,
where an extensive classification in the absence of interactions
has been achieved [15-18] or in periodically driven quantum
systems, giving rise to Floquet topological insulators [19,20].
In this work, we focus on yet another type, the topological
Mott insulator [21], in which the topologically nontrivial
phase is generated dynamically by fermionic interactions,
even in the complete absence of background gauge fields.
Such phase has been first predicted theoretically for fermions
in a honeycomb lattice geometry with nearest- and next-to-
nearest-neighbor interactions in a seminal work by Raghu
et al. [22]. Subsequently, this mechanism has been explored in
other lattice geometries, including so far checkerboard [23],
Kagome [23-25], Lieb [26], modified dice [27], and decorated
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honeycomb [24] lattices, as well as by refined mean-field
theory [28,29] and exact diagonalization studies [30-32].
These showed that the location and width of the parameter
region where this phase is predicted to occur crucially depends
on the lattice geometry, filling, interaction pattern, and size of
the system. Whereas most of these works, and in particular a
recent numerical study [32], provide growing evidence for
the existence of such a topological Mott insulating phase,
the experimental observation of this predicted novel quantum
phase is outstanding to date.

Here we propose and work out a realistic scheme which pro-
vides a route to an experimental observation of a topological
Mott insulator phase using cold interacting fermionic Rydberg
atoms in an optical lattice. An earlier implementation proposal
[33] has been followed by complementary works which have
considered the creation of a TMI phase in the continuum [34],
as well as the occurrence of topological density waves in cold
atomic gases [35]. The present work is motivated by recent
progress that has been made in using cold atoms in optical
lattices as a platform to explore and study in a controlled
way topological quantum phases of matter. In particular,
topological phases in square and honeycomb lattices or band
structures with topological features have been demonstrated,
based on the engineering of background gauge fields, for
both bosonic [36—38] and more recently also fermionic atoms
[39]. Complementary, highly flexible, tunable optical lattice
setups allowing one to implement, e.g., hexagonal lattice
geometries as well as to imprint external staggering potentials
have been demonstrated in various laboratories [39-41]. In
particular, recently an optical Lieb lattice [42] [see Fig. 1(a)],
as well as Lieb photonic lattices [43—45], have been realized
experimentally. In addition, the ingredients for the realization
of extended Hubbard models in optical lattices, in particular
tunable, long-range interactions by off-resonant laser coupling
to high-lying Rydberg states [46—49], have been demonstrated
in a series of recent experiments [50-54].

©2016 American Physical Society
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FIG. 1. (a) The Lieb lattice is a square lattice of N, unit cells with
a three-atom unit cell A,B,C. The Hamiltonian has hopping between
nearest neighbors and interactions between nearest neighbors and
next-to-nearest neighbors. (b) Energy spectrum of the noninteracting
Lieb lattice with €4 = 0 (left subfigure). The system exhibits one
Dirac cone at k, = k, = /2. The two right subfigures present the
energy spectrum for €4 = —J (respectively €4 = J): The flat band is
still present, but the spectrum has now an energy gap between bands
one and two (respectively, two and three).

In this work, on the one hand, we quantitatively study
a model of interacting fermions on a Lieb lattice, which
hosts a topological Mott insulator phase in a broad parameter
region of the phase diagram; on the other hand, we provide
realistic implementation schemes which are feasible with the
above-mentioned state-of-the-art experimental techniques that
have been already demonstrated individually, and partially
also in a combined way, in the laboratory. Among the
distinguishing features of our work are the following. (i) The
interaction pattern is implementation friendly; in particular,
the topological phase exists in the naturally accessible regime
of moderately large long-range interactions: It involves strong
next-to-nearest-neighbor interactions V,, which, however, are
still allowed to be smaller than nearest-neighbor interac-
tions V| (V3 < Vi). Note that the requirement of dominant
next-to-nearest-neighbor interactions V, > V| constitutes a
considerable obstacle for the implementation of many models
[22,24,28,33]. Furthermore, the required interactions between
fermions at different lattice sites correspond to a global,
translationally invariant pattern. (i) Our scheme requires
control over effectively spinless fermions moving in a two-
dimensional (2D) Lieb lattice, for which it has been shown
how to realize such an optical lattice geometry by appropriately
combined standing-wave laser fields [55,56]. (iii) In the imple-
mentation scheme we propose that all Hamiltonian couplings
are independently controllable, and no fine tuning is required,
neither of experimental implementation parameters nor in
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view of the derived (mean-field) phase diagram, in which the
nontrivial phase exists in a wide parameter stripe. Specifically,
we present two possible implementation variants: In the first,
atoms are exposed to an external staggering potential, and
only global, spatially homogeneous Rydberg laser dressing
is required. In the second scheme, no staggering potential
is needed, interactions V| and V, are tunable completely
independently, and the Rydberg laser dressing profile itself
is applied according to a spatially periodic pattern.

II. ANALYSIS OF THE MODEL

We consider a system of spinless fermions on the Lieb
lattice with repulsive nearest and next-to-nearest-neighbor
interactions [see Fig. 1(a)], described by the second-quantized
Hamiltonian

H:H0+V12n,vn.,~+V2 Zninj» (1)
(i.J) (. )

where n; = cjci is the on-site number operator. The tight-
binding Hamiltonian

Hy=—J ZC;C,- +é€a chci(SA,i 2)
(i) i

describes hopping between nearest-neighbor sites with a real-
valued amplitude —J, and it involves an on-site external stag-
gering potential €4, which accounts for a difference in chem-
ical potential between A and B,C sites. The energy spectrum
can be obtained analytically and is composed of three energy
bands: a flat band at £ = 0 and two dispersive bands E1 (k) =
€a/2 £ \/(ea/2)* + 4J%(cos? k, + cos? k) [57]. For vanish-
ing staggering potential €4 = 0, the system has one Dirac
cone at k, =k, = /2 with a linear dispersion relation in
its vicinity [see Fig. 1(b)]. At the Fermi energy Ep =0,
the system is semimetallic. For €4 # 0, the spectrum still
possesses a flat band but an energy gap appears in the energy
spectrum and the dispersion relation around the Dirac point
becomes quadratic [see Fig. 1(b)]. The position of the energy
gap depends of the sign of €4. For the Fermi energy lying in
the energy gap, the system is in a trivial insulating phase [58].

We treat the interacting part of the Hamiltonian within
a mean-field approximation, according to the Hartree-Fock
decoupling [60] of the quartic interaction term, n;n; >~ —&;; cj.

Ci — E;;C}LC]‘ + |§,‘j|2 —i—fzicj.cj —i—fz_,-cjc,- —nn;. This decoupl-
ing gives rise to nearest-neighbor hopping terms proportional
to the expected value &;; = (cjcj) and to on-site terms pro-
portional to the expected value 7i; = (n;). We then determine
the mean-field phase diagram by solving self-consistently the
set of coupled equations for the expected values &;; and 7;.
To this end, two natural assumptions are made to limit the
number of order parameters: translation invariance of the
system, allowing one to work with the three-atom basis, and
isotropy of the hopping between A and B,C and between B
and C sites, enabling one to work only with 45 = £4¢ and
Epc.

To characterize the physics of the different phases, we
introduce several order parameters, written in terms of 7i; or &;;.
The charge density wave (CDW) order parameter po; = 14 —
nip — fi¢ characterizes the difference of occupation between
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sites A on the one hand and B, C sites on the other hand. The
nematic order parameter p, = fig — ii¢ accounts for a possible
difference of occupation between B and C sites. In addition
to these order parameters, the mean-field decoupling of the
nearest-neighbor interaction gives rise to a renormalization
of the nearest-neighbor hopping amplitude J' = J + §45V.
Similarly, the next-to-nearest-neighbor interactions generate a
real-valued next-to-nearest-neighbor hopping &5 as well as
an imaginary-valued next-to-nearest-neighbor hopping 51130
The latter is responsible for the occurrence of a quantum
anomalous Hall (QAH) phase [15,57] and constitutes a local
order parameter for this phase (see Appendix A for details).
Solving the self-consistent equations shows that the parameters
&sp and SEC are almost constant as functions of V; and
V2, which justifies fixing their values to £, = 0.24J and
Epc = —0.1J (see Appendix B for details).
The resulting mean-field Hamiltonian reads then

Hyr = Eo + Z \I’l];Hk“I"k, 3)
k

where  Eo/Nj = 4Va(E ) — Vi/2(n* — p}) — Va(1/4n* —
p3) is a real-valued energy shift depending only on the

expectation values of the operators, \IJ;L = (cl’k,c;k,cgk) and
the matrix elements of Hy are given by

Ht = — p)Vi, HE® = (4 p)Vi + (n = 2p2) Vs,
HyC =+ p)Vi+ (1 4+ 20) Vs,
HEB = —2J cosk,, HEC = —2J' cosk,y,

ch = —4V2§§C cos ky cosky + 4V2§119Ci sink, sink,.

“)

To obtain the mean-field phase diagram, we minimize the free
energy F' at zero temperature,

F/Na = (Hyp)/Na = Eo+ Y EK)O(Er — E;). (5)

i,keBZ

We focus on the situation where the two first energy bands
are filled (filling n = 2/3). Note that in this case, even in the
absence of a staggering potential (4 = 0), there develops a
density imbalance between A and B,C sites, which becomes
manifest through p; = —J.

We now discuss the mean-field phase diagram for €4 = 0
[shown in Fig. 2(a)] and for clarity of the discussion first focus
on the effect of the nearest-neighbor interactions separately
(horizontal axis for V, =0). As soon as Vi >0, p; is
renormalized and the system passes from a semimetallic (SM)
phase to the CDW phase with an energy gap opening between
the first and second bands, while the gap between the second
and third bands still remains closed.

Considering next exclusively the effect of the next-to-
nearest-neighbor interactions (vertical axis in Fig. 2 for V| =
0), a sketch of the different phases as a function of V, is shown
in Fig. 2(c). First, at small values of V,, the next-to-nearest-
neighbor interaction gives rise to a CDW term in the mean-field
Hamiltonian proportional to V,n. The latter drives the system
from the SM to the CDW phase by continuously opening an
energy gap between the first and second energy bands. Beyond
a critical value, Vo > Vi qan, Sgc becomes nonzero and the
system undergoes a second-order phase transition from the
CDW to the QAH phase: The flat band becomes dispersive
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FIG. 2. (a) Phase diagram at a filling 2/3 with €4 = 0. Three
phases are present: charge density wave (CDW), nematic (Nem.),
and quantum anomalous Hall phase (QAH). The blue lines show
the second-order phase transitions. (b) Phase diagram at e, = —2J.
The QAH is now stabilized in a bigger window and the boundaries
have moved. (c) Sketch of the energy spectrum of the line V; = 0 for
€4 = 0: When V, < Vy gan = 0.37J, the lowest gap is opened by
the V, interaction. For V, > V) qan, the second energy gap opens
and the system is in a QAH phase. For V; > V. nem. = 0.47J, the
system is in the nematic phase; the second gap closes but the second
energy band is still dispersive. For Vi Nem. pure = 0.52J, the system
is in a pure nematic phase.

and an energy gap opens between the second and third bands.
We characterize the topological nature of the energy gap by
computing the transverse conductivity, which is proportional
to the sum of the Chern numbers of the occupied bands. We first
compute numerically the Chern numbers of the two first energy
bands with the gauge-invariant algorithm proposed by Fukui,
Hastugai, and Suzuki (FHS algorithm) [61]. We find C; = 0,
C, = 1, and hence o, = (C| + C3)op = —1 X 0y, indicating
the topological character of the phase. For Vo > Vac Nem., 02
starts to become nonzero, allowing the coexistence of the topo-
logical and nematic phases. There is a small parameter window
of coexistence in which p, increases continuously, while %c
decreases continuously. For V' > Vac Nem. pures ‘leac =0, the
second gap closes and the system enters a purely ungapped
nematic phase characterized by a dispersive second energy
band (see Appendix C for the plot of the order parameters in
terms of V;). Finally, we consider both nonzero V| and V,
interactions and find a finite window (green region in Fig. 2)
where the system resides in the QAH phase.

Figure 2(b) shows the phase diagram for the case of a
finite external staggering potential, €4 = —2J. As shown in
Fig. 1(b), a negative value of €4 opens the first energy gap
of the noninteracting system. This term changes radically
the phase diagram of the system with interactions. Focussing
first exclusively on the next-to-nearest-neighbor interaction
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(vertical axis), we find that the second-order phase transition
to the QAH phase appears for V,, gan = 0.13/,1.e., atamuch
smaller critical value than for the case in Fig. 2(a), however,
with the size of the parameter region of the QAH phase of
the same order. The transition to the nematic phase follows
the same mechanism: The order parameter p, > 0 starts to
grow for Vo > Vi Nem. = 0.27J and then 51130 continuously
decreases to zero, giving rise to a purely ungapped nematic
phase for Vo > Vac Nem. pure = 0.3J. However, when consid-
ering the whole phase diagram with both nonzero V; and V,
interactions, as a striking difference, the region where the
system is in the QAH phase is now a stripe: The fact that
for each value of V; there is a value of V, such that the system
is predicted to be in the QAH regime will be important in the
scheme we propose for quantum simulating this model.

Let us finally mention that the case of the filling 1/3 is
commented on in Appendix D.

III. IMPLEMENTATION

For the implementation of Hamiltonian (1), we focus on
cold fermionic and effectively spinless atoms loaded into an
optical lattice exhibiting the Lieb lattice geometry, as sketched
in Fig. 3. This 2D lattice in the xy plane can be achieved, as
shown in a recent experiment [42], by superimposing three
optical lattices [55,56,62],

UoL = Up[sin®(kx) + sin’(ky)] + U, [sin®(2kx) + sin*(2ky)]

+ U2[0052 (ﬁk%) + cos? (ﬁk%)]
(6)

FIG. 3. (Top) Optical lattice potential (a.u.) generated by three
superimposed lattice potentials, realizing the desired Lieb lattice
structure (Uy = U; = 2U,). Red and black wavy lines show cuts of
the potential landscape along the x direction (crossing C and A sites)
and the y direction (going through C-type lattice sites only). (Bottom)
projection of the potential landscape showing allowed lattice sites
(blue wells) and energetically forbidden regions (yellow-reddish
regions). (Bottom inset) Off-resonant laser coupling (Rabi frequency
2, detuning A) leads to a weak admixture of Rydberg states |r) to
the state of atoms residing in an electronic ground state |g), which
induces an effective pairwise interaction potential, as sketched in the
right part.
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Tunnelling amplitudes, as well as a staggering potential,
can be controlled by adjusting the relative intensities of the
constituent lattice potentials: In particular, for Uy = U, one
can control a staggering potential between A and B/C sites
with a magnitude €4 = Uy — 2U, (see Fig. 3).

In order to induce the required repulsive interactions V,
and V; (see Fig. 3) we propose to off-resonantly laser couple
the fermionic electronic ground-state atoms to highly excited
Rydberg states, which exhibit strong and long-range repulsive
interactions [63]. Such laser dressing with Rydberg states,
recently demonstrated in the laboratory [52,53], allows one
to generate effective repulsive nearest and next-to-nearest-
neighbor interactions, which are on the same order of
magnitude as the tunneling time scale J. In addition, this
can be achieved in a regime where imperfections such as
radiative decay set in at sufficiently longer time scales (see
Appendix E for a detailed analysis of relevant error sources).
For weak, off-resonant, and red-detuned laser dressing, the
effectively induced interaction potential exhibits the well-
known plateaulike potential structure [46,47] (see Fig. 3),
with a nearly distance-independent interaction energy shift
at small distances and rapidly decaying interactions beyond a
critical interparticle distance r., which can be controlled by
appropriate choices of laser parameters and atomic Rydberg
states (see Appendix E).

In order to experimentally access the different phases, in
particular the QAH phase, according to the phase diagrams
established in Fig. 2, in realization (i) it suffices to illuminate
in a homogeneous, time-independent (‘“‘always-on”) way the
Lieb lattice with the Rydberg dressing laser, and to choose
parameters such that intersite distances rap = rac = a and
rec = /2a are smaller than r. This realizes the regime where
V, and V| are comparable, V, é V) [dashed line in Fig. 2(b)].
Together with a nonzero staggering potential €4 # 0, this
allows one to access the QAH region (green parameter stripe),
independently of its exact quantitative localization in the phase
diagram. This is a striking difference of the realization of the
topological phase in the Lieb lattice geometry, as compared
to other schemes, including our proposal of Ref. [33], where
experimental accessibility according to the mean-field theory
analysis requires strong V, Z V) next-to-nearest-neighbor
interactions. Alternatively, thanks to the Lieb lattice geom-
etry, one can even access the regime of finite (vanishing)
interactions V, (V)); see vertical axis in the phase diagram of
Fig. 2(a) in the absence of a staggering potential €4 = 0. This
interaction pattern can be generated if the Rydberg dressing
laser itself is applied according to a 45° tilted lattice in the
xy plane, so that atoms at B/C (A) lattice sites are exposed
to a finite (vanishing) dressing light intensity, which results in
finite (vanishing) interaction values V, (V). Finally, we remark
that for the experimental detection of the topological phase, a
variety of techniques have been proposed [64—69], including
schemes for the detection of edge states [70,71], which can be
adapted to the proposed setup.
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APPENDIX A: MEAN-FIELD HAMILTONIAN

In this Appendix, starting from Eq. (1), we outline the
derivation of Eq. (3). Applying the Hartree-Fock decoupling
to n;n j, the mean-field Hamiltonian reads

Hvir = Eo + Z \I’/IHk\pka (A1)
k
where
Eo/Ny, = 4Vi|Eapl* + 4Valépc|® — 2Vidia(iip + fic)
—4Voiigiie (A2)

is a real number depending only on the expectation values of
the operators, quT( = (cL k,c% k,cTC ) and where

H! —2J’ cos ky —2J'cosk,
Hy = | —2J" cosky H? —4Vslépcl fxo |,
—2J%cosky, —4Valépclfiy MY
(A3)

with J" = J4+&4p V1, fio = cosk, cosky cos—i sink, sink,
sin @, and

H' =23ip +ic)Vi. Hy =204V +4Vaiic,
(A4)
Hl’? =204V +4Vaiip.

We introduce the CDW order parameter p; =ig — (iip +
iic), the nematic order parameter p, = iig — fic, and separate
the real £}, and imaginary &} contributions to the next-to-
nearest neighbors hopping amplitude. This allows us to write
the real number Eg as Eo/N;, = 4Vi|Eap|> + 4Val(ERc)* +
(&) — Vi/2n> = p}) — Val1/4(n — p1)* — p3] and  the
matrix elements as

Hit = (n — p)Vis

HEE = (n+ p)Vi + (n — p1 — 202) V2,

HEC = (n+ p)Vi + (n — p1 + 202) V5,

HEP = =27 cosky, Hi€ = —2J  cosk,,

—4VhEp - cosk, cosky + 4VaEp i sink, sink,.

(A5)

iy
%
]

I

We emphasize that the contribution proportional to p; in the
next-to-nearest-neighbor interaction is pathological and leads
to an unstable free energy: Physically, the next-to-nearest-
neighbor interaction does not see A sites and therefore cannot
generate an imbalance between sites A and B,C. We therefore
omit this term in the remainder.
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APPENDIX B: GENERATION OF REAL
NEAREST-NEIGHBOR HOPPING RENORMALIZATION
AND REAL NEXT-TO-NEAREST-NEIGHBOR HOPPING

FROM INTERACTIONS

In this section, we discuss the value of the renormalization
of the nearest-neighbor (NN) hopping amplitude due to the NN
interaction and the generation of the next-to-nearest-neighbor
(NNN) hopping due to the NNN interaction. We show that
these assumptions are reasonable by comparing them to the
solution of the full MF equations on a chosen axis.

First, the NN interaction renormalizes the NN hopping
amplitude J — J' = J 4+ £43V;. This term will not lead to
new phases in the phase diagram, but affects the position
of the different phases. It is thus important to take it into
account. To this end, we fix the value of £, as the solution
of a simplified mean-field equation [28,33]: Starting from the
mean-field Hamiltonian defined in the Appendix A, we fix
p1 = p2 = £ = € = 0. The free energy is therefore given
by the analytical expression

F/Ny =41},

1
) /BZ \/4(J + Viéap)?(cos? k, + cos? ky),
(B1)

and the minimization of the free energy leads to the equation
for £4p:

1 J\/cos? ky + cos? ky

AB — —5
é 7T2 BZ 4

~0.24J. (B2)
Figure 4 compares the value of the order parameters along the
axis V, = 0 for the full mean-field Hamiltonian (blue dots) and
the mean-field Hamiltonian with the assumption 45 = 0.24J:
The approximation agrees very well with the complete solution
with a maximal absolute error of the order of 0.05J, being
indeed a small correction as compared to J.

Second, the NNN interaction generates a real NNN hopping
contribution £5. We also take it into account and fix its value
as the solution of a simplified mean-field equation, taking the
Hamiltonian without interaction and only the contribution to
the real NNN hopping due to the Hartree -Fock decoupling of

p1/J &a/J
1
| 0.4
13 -
AN o2
R%’*b.:.
—-1.6 40 g 1
0 Vi/J 1 Vi/J

FIG. 4. Order parameters p; and 4,5 when V, = 0 for the full
mean-field Hamiltonian in blue and for the mean-field Hamiltonian
with the approximation £,45 = 0.24J in red. The maximal error due
to the approximation is of the order of 0.05J.
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FIG. 5. Order parameter £5. when V; = 0 for the full mean-field

Hamiltonian in blue and for the mean-field Hamiltonian with the
approximation §5. = —0.1J in red.

the NNN interaction. The real term is therefore expressed as
Ey= 4V2(§§C)2 and Hj is written as

0 2J cos ky 2J cosk,
Hy = —| 2J cosk, 0 JR cosk, cosky |,
2J cosk, Jycosk, cosk, 0

(B3)

with JR = 4V,£R ..

In this case, the free energy needs to be minimized numer-
ically. We find that £ is almost constant and that its value
is EEC = —0.1J. Figure 5 compares the value of the order
parameter &5 along the axis V; = 0 for the full mean-field
Hamiltonian (blue points) and for the mean-field Hamiltonian
under the assumption §§C = —0.1J. The approximate curve
fits well to the one of the full solution.

APPENDIX C: DETAILS OF THE MF PHASE DIAGRAM

In this Appendix, we discuss in detail the behavior along one
line of the mean-field phase diagram. Figure 6 shows the order

Epel] p2/J
i~ QAH  QAH+Nem. 101
CDW 7/ Nem.
8 . 8
a0 1
U E— o7 "

FIG. 6. Order parameters S}S,C and p, on the vertical axis V; = 0.
The order parameters are considered to be nonzero when they are
greater than the numerical threshold 1074 /.
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parameters ééc and p, for €4 = 0 and along the vertical axis
Vi = 0. The order parameters are considered to be O if their
values are smaller than the numerical threshold set to 1074 /.
For small V,, the system is in the CDW phase with p; # 0.
At Ve gan = 0.37J, Szlac is becoming nonzero and the system
enters the topological phase. To verify this last statement, we
have computed the Chern number using the FHS algorithm
on the effective Hamiltonian and found C; = 0,C, = 1,C3 =
—1. At V3 > Ve Nem. = 0.47J, p2 becomes nonzero. In this
case, the nematic and the QAH phase coexist and interestingly
the system is still in a topological regime with C, = 1. If V,
is increased further, éllgc continuously decreases to zero and
at Vo > Voc Nem. pure = 0.52J, the system enters in a purely
ungapped nematic phase.

APPENDIX D: COMMENT ON THE CASE OF FILLING 1/3

For completeness, we briefly comment on the case of filling
1/3. Here, for a vanishing staggering potential €4 = 0, neither
the QAH phase nor the nematic phase appear and the only
phase generated by the interactions is the charge density wave
ordered phase, corresponding to an opening of the energy gap
between bands one and two. However, for finite €4 > 0, the
system can exhibit both QAH and nematic phase, and here €4
counteracts the formation of the CDW phase.

APPENDIX E: DETAILS ON RYDBERG DRESSING
IMPLEMENTATION

Outline of the scheme and effective two-body interaction po-
tential. The internal dynamics of the atoms in the Lieb lattice is
described by the Hamiltonian H =}, H; + ), _; H;;, where
the single-particle terms H; = (2|r)(gl; + H.c.) + A|r)(r|;
describe the laser coupling (in dipole and rotating wave
approximation) of atoms in the electronic ground state |g)
to a Rydberg state |r), with 2 and A denoting the laser Rabi
frequency and detuning, respectively. Pairwise interactions of
atoms excited to |r) are given by H;; = V;|r){rl; ® [r)(r];.
For Rydberg s states with repulsive van der Waals interactions
Vij > 0 the isotropic interactions fall off quickly with the
interparticle distance, V;; = Cg|r; — r j|’6 [72].

We are interested in far off-resonant laser coupling, Q2 /A <
1, where atoms initially residing in the electronic ground
state |g) obtain a small admixture of Rydberg character. The
effective Born-Oppenheimer two-particle potential for a pair
of dressed ground-state atoms can be derived in fourth-order
perturbation theory (see Ref. [33] for details), yielding

Q* 2A77"
(AE)‘gg)=2E 1+7 . (F1)

which is shown in Fig. 3. Here the trivial single-particle
(fourth order in ©/A) ac-Stark shift has been subtracted.
The Rydberg blockade radius corresponds to the length scale
re = (C6/2A)1/6, given by the condition 2A ~ V;;. It deter-
mines where the crossover from the plateaulike short-distance
behavior, with a universal energy shift of (AE) ey = 2 Q*/A3
(up to a subleading correction), and the weakly interacting
regime, with reduced van der Waals-type interactions at large
distances, (AE)|qq) = (Q/A)“VU, takes place.
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Experimental laser and atomic parameters and imper-
fections. Whereas an optimal set of parameters (choice of
the Rydberg state, laser parameters) depends on specifics
of the setup and the atomic species used, one can see
that reaching realistic conditions is feasible: The critical
effective blockade radius r. needs to be on the order of or
slightly larger than the lattice spacing a (r. = a), with typical
values on the order of a ~ 500 nm. For Rydberg s states of
principal quantum number n around n = 30, with van der
Waals interactions of the order of 274 x 100 MHz at that
distance, a detuning chosen as A = 2wk x 50 MHz and a
Rabi frequency 2 = 2nh x 5 MHz, the perturbative treatment
in (2/A = 0.1) yields an effective interaction shift between

PHYSICAL REVIEW A 93, 043611 (2016)

ground-state atoms of (AE)ge ~ 27 x 10 kHz. This is on
the order of typical tunneling rates of a few kHz. At the
same time, it is much larger than the effective decay rate
Yeir = (2/A)?y, = 2w x 50 Hz, which is induced by the finite
lifetime of Rydberg states of a few tens of microseconds
of n =30 s states at room temperature [63,72]. One can
show that for the considered lattice fillings of order one (1/3
and 2/3) at the present parameters the effective interaction
is well described by pairwise interactions, and higher-order
many-body effects as well as mechanical effects between the
laser-dressed ground-state atoms are negligible (see also the
discussion in Ref. [33]).
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