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Cavity-induced chiral states of fermionic quantum gases
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We investigate ultracold fermions placed into an optical cavity and subjected to optical lattices which confine
the atoms to ladder structures. A transverse running-wave laser beam induces together with the dynamical cavity
field a two-photon Raman-assisted tunneling process with spatially dependent phase imprint along the rungs of
the ladders. We identify the steady states which can occur by the feedback mechanism between the cavity field
and the atoms. We find the spontaneous emergence of a finite cavity field amplitude which leads to an artificial
magnetic field felt by the fermionic atoms. These form a chiral insulating or chiral liquid state carrying a chiral
current. We explore the rich state diagram as a function of the power of the transverse laser beam, the atomic
filling, and the phase imprint during the cavity-induced tunneling. Both a sudden onset or a slow exponential
activation with the transverse laser power of the self-organized chiral states can occur.
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I. INTRODUCTION

The physics of the coupling between atoms and electro-
magnetic fields has a long history. For example, laser light
has been employed to cool atoms to previously unreachable
temperatures and to trap and manipulate them even at quantum
degeneracy [1–5]. Typically, in these situations the backaction
of the atoms onto the laser light can be neglected. However, this
changes drastically as soon as the quantum nature of the photon
field comes into play and the atoms start to interact several
times with a single photon. Experimentally, this situation can
be reached if atoms are placed into an optical cavity [6].
One of the consequences of the presence of atoms is, for
example, a density-dependent shift of the cavity resonance
frequency.

More recently, the great experimental advances have al-
lowed one to realize the so-called Dicke-phase transition [7–9].
To this end, a quantum degenerate bosonic gas was placed
into a high-finesse optical cavity subjected to a transverse
off-resonant pump beam. Above a critical pump strength,
the feedback between the atomic density distribution and the
cavity field leads to a spontaneous formation of a symmetry-
broken phase in which the atoms form a checkerboard density
pattern off which pump light is superradiantly scattered into
the cavity [6,10–16]. Details of the steady-state diagram, as for
example different superradiant fixed points [17,18], dynamic
correlations [19], the damping of quasiparticles [20], self-
ordered limit cycles [21], or prethermalization effects [22],
have been investigated theoretically.

Another exciting situation has been reached experimentally
by the additional application of external optical lattice poten-
tials [23,24]. In such a setup, a modified Bose-Hubbard model
of the bosonic quantum gas can be reached and the influence
of cavity-induced, long-range interactions between the atoms
onto the superfluid to Mott-insulator phase transition has been
investigated [6,25–32].

Theoretically, further proposals have been put forward
for the self-organization of complex quantum phases in
combined cavity-atom systems. For example, the organization
of bosonic atoms into triangular or hexagonal lattices [33]
or of fermionic atoms into superradiant phases [34–38] have
been pointed out. In more complex setups such as multimode

cavities [39–45] complex disordered structures, such as glasses
or complex supersolids, have been proposed. Moreover, phases
in which spin-orbit coupling becomes important have been
suggested in standing-wave cavities [46–49] or ring cavities
[50,51].

Coupled cavity-quantum gas systems not only provide a
platform to realize novel self-organized collective phases, but
also offer via the cavity output field valuable information
about the atomic state in real time and in a nondestructive
way. Such measurements have been proposed [52–58] and
conducted [59,60] in order to extract equal or many-time
correlation functions of the atomic gas or the atomic quantum
statistics.

The field of cavity physics has very recently been connected
to the lively and exciting field of topologically nontrivial quan-
tum phases [48,61,62]. The interest in the field of topologically
nontrivial effects has revived enormously during the past years,
in particular, stimulated by the discovery of topologically
insulating materials [63]. Topologically nontrivial quantum
phases possess special properties such as extended edge modes
that can be well protected against destructive environmental
effects [63]. Therefore, these materials are promising for
technological applications. For example, the utilization of such
topologically protected modes lies at the heart of the field of
topological quantum computation [64].

Topologically nontrivial phases have recently been realized
in cold-atom experiments using, for example, strong artificial
magnetic fields [65], which act on the neutral atoms similarly
to magnetic fields on charged particles. The realization of the
Hofstadter model in two dimensions [66–69] or on a ladder
geometry [70] and of the Haldane model [71] have enabled the
investigation of topological insulators in quantum gases.

Recently, the self-organization of an artificial magnetic field
in a coupled cavity-atom setup has been proposed by us using a
coupling mechanism based on a cavity-assisted tunneling [62].
This process is induced by a Raman transition involving the
dynamical cavity field and a transverse pump field. Using a
running-wave pump beam, a spatially dependent phase can be
imprinted onto the atomic wave function. In Ref. [62] we have
shown that for a phase imprint of ϕ = π/2 a self-organization
of an artificial magnetic field by the feedback of the atoms and
the cavity mode arises which in some limits can be described
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by an effective Hofstadter model. As a consequence, a chiral
phase of the fermionic atoms forms. In the present work we
extend the results of Ref. [62] and map out the steady-state
diagram of the self-organized phases for different fillings
and different magnetic fluxes. Additionally, we give a more
detailed description of the solution procedure, the properties
of the arising phases, and the direct detection of the chiral
current via the photon losses.

In Sec. II we describe the combined cavity-atom setup
and introduce its theoretical description. In particular, we
adiabatically eliminate the cavity mode and derive an effective
Hamiltonian of the fermionic atoms which needs to be solved
together with a self-consistent equation in order to obtain
information on the existence of a self-organized nontrivial
phase with finite cavity occupation. In Sec. III we discuss
the properties of this effective Hamiltonian and in Sec. IV
the solution of the self-consistent problem is presented. The
properties of the self-organized state are discussed in Sec. IV B,
focusing on the cavity occupation and the arising chiral current.
The detection of the chiral current via the cavity field is
described in Sec. V. Details of the theoretical treatment are
given in the Appendix .

II. DESCRIPTION OF THE SETUP

We study a spin-polarized fermionic gas placed in an optical
cavity and additionally subjected to optical lattice potentials
(Fig. 1). The optical lattice potentials are chosen such that the
atoms are confined to decoupled ladders. To form this structure,

y

x

ep

p g0

J

pump

J

cp

FIG. 1. Sketch of the setup. Fermionic atoms in an optical cavity
are subjected to an optical lattice potential (not shown), which creates
an array of ladders (see lower part) for which the tunneling amplitude
along the legs is J‖. The tunneling along the rungs is strongly
suppressed initially by a potential offset � between neighboring
wells. It is restored by a Raman process using a transverse pump laser
beam and a cavity mode. The running-wave nature of the pump laser
beam imprints a spatially dependent phase onto the atoms tunneling
along the y direction. This induces a dynamical artificial magnetic
field with flux ϕ per unit cell.

a strong optical lattice potential is applied along the z direction
to create decoupled two-dimensional layers. A second optical
lattice along the y direction of wavelength λy induces a
periodic potential with lattice spacing d‖ = λy/2. The lattice
height along the y direction is chosen sufficiently low to allow
tunneling between neighboring sites with amplitude J‖. An
additional bichromatic lattice potential along the x direction
is formed by two laser beams with wavelengths λx and 2λx .
The phase difference between the two laser beams is chosen
such that the final lattice potential consists of an imbalanced
superlattice formed of decoupled double wells with potential
offset � as sketched in Fig. 1. The resulting geometry is an
array of decoupled ladders where the lattice spacing between
the two sites on a rung, i.e., the double well, is denoted by
d⊥. The potential offset � suppresses the tunneling along the
rungs. The tunneling along the rungs can be restored using a
near-resonant Raman process. The Raman process is induced
by a standing-wave cavity mode with frequency ωc and wave
vector kc = kcex along the x direction and a running-wave
pump laser beam with frequency ωp and wave vector kp =
kpey + kp,zez transverse to the cavity direction. Here ei denote
the unit vectors along the direction i = x,y,z. The tilt of the
pump laser out of the xy plane can be used in order to change
the in-plane component of the wave vector kp independently
of its frequency. The frequency difference ωcp = ωc − ωp is
chosen close to resonance with the potential offset −�/�

which induces a cavity-assisted tunneling along the rungs
of the ladders. The cavity mode and the pump mode are
considered to be far detuned from the internal atomic transition
frequency ωe, i.e., ωe � ωc,ωp, compared to the atomic
linewidth. All other cavity modes are assumed to be much
further detuned from possible transitions and are therefore not
considered.

The Raman transition imprints a spatially dependent phase
factor e−i�k·r onto the atomic wave function, where the wave-
vector difference is given by �k = ±kcex + kpey and · denotes
the scalar product. For sufficiently strong confinement along
the z direction, momentum transfer of the pump beam out of
the xy plane can be neglected. The spatially dependent phase
imprint implies that if the atoms tunnel once around a plaquette
of the ladder, they collect a phase kpd‖(j + 1) = ϕ(j + 1) on
the rung j + 1 and a phase −ϕj on the rung j , such that the
total phase is ϕ = kpd‖ = π

λy

λp
, where λp = 2π

kp
. The phases

imprinted by the cavity photon do not contribute to the total
phase enclosed by a plaquette. The phase imprint on the atoms
has the same effect as a magnetic field for charged particles
oriented perpendicularly to the ladder surface. Thus, in the
presence of a finite cavity field amplitude the atoms experience
an artificial magnetic field. The value of the flux ϕ depends on
the projection kp of the wave vector of the pump laser beam
onto the y direction.

In the described setup the electronically excited atomic state
is almost unoccupied and can be adiabatically eliminated, as
described in more detail in the Appendix . Additionally, an
expansion of the fermionic field in the Wannier basis of the
optical lattice can be performed. This has the advantage that
only the most important processes (up to neighboring lattice
sites) can be considered leading to a simplified tight-binding
description of the model. An effective Hamiltonian can be
derived which we specify for notational simplicity for one of
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the decoupled ladders [62],

H = Hc + H‖ + Hac,

Hc = �δcpa
†a,

H‖ = −J‖
∑

j,m=0,1

(c†m,j cm,j+1 + c
†
m,j+1cm,j ), (1)

Hac = −��̃(aK⊥ + a†K†
⊥),

K⊥ =
∑

j

eiϕj c
†
0,j c1,j .

Here a (a†) is the annihilation (creation) operator of a cavity
photon in a frame rotating at frequency ωp − �/� and Hc

is the Hamiltonian for the cavity mode in this frame with
δcp = ωcp + �/�. The operator cm,j (c†m,j ) is the annihilation
(creation) operator of a fermion on site j and leg m = 0,1. H‖
describes the dynamics of fermions along the legs, where J‖
is the tunneling amplitude. J‖ can be tuned by the intensity
of the lattice potentials. Hac encodes the dynamics along the
rung induced by the Raman process via the cavity and the
pump beam. The amplitude of the process is given by ��̃ =
��pg0

ωe−ωp
φ‖φ⊥, where �p is the Rabi frequency of the pump beam

and g0 is the vacuum-Rabi frequency of the cavity mode. The
effective parameters φ‖ and φ⊥ can be tuned via the geometry
of the optical lattice and the cavity mode (see the Appendix ).
The operator K⊥ represents the directed tunneling along the
rungs of the ladders with spatially dependent phase imprint.

In addition to the unitary dynamics induced by the effective
Hamiltonian, cavity losses lead to dissipative dynamics. The
losses can be accounted for in a Lindblad master equation. The
evolution of an operator O can be represented by

∂

∂t
O = i

�
[H,O] + D(O).

The dissipator is given by D(O) =
κ(2a†Oa − a†aO − Oa†a), which describes the loss of
cavity photons. The application of this equation to the
dynamics of the expectation value of the annihilation operator
of the cavity field yields

i∂t 〈a〉 = −�̃〈K†
⊥〉 + (δcp − iκ)〈a〉. (2)

Since the time scale of the cavity field dynamics is typically
fast compared that of the atomic motion, the expectation value
of the cavity photon reaches rapidly a steady state and can
be eliminated adiabatically. The stationary condition ∂t 〈a〉 =
0 leads to the steady-state value α = 〈a〉 = �̃

δcp−iκ
〈K†

⊥〉. In
the experiment, the phase of the expectation value of 〈a〉
[U(1) symmetry] will be spontaneously broken and we in
the following consider, without loss of generality, the case
〈K⊥〉 > 0.

Using a mean-field decoupling of the atomic and cavity
degrees of freedom in the equations of motion, we obtain

i�∂tc0,j = −J‖(c0,j+1 + c0,j−1) − ��̃〈a〉eiϕj c1,j

(3)

and analogous equations for c1,j . Substituting the stationary
expectation value for the cavity field into the fermionic

equation of motion leads to

i�∂tc0,j = −J‖(c0,j+1 + c0,j−1) − (J⊥ + iJI )eiϕj c1,j ,

with J⊥ = ��̃2δcp

δ2
cp + κ2

〈K⊥〉 (4)

and JI = − ��̃2κ

δ2
cp + κ2

〈K⊥〉.

In the partition of the prefactor of the last term, we have used
our assumption that 〈K⊥〉 is real. In the following we neglect
the imaginary part of the last term, i.e., the term proportional
to JI , which gives rise to dissipative dynamics. This is justified
if κ � δcp and at not too long times. The resulting fermionic
dynamics can be described by an effective Hamiltonian,

HF = H‖ + H⊥,

H‖ = −J‖
∑

j,m=0,1

(c†m,j cm,j+1 + c
†
m,j+1cm,j ), (5)

H⊥ = −J⊥K⊥ + H.c.

The effective hopping along the rung of the ladders needs to
be determined self-consistently and is given by

J⊥ = A〈K⊥〉, (6)

with A = ��̃2δcp

δ2
cp+κ2 .

In Sec. III we discuss the properties of the system described
by HF considering J⊥ as a fixed parameter before, in Sec. IV,
we determine the solutions of the self-consistency equation (6).

III. PROPERTIES OF THE EFFECTIVE FERMIONIC
HAMILTONIAN

In this section we discuss the properties of the effective
fermionic Hamiltonian HF [Eq. (5)], considering the rung
tunneling amplitude J⊥ as a fixed parameter. We first intro-
duce the Bogoliubov transformation in order to obtain the
eigenenergy bands and determine the possible structures of
the arising Fermi surfaces at different fillings. Further, we
determine the dependence of the expectation value of the rung
tunneling 〈K⊥〉 and the chiral current on the rung tunneling
amplitude J⊥. The former is utilized in Sec. IV to determine
the self-consistent solution.

A. Band structure and geometry of the Fermi surfaces

For completeness, we start with diagonalizing the Hamil-
tonian HF [Eq. (5)] by a Bogoliubov transformation, as
previously discussed in Refs. [72–76]. For convenience we
transform the fermionic operators via a Fourier transformation
along the legs of the ladder, i.e., cm,kd‖ = 1√

L

∑
k eikd‖j cm,j ,

where L is the number of rungs. The Bogoliubov transforma-
tion which diagonalizes the effective fermionic Hamiltonian
HF is given by

γ+,k = vkc0,kd‖+ ϕ

2
− ukc1,kd‖− ϕ

2
,

(7)
γ−,k = ukc0,kd‖+ ϕ

2
+ vkc1,kd‖− ϕ

2
,

where γ−,k and γ+,k are the destruction operators of the
quasiparticles. The real-valued coefficients vk and uk are
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determined by

v2
k = 1

2

⎡
⎣1 + 2 sin(kd‖) sin( ϕ

2 )√
(J⊥/J‖)2 + 4 sin2(kd‖) sin2( ϕ

2 )

⎤
⎦,

(8)

u2
k = 1

2

⎡
⎣1 − 2 sin(kd‖) sin( ϕ

2 )√
(J⊥/J‖)2 + 4 sin2(kd‖) sin2( ϕ

2 )

⎤
⎦.

The Hamiltonian HF can be rewritten in the diagonal form,

HF =
∑

k

[E+(k)γ †
+,kγ+,k + E−(k)γ †

−,kγ−,k]. (9)

The quasiparticle spectrum consists of two energy bands,
which are given by the expressions

E± /J‖ = −2 cos(kd‖) cos
(ϕ

2

)

±
√

(J⊥/J‖)2 + 4 sin2(kd‖) sin2
(ϕ

2

)
. (10)

The energy bands for chosen values of J⊥/J‖ and ϕ are shown
in Fig. 2. For a vanishing rung tunneling amplitude J⊥ = 0,

two cosine-shaped energy bands arise which are shifted by
the quasimomentum ± ϕ

2d‖
and cross at the quasimomentum

k = 0 and at the Brillouin zone edge. Increasing the value of
the ratio of the tunneling amplitude J⊥/J‖ leads to a splitting
of the energy band crossings into avoided crossings. Whereas
for J⊥/J‖ < 2| cos( ϕ

2 )| the two bands still overlap in energy
at different momenta, for J⊥/J‖ > 2| cos( ϕ

2 )| the two bands
are well separated by an energy gap. The lower energy band
has two minima for J⊥/J‖ < 2| sin( ϕ

2 ) tan( ϕ

2 )| [e.g., Fig. 2(i)],
which are located at

k± = ± 1

d‖
arccos

⎧⎪⎨
⎪⎩
√√√√[

J⊥/J‖
2 tan

(
ϕ

2

)
]2

+ cos2
(ϕ

2

)⎫⎪⎬
⎪⎭.

In contrast, for J⊥/J‖ > 2| sin( ϕ

2 ) tan( ϕ

2 )| only one minimum
at k = 0 exists [see Fig. 2(ii)(b′)].

The various forms of the energy band structure can lead to
different geometries of the Fermi surfaces. In order to calculate
zero-temperature expectation values, we need to identify these
geometries. In the following we concentrate on the filling
n � 1

2 and the flux ϕ � π . We use the symmetries of the
system afterwards to infer the expectation values for n > 1

2

FIG. 2. Quasiparticle energy bands E−(k) (blue, dark lines) and E+(k) (orange, light lines) for ϕ = 3π

4 and different values of the tunneling
ratio J⊥/J‖. The horizontal (green) lines indicate the Fermi level. The crossings with the energy bands give various Fermi points. Column (i),
n = 1

2 and J⊥/J‖ ≈ 0.15,0.77,1.5 from top to bottom; column (ii), n = 3
8 and J⊥/J‖ = 0,0.4,6, from top to bottom; column (iii), n = 1

4 and
J⊥/J‖ ≈ 0.1,1.85,3, from top to bottom. The values of the tunneling ratio are chosen to exemplify the different situations (a) to (c) of the
Fermi surface described in the text. In column (i), the upper plot exemplifies situation (c), in which both bands are partially filled with four
Fermi points and the lower plot situation (b) in which only the lower band is filled with two Fermi points. The central plot shows the crossover
between these two situations. Column (ii) shows the filling n = 3

8 for which the flux ϕ = 3π

4 is critical, i.e., ϕ = ϕcr. For a finite value of the
ratio of the tunneling amplitudes only the lower band is filled and possesses two Fermi points. Column (iii) represents at low ratio of the
tunneling amplitudes J⊥/J‖ = 0.1 (upper plot) situation (a), in which the lower band has two minima at k± and four Fermi points. At large
tunneling ratios (lower plot) the curvature of the band decreases and a crossover (middle plot) to situation (b), in which two Fermi points exist,
takes place.
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and ϕ > π . The filling is defined by n = N/(2L), where N

is the number of fermions on the ladder and L the number
of rungs of the ladder. Depending on the band structure and
the filling there are three typical situations for the geometry
of the Fermi surface with the number of Fermi points varying
between 2 and 4. In order to describe these situations, we
introduce the quasimomenta k11, k12, and k21. The interval
k11 � |k| < k12 is given by the occupied quasimomenta in
the lower energy band. The quasimomentum k21 denotes the
maximal quasimomentum up to which the upper energy band
is filled. The values of k11, k12, and k21 depend on the filling
n, the tunneling ratio J⊥/J‖, and the flux ϕ. With the help
of these quasimomenta, we can characterize the different
Fermi surfaces.

(a) In the first situation only part of the lower energy band
is occupied, the upper energy band is empty, and four Fermi
points arise. This situation occurs if the lower energy band has
two minima at finite momenta |k±| > 0 and the filling is low
enough such that only k values close to the band minima in the
intervals 0 < k11 < |k| < k12 are populated [cf., Fig. 2(iii)(a)].
The upper energy band is empty, k21 = 0. The four Fermi
points ±k11, ± k12 lie in the lower energy band and their values
can be determined by the relations E−(k11) = E−(k12) and
2πn = (k12 − k11)d‖.

(b) In the second situation only part of the lower band
is occupied, the upper band is empty, and two Fermi points
±k12 (with k12 > 0) arise. This situation can occur if the lower
energy band has either one minimum [e.g., Fig. 2(ii)(b′)] or
two minima [Fig. 2(i)(b), 2(ii)(b), or 2(iii)(b)]. For the case of
a single minimum of the lower band, this situation arises for
all fillings which do not reach the upper energy band. For the
case of two minima, the filling has to be large enough that the
k = 0 quasimomentum in the lower band lies within the Fermi
sea (k11 = 0). At the same time the upper energy band needs
to be empty, i.e., k21 = 0. In both cases the Fermi points ±k12
are related to the filling by 2πn = k12d‖. Note that for n = 1

2
this situation corresponds to a band insulator.

(c) In the third situation both energy bands are at least
partially filled and four Fermi-points, two in the lower band
±k12 and two in the upper band ±k21 > 0, exist. For this
situation to occur, the filling must be sufficiently high such
that both bands are partially filled. For the case n < 1/2, four
Fermi points arise [cf. Fig. 2(i)(c)]. Two of them lie in the
lower energy band at ±k12 (with k12 > 0 and k11 = 0) and two
in the upper energy band, ±k21 with k21 > 0. The Fermi points
can be determined from the relations E+(k21) = E−(k12) and
2πn = (k12 + k21)d‖.

These three typical structures are separated by “critical”
geometries. We denote the separating values of the tunneling
ratio by (J⊥/J‖)cr. The first critical geometry separates the
situations (b) and (c). In this geometry the Fermi surface
touches the upper band and k21 vanishes [see Fig. 2(i)(cr)].
The second critical geometry separates the situations (a) and
(b). At this value k11 becomes zero and the transition between
four Fermi points to two Fermi points in the lower band takes
place [see Fig. 2(iii)(cr)]. As shown in Fig. 2(ii)(cr) the two
critical geometries can fall together in the particular situation
that (J⊥/J‖)cr = 0, since then the lower and upper band cross.
This occurs for a specific value of the flux which we denote
as the critical value ϕcr and which is related to the filling by
ϕcr = 2πn.

In the following sections we discuss how the structure of
the Fermi-surface influences physical properties such as the
expectation value of the rung tunneling and the chiral current.

B. Expectation value of the rung tunneling

The expectation value of the rung tunneling 〈K⊥〉 in the
ground state has two contributions with opposite sign for the
quasiparticles in the lower and upper energy band. This can be
seen in the expression

〈K⊥〉
L

= 1

L

∑
k

ukvk〈γ †
−,kγ−,k − γ

†
+,kγ+,k〉. (11)

Thus, the discussed geometries of the Fermi surface will
have an influence on the behavior of this expectation value.
In order to evaluate the expectation value 〈K⊥〉, we take the
continuum limit and rewrite the arising integrals as elliptic
integrals F of the first kind:

〈K⊥〉/L ≈ 1

2π

∫ k12

k11

(J⊥/J‖)d‖√
(J⊥/J‖)2 + 4 sin2(kd‖) sin2

(
ϕ

2

)dk

− 1

2π

∫ k21

0

(J⊥/J‖)d‖√
(J⊥/J‖)2 + 4 sin2(kd‖) sin2

(
ϕ

2

)dk

= 1

2π

[
F
(

k12d‖, − 1

J̃ 2

)
− F

(
k11d‖, − 1

J̃ 2

)

−F
(

k21d‖, − 1

J̃ 2

)]
, (12)

where we defined J̃ := J⊥/J‖
2 sin( ϕ

2 ) .
As a typical example of the arising behavior we show in

Fig. 3 the expectation value of the rung tunneling 〈K⊥〉/L
versus the ratio of the tunneling amplitudes J⊥/J‖ and flux ϕ

for three different fillings. Different geometries of the Fermi
surfaces (a)–(c) are separated by the red lines. We focus first
on the filling n = 1/4 (right panel). The expectation value of
the rung tunneling increases monotonically with increasing
tunneling ratio J⊥/J‖. In region (c) the rung tunneling shows a
very steep rise. There are four Fermi points, two of which are
situated in each energy band. By increasing the rung tunneling
amplitude J⊥, the upper energy band rises and the upper Fermi
points k21 move towards the band minimum k = 0. Thus, the
contribution of the second band decreases, which leads due to
the negative sign in Eq. (12) to an increase of the expectation
value of the rung tunneling. A second contribution stems from
the broader Fermi surface in the lower band. The rise of the
rung tunneling becomes much more moderate for large values
of the tunneling ratio J⊥/J‖ in regions (a) and (b), since here
only the lower energy band contributes. In regions (a) and
(b) there are four and two Fermi points, respectively, which
are situated in a lower energy band. By increasing the rung
tunneling amplitude J⊥ the lower energy band flattens and the
resulting contributions of the filled quasimomenta increase.
The crossover between two regions [between (a) and (b) or
between (c) and (b)] at (J⊥/J‖)cr shows up in a cusp. At the
critical flux ϕcr, only situation (b) occurs. In the limit of a large
ratio of the tunneling amplitudes J⊥/J‖ → ∞, the expectation
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FIG. 3. Dependence of the expectation value of the rung tunneling 〈K⊥〉/L on the flux ϕ and the tunneling ratios J⊥/J‖ at fillings n = 1
2 ,

3
8 , and 1

4 from left to right. The corresponding critical values of the flux are ϕcr = π , 3π

4 , and π

2 (and 2π − ϕcr). The red (solid) curves show the
critical values of the tunneling ratio (J⊥/J‖)cr as a function of flux. The dashed vertical lines mark the value of flux 3π

4 which corresponds to
Fermi surfaces shown in Fig. 2. The letters mark the regions with different Fermi-surface geometries described in the text.

value of the rung tunneling is bounded and approaches the
value of the filling 〈K⊥〉/L → n.

The shown behavior of the expectation value of the rung
tunneling for n = 1/4 is very typical. Changing the filling
mostly influences the extensions of the discussed regions. In
particular, for increasing filling 1/4 < n < 1/2 the region (a)
in the center with four Fermi points in the lower energy band
shrinks until at n = 1/2 no such region persists and ϕcr = π .

The symmetries of the system give the relation 〈K⊥(n,2π −
ϕ,J⊥/J‖)〉 = 〈K⊥(n,ϕ,J⊥/J‖)〉 (with ϕ ∈ [0,π ]) between low
and high flux. A similar expression relating fillings higher
than half filling to fillings lower than half filling can be
derived. The relation is given by 〈K⊥(1 − n,ϕ,J⊥/J‖)〉 =
〈K⊥(n,ϕ,J⊥/J‖)〉, with n < 1/2. These symmetry arguments
enable us to deduce the full behavior of the expectation value
of the rung tunneling from the discussed situations.

C. Properties of the chiral current

One of the interesting physical effects of an artificial gauge
field is the possible creation of chiral currents. On a ladder
structure the chiral current is defined as the difference of the
current along the two legs:

Jc = 1

L − 1

∑
j

(j0,j − j1,j ). (13)

Here we used the definition of the current on leg m given by

jm,j = −iJ‖(c†m,j cm,j+1 − c
†
m,j+1cm,j ). (14)

Similar to the expression for the rung tunneling, the chiral
current has contributions from the quasiparticles in both the
lower and the upper energy bands as given by the following
expression:

〈Jc〉/J‖ = 2

L − 1

∑
k{[

sin
(
kd‖ + ϕ

2

)
u2

k − sin
(
kd‖ − ϕ

2

)
v2

k

]
〈γ †

−,kγ−,k〉

+
[
sin

(
kd‖ + ϕ

2

)
v2

k − sin
(
kd‖ − ϕ

2

)
u2

k

]
〈γ †

+,kγ+,k〉
}
. (15)

In the continuum limit the expression becomes

〈Jc〉/J‖ ≈ 2

π
sin

(ϕ

2

)[
sin(k12d‖) − sin(k11d‖) + sin(k21d‖)

]
+ 4

π
J̃ cos

(ϕ

2

)[
E
(

k11d‖, − 1

J̃ 2

)
− F

(
k11d‖, − 1

J̃ 2

)

+E
(

k21d‖, − 1

J̃ 2

)
− F

(
k21d‖, − 1

J̃ 2

)

−E
(

k12d‖, − 1

J̃ 2

)
+ F

(
k12d‖, − 1

J̃ 2

)]
, (16)

FIG. 4. Dependence of the expectation value of the chiral current 〈Jc〉 on the flux ϕ and the tunneling ratios J⊥/J‖ at fillings n = 1
2 , 3

8 , and
1
4 from left to right. The corresponding critical values of the flux are ϕcr = π , 3π

4 , and π

2 (and 2π − ϕcr). The red curves show the critical value
of tunneling ratio (J⊥/J‖)cr as a function of flux. The letters mark the regions with different Fermi-surface geometries described in the text.
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FIG. 5. Cuts through the right panel of Fig. 4 showing the
dependence of the expectation value of the chiral current 〈Jc〉 on
the tunneling ratio J⊥/J‖ for various values of the flux ϕ at quarter
filling n = 1

4 .

where E denotes the elliptic integral of the second kind.
To gain insight into the typical behavior of the chiral

current, Fig. 4 shows the expectation value of the chiral
current 〈Jc〉/J‖ versus the ratio of the tunneling amplitudes
J⊥/J‖ and flux ϕ at different fillings n. As in Fig. 3, we
have added the lines separating the different geometries of
the Fermi surfaces (a)–(c). Additionally, Fig. 5 presents cuts
at various values of the flux for n = 1/4. For n = 1/4 and
ϕ < ϕcr = π/2 within region (c) the chiral current takes a
decreasing negative value with increasing value of the ratio
of the tunneling amplitudes until it reaches the boundary to
region (b). At the boundary between the two regions the chiral
current reaches its maximally negative value. In region (b),
with increasing ratio of the tunneling amplitudes J⊥/J‖, the
chiral current increases and even changes its sign, which means
that it inverts its direction. For larger values of the flux inside
region (a) the chiral current shows a steep rise for intermediate
values of the tunneling ratio. This increase crosses over with
a cusp at the boundary to region (b) in which the rise becomes
much more moderate. At critical flux ϕcr which always lies in
region (b) the chiral current shows a monotonic increase with
increasing tunneling ratio. The described behavior is again
typical and it is sustained for different fillings, where mainly
the location of the different regions changes.

For ϕ > π the same behavior occurs in inverse order
with negative sign. This is due to the symmetry of the
system, which leads to the relation 〈Jc(n,2π − ϕ,J⊥,J‖)〉 =
−〈Jc(n,ϕ,J⊥,J‖)〉. Fillings above half filling can be inferred
from the relation 〈Jc(1 − n,ϕ,J⊥,J‖)〉 = 〈Jc(n,ϕ,J⊥,J‖)〉.

IV. SELF-CONSISTENT SOLUTION OF THE EFFECTIVE
FERMIONIC MODEL

After having discussed in Sec. III the properties of the
effective fermionic Hamiltonian HF [Eq. (5)] for fixed rung
tunneling amplitudes, we now turn to the solution of the self-
consistent problem which includes the feedback of the cavity
mode allowing J⊥ to self-adjust. The gained insight into the
behavior of the expectation value of the rung tunneling 〈K⊥〉
on J⊥ will help to determine the possible solutions.

A. Graphical interpretation of the self-consistency condition

The self-consistency condition [Eq. (6)] can be reformu-
lated into the condition 〈K⊥(J⊥/J‖)〉/L = J‖

AL
J⊥/J‖. The

left-hand side of the condition contains the complicated
dependence of the expectation value 〈K⊥〉 on the ratio of the
rung tunneling amplitudes J⊥/J‖, whereas the right-hand side
represents a linear function of J⊥/J‖ with slope J‖

AL
. The slope

can be tuned, e.g., via the pump strength A. This form of the
condition suggests a simple graphical interpretation. Plotting
both sides of the condition, the solutions are determined by
the crossings of the two curves.

Figure 6 shows the expectation value of the rung tunneling
〈K⊥〉/L at ϕ = 3π/4 for three characteristic scenarios, which
are marked in Fig. 3 by dashed lines. These correspond to (i) the
crossing between regions (c) and (b) with increasing tunneling
ratio, (ii) the special situation that one remains within region
(b) for all values of the tunneling ratio (i.e., the flux corresponds
to the critical flux ϕcr), and (iii) the crossing between regions
(a) and (b) for increasing tunneling ratio. We note that these
scenarios are very typical and could also be realized at a fixed
filling by varying the flux.

(i) In Fig. 6(i) the filling is chosen such that at small values
of the ratio of the tunneling J⊥/J‖ the system has the Fermi-
surface structure (c), i.e., two Fermi points in the lower and two
in the upper energy band, whereas at larger values it crosses
over to situation (b) with two Fermi points in the lower energy
band [cf. Fig. 2(i)]. The resulting expectation value of the
rung tunneling 〈K⊥〉/L has a negative curvature in region (c)
below (J⊥/J‖)cr and a positive curvature in region (b) above
(J⊥/J‖)cr with a cusp at the critical tunneling,

(
J⊥
J‖

)
cr

= 2
[
sin2(πn) cos2

(
ϕ

2

) − sin2( ϕ

2 ) cos2(πn)
]

cos
(

ϕ

2

) .

Thus, no solution exists below a critical pump strength Acr,i,
which relates to the critical value of the tunneling ratio [see
the dot-dashed line in Fig. 6(i)],

Acr,i
L

J‖
= (J⊥/J‖)cr

〈K⊥〉cr/L
, (17)

where 〈K⊥〉cr/L is the value of 〈K⊥〉/L evaluated at the critical
tunneling ( J⊥

J‖
)
cr

. For the shown parameters in Fig. 7 at n = 1/2,
the critical value of the pump strength is Acr,i ≈ 2.63J‖/L.
Over a certain regime of values of A > Acr,i two solutions
exist, which signals a possible bistability. The first solution is
always above the critical value of the tunneling ratio (J⊥/J‖)cr

[situation (b)]. The solution J⊥ grows monotonically and
persists even for large values of the parameter A. At large
values of A, it can be approximated by a linear growth
J⊥ ≈ ALd‖kF /(2π ).

In contrast, the second solution decreases with increasing
A [in situation (c)] and only exists up to a value (A)max,i which
is related to the slope of the expectation value of the rung
tunneling 〈K⊥〉 at small tunneling ratio J⊥/J‖ [cf. dashed line
in Fig. 6(i)]. By expanding Eq. (12) for J⊥/J‖ � 1 this upper
limit of pump strength is calculated for 0 � ϕ � π to be given
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FIG. 6. Graphical interpretation of the self-consistency condition at ϕ = 3π

4 for different fillings n = 1
2 corresponding to scenario (i), n = 3

8
corresponding to scenario (ii), and n = 1

4 corresponding to scenario (iii) described in the text. The small letters label the regions of the different
geometries of the Fermi surfaces discussed earlier and the band structure corresponding to the parameters marked by solid circles is depicted
in Fig. 2. The blue solid line shows the left-hand side (LHS) of the self-consistency condition, i.e., the expectation value of the rung tunneling
〈K⊥〉/L (cuts of dashed lines in Fig. 3). The linear curves show the right-hand side (RHS) J‖

AL
J⊥/J‖ of the self-consistency condition Eq. (6)

for chosen values of the pump strength A. The crossings between the RHS and the LHS give the solutions. In panel (i) the dot-dashed line
corresponds to the minimum value Acr,i [see Eq. (17)] for which a self-consistent solution exists. For intermediate values of A (red curve) two
solutions exist, before above the value Amax,i (dashed line) only one nontrivial solution (orange solid line) exists. In panel (ii) there exists for
each value of A one nontrivial self-consistent solution as exemplified for the orange solid line. The dashed line represents the approximation
Eq. (19) of the expectation value of the rung tunneling 〈K⊥〉/L for small ratios of the tunneling amplitudes J⊥/J‖. In panel (iii), the dashed
line corresponds to the minimal value Acr,iii [Eq. (20)] for which a self-consistent solution exists and the orange solid line shows a solution
which lies in region (b).

by

Amax,i
L

J‖
= 4π sin

(
ϕ

2

)
ln

[
tan( nπ

2 + ϕ

4 )
tan( nπ

2 − ϕ

4 )

] . (18)

For the shown parameter in Fig. 7 at n = 1/2, the maximal
value of the pump strength is Amax,i ≈ 3.59J‖/L. In the regime
of coexistence of the two solutions, a stability analysis of the
different solutions has to be performed in order to decide which
of these is taken beyond adiabatic elimination. Exact numerical
calculations for small system sizes point towards the stability
of the first solution, i.e., the solution above the critical value
of the tunneling (J⊥/J‖)cr and an instability of the second
solution [62].

Let us emphasize that the described scenario (i) applies to
all parameter sets in which a direct crossing between regions
(c) and (b) takes place. Mostly, the values of the solution and
the location of the critical and maximal value of A changes.
Since the effective tunneling ratio of the self-consistent
solution is proportional to the mean cavity field amplitude
α, the results show that a sudden occupation of the cavity field
takes place at the critical pump strength Acr,i . This indicates
the self-organization of a nontrivial symmetry-broken state.

FIG. 7. The solutions for J⊥/J‖ of the self-consistency equation
versus the pump strength A for the parameters shown in Fig. 6.

The properties of this state and, in particular, of the atomic gas
will be investigated in more detail in the next section.

(ii) The second scenario is shown in Fig. 6(ii), where
the filling is chosen such that ϕ = 3π/4 corresponds to the
critical flux ϕcr. In this case all values of J⊥/J‖ > 0 lie above
(J⊥/J‖)cr = 0 and situation (b) is realized, i.e., two Fermi
points ±k12 > 0 exist in the lower band [cf. Fig. 2(ii)]. The
expectation value of the rung tunneling 〈K⊥〉/L has a positive
curvature. To be more precise, the expectation value of the
rung tunneling for small tunneling ratio at a fixed finite filling
can be expanded as

(〈K⊥〉/L)ii =
ln

[
8J‖ sin2(nπ)
J⊥ cos(nπ)

]
4π sin(nπ )

J⊥/J‖

+O((J⊥/J‖)3), (19)

which shows a logarithmic behavior with positive curvature for
small tunneling ratios [dashed line in Fig. 6(ii)]. Thus, since
the derivative at low values of the tunneling ratio diverges, for
all finite values of the pump strength A > 0 a self-consistent
solution arises, as seen in Fig. 7 at n = 3/8. Due to the
overall positive curvature of the expectation value of the rung
tunneling for each value of A, a single self-consistent solution
exists. Typically, for small A, the solution J⊥ increases slowly
with increasing the pump strength A. This leads also to a
slow increase of the cavity field amplitude with the applied
transverse pump strength, which has to be contrasted with the
sudden onset in scenario (i).
Scenario (ii) is much more rare than the previously discussed
scenario (i), since it only exists at the critical flux of a chosen
filling.

(iii) The third scenario is shown in Fig. 6(iii), where the
filling is chosen, such that the flux fulfills ϕcr < ϕ = 3π/4 <

π . This means that at small ratios of the tunneling amplitudes
the system is in situation (a) and crosses over to situation (b)
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R
e
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e

FIG. 8. Regime of existence of a self-organized chiral state for fillings n = 1
2 , 3

8 , 1
4 from left to right. (Top row) The red solid curves mark

the critical values of pump strength Acr, above which a self-consistent solution with a finite cavity field exists. (Bottom row) The regime
of existence of the second solution of scenario (iii) (lying in region c) is represented in between the lower and upper red solid lines. In the
self-organized phase the real part of the expectation value of the cavity field Re(α)/

√
L is shown by the color code. Here �δcp = J‖ and

�κ = 0.05J‖. The subscripts denote the two solutions of the self-consistency equation.

at the critical tunneling,

(
J⊥
J‖

)
cr

= 2
[
sin2

(
ϕ

2

)
cos2(πn) − sin2(πn) cos2

(
ϕ

2

)]
cos

(
ϕ

2

) .

The form of the expectation value of the rung tunneling 〈K⊥〉
increases with increasing tunneling ratio and has a slight cusp
at the critical value between regions (a) and (b). Since the curve
grows at large values of the tunneling ratio monotonically,
there exists no upper limit for the value of A for which a
nontrivial self-consistent solution arises. However, the low
values of the tunneling ratio need to be considered more
carefully. In particular, the expansion of the expectation value
of the rung tunneling in this limit behaves linearly followed by
a bending down at larger values of J⊥/J‖. Thus, below a lower
critical value A no solution exists. This critical value (A)cr,iii
is given by

(A)cr,iii = 4π sin
(

ϕ

2

)
J‖

L ln
[

tan( ϕ

4 + nπ
2 )

tan( ϕ

4 − nπ
2 )

] , (20)

where we have considered 0 � ϕ � π [e.g., see dashed line
in Fig. 6(iii)]. This means that a single self-consistent solution
exists for all values of A > Acr,iii as seen for n = 1/4 in Fig. 7.
In scenario (iii) the solution for J⊥ slowly increases with A

and no sudden jump of the cavity field amplitude is found.
To summarize, for scenarios (i) and (iii) a lower critical

value Acr exists below which only the trivial solution of an
empty cavity exists. Above this critical value, at least one
nontrivial solution arises. In contrast, at the critical flux,
scenario (ii) occurs for which a single solution arises for all
finite values of the pump strength A.

B. Self-organized chiral state

In this section we discuss the properties of the self-
organized states corresponding to the solutions found in the
previous section. We show in Fig. 8 the real part of the
expectation value of the cavity field Re(α) which summarizes
the regions in which a nontrivial self-consistent solution was
found. Additionally, we plot in Fig. 9 the value of the arising
chiral current in this state. We represent the results as a
function of the pump strength A ∝ �2

p, which can be tuned,
in particular, by the intensity of the transverse pump laser, and
the flux ϕ, which can be adjusted by the lattice geometry and
the wavelength of the pump laser, as described in Sec. II.

The lower critical values Acr for the onset of a self-
organized state with a finite cavity field are shown as solid
(red) lines. A finite value of Acr is required for most values of
the flux ϕ and typically an onset of the self-organized state with
finite cavity occupation occurs. Only at the critical values ϕcr

[scenario (ii)] does such self-organization arise for an infinitely
small value of A and persist for all values. One finds that a
sudden jump to a finite value of the cavity field and of the
chiral current arises at Acr for values of the flux ϕ < ϕcr � π

(and ϕ > 2π − ϕcr). This corresponds to the scenario (i) of
the self-consistent solution. In contrast, for the range of flux
ϕcr < ϕ < 2π − ϕcr, the expectation value of the cavity field
and, thus, of the expectation value of the chiral current are
zero at low pump strength and only slowly increases above
the critical pump strength. This corresponds to the scenario
(iii) of the self-consistent solution. Note that along the line
ϕ = π by symmetry reasons the chiral current vanishes and
that another two curves of vanishing chiral current exist away
of half filling. The behavior of the chiral current at fixed value
of A becomes more clear in the cuts shown in Fig. 10. The
current shows, depending on the value of A, very different
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FIG. 9. Regime of existence of a self-organized chiral state for fillings n = 1
2 , 3

8 , 1
4 from left to right. (Top row) The red solid curves mark the

critical values of pump strength Acr, above which a self-consistent solution with a finite cavity field exists. (Bottom row) The regime of existence
of the second solution of scenario (iii) (lying in region c) is represented between the lower and upper red solid lines. In the self-organized phase
the expectation value of the chiral current 〈Jc〉 is shown by the color code for the respective self-consistent solution. A chiral insulator (liquid)
is denoted by CI (CL), respectively. The lines where the chiral current vanishes (see color coding) correspond to a normal insulator and liquid
according to the bordering phases. Parameters are as in Fig. 8. The subscripts denote the two solutions of the self-consistency equation.

dependence on the flux. For the first solution at low values of
A, i.e., A ≈ 3.1J‖/L in Fig. 10, the current remains zero up
to a critical value of the flux (intersection with the red line
in Fig. 9). Subsequently, it first takes a negative value until
it reaches its minimum, where it starts to grow to a positive
value. This means that the chiral current inverts its direction.

FIG. 10. Chiral current versus flux for different pump strength A.
Shown are different cuts through the density plot Fig. 9 at quarter
filling n = 1

4 for the first (top) and second (bottom) self-consistent
solutions. Subscripts label the two solutions of the self-consistency
equation.

At a second critical value it vanishes again. Due to symmetry,
the inverse dependence on the flux can be seen for values
above ϕ = π . At intermediate values of A (cf. A ≈ 15.9J‖/L
in Fig. 10) the initial vanishing and negative regime of the
current shrinks and an almost triangular shape is found. The
inversion of the current only takes place at the symmetry
point ϕ = π .

When the pump strength is very large there exists only
one self-consistent solution. For A → ∞, the chiral current
approaches a constant value 〈Jc〉/J‖ = 2

π
sin( ϕ

2 ) sin(2πn). The
direction of the current for values of n < 1/2 and ϕ < π is
always the same and a change occurs at ϕ = π . The maximum
value of the chiral current for large pump strength occurs at
quarter filling n = 1

4 (and n = 3
4 ) with ϕ → π and it goes to

zero at half filling n = 1
2 and very low or very high filling

(Fig. 11).
Since for the flux ϕ < ϕcr (and ϕ > 2π − ϕcr) two solutions

can exist, we show also the chiral current corresponding to the
second solution. This solution only exists in a finite regime of
values of A as marked in the bottom panels of Figs. 9 and 10.
As for the first solution, the chiral current corresponding to
the second solution jumps to a finite value at the critical value
of Acr. However, for larger values of the pump strength A the
chiral current of the second solution decreases to zero, since
it corresponds to the effective values of the ratio of the rung
tunneling J⊥/J‖ which decrease with increasing value of A. At
a fixed value of A (Fig. 10, bottom panel) the second solution
shows a rapid decrease of the current with increasing value of
the flux (ϕ < π ) to a minimal negative value followed by a
rapid decrease to zero.

In Fig. 12 and in Fig. 13, the real part of the expectation
value of the cavity field and the chiral current is plotted
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FIG. 11. Dependence of the chiral current 〈Jc〉 on flux ϕ and
filling n for very strong pump amplitude, A → ∞, where only one
self-consistent solution for the hopping amplitude exists. The current
changes its direction at ϕ = π .

versus the filling and the pump strength for different fluxes.
The solid red line indicates the onset of a nontrivial solution
of the self-consistency condition. The top panels show the
first solution. Since 2πn = ϕcr, the critical value of the flux
is proportional to the filling. Additionally, at half filling
the boundary of the regime of the self-consistent solution
bends down and shows a cusp. Furthermore, the cavity field
amplitude reaches a maximum at half filling. The chiral current
shows a more complex behavior. It is maximal close to the
boundaries of the region where a nontrivial solution exists,
and a line of vanishing current starts at the critical density
and moves towards larger densities (for n < 1/2). Across this
line the chiral current changes sign and becomes maximally
negative at half filling. Whereas the general form is similar
for different values of the flux, the region of existence of the
nontrivial solution shrinks for larger values of the flux and a

stronger pump strength is needed at low densities. In contrast,
the critical pump amplitude at half filling decreases slightly
with increasing value of the flux.

These results show that in most of the cases, the self-
organized state of the fermionic atoms carries a chiral current.
This state is insulating or liquid in nature. Away from half-
filling a chiral liquid is formed. In contrast, at half-filling one
has to distinguish between two different solutions. For the first
solution (region b) a chiral insulator arises in which only the
lower energy band is completely filled and a gap to the upper
empty energy band is present. In contrast, the second solution
corresponds to a chiral liquid (see Fig. 9) in which at least one
of the bands is partially filled.

V. DETECTION OF THE CHIRAL CURRENT

The self-organized chiral current can be measured in a
very direct way by observing the superradiant scattering of
a weak probe beam into an empty cavity mode. To this end, a
magnetic-field gradient is applied along the y direction, which
leads to a potential offset �′ between neighboring sites along
the legs of the ladders. In addition, a weak probe beam with
frequency ω′

p is applied along the z direction. The frequency
ω′

p is chosen such that a Raman process is induced between
neighboring sites on a leg via the probe beam and an empty
“probe” cavity mode whose longitudinal mode number differs
by two from the main cavity mode.

The induced process can be described by the effective term

Hprobe = ��̃′ ∑
j,m=0,1

(−1)m(b†c†m,j cm,j+1 + H.c.), (21)

where b denotes the annihilation operator of the probe cavity
mode and �̃′ is the two-photon Rabi frequency. The factor

R
e

R
e

FIG. 12. Regime of existence of a self-organized chiral state for flux values ϕ = π

4 , π

2 , 3π

4 from left to right. (Top row) The red solid curves
mark the critical values of pump strength Acr above which a self-consistent solution with a finite cavity field exists. (Bottom row) The regime
of existence of the second solution of scenario (iii) (lying in region c) is represented between the lower and upper red solid lines. In the
self-organized phase the real part of the cavity field expectation value Re(α)/

√
L is shown by the color code. Here �δcp = J‖ and �κ = 0.05J‖.
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FIG. 13. Expectation value of the chiral current 〈Jc〉 in the self-organized chiral state for ϕ = π

4 , π

2 , 3π

4 from left to right versus filling n.
(Top row) The red solid curves mark the critical values of pump strength Acr above which a self-consistent solution with a finite cavity field
exists. (Bottom row) The regime of existence of the second solution of scenario (iii) (lying in region c) is represented between the lower and
upper red solid lines. Parameters are as in Fig. 12. The subscripts denote the two solutions of the self-consistency equation.

(−1)m takes into account that the spatial profile of the probe
cavity mode has opposite sign on the two legs of the ladder.

The above Hamiltonian can be written in terms of the
directed tunneling Km = 1

L−1

∑
j c

†
m,j cm,j+1 on leg m and the

chiral current as

Hprobe

L − 1

= ��̃′

2
[(b + b†)

∑
m

(−1)m(Km + K†
m) + i(b − b†)Jc/J‖].

(22)

The equations of motion for the probe cavity field are

− i∂t 〈b〉 = − (L − 1)�̃′

2
[(−1)m〈Km + K†

m〉 − i〈Jc〉/J‖]

− (δ′
cp + iκ ′)〈b〉,

−i∂t 〈b†〉 = + (L − 1)�̃′

2
[(−1)m〈Km + K†

m〉 + i〈Jc〉/J‖]

+ (δ′
cp − iκ ′)〈b†〉, (23)

where δ′
cp = ω′

c − ω′
p + �′/�, ω′

c denotes the frequency, and
κ ′ the decay rate of the probe cavity mode. In the stationary
state, the chiral current is directly mapped onto the probe cavity
field as

〈Jc〉 = J‖
(L − 1)�̃′ (iδ

′
cp〈−b + b†〉 + κ ′〈b + b†〉). (24)

Experimentally, the chiral current can thus be directly
measured by observing the appropriate quadrature using a
heterodyne detection scheme.

VI. CONCLUSION

In this work we have investigated the steady-state diagram
of a coupled atom-cavity system on a ladder geometry. The
coupling is realized via a Raman process employing the
cavity field and a transverse running-wave pump beam. This
induces a cavity-assisted tunneling process along the rungs
which comprises a spatially dependent phase imprint. Above
a critical pump strength (which can be zero) we have found a
spontaneous self-organization of the system into a state in
which the emergent cavity field induces a strong artificial
magnetic field for the atoms. In this artificial magnetic field,
the atoms acquire a chiral current and the arising state is
typically a chiral insulator for certain regimes at half filling
or a chiral liquid. Only narrow lines along which the chiral
current vanishes exist in the phase diagram. The occupation
of the cavity field can either take place via a sudden jump
at a critical value of the pump strength or via a slow
activation.

Beyond the mean-field description, an effective dissipative
dynamics with jump operator K⊥ and rate � ∼ κ�̃2

δ2
cp+κ2 could

drive the atomic system away from the ground state determined
by HF into a steady-state which is a dynamical equilibrium
between driving and damping [6]. For the running-wave pump
configuration considered above, this could result in long time
scales in a transfer of the entire atomic population into the
right leg of the ladders (see Fig. 1). This can be avoided by
adding a second running-wave pump laser field along the y

direction which, together with a second cavity mode (separated
from the first cavity mode by twice the free spectral range),
drives Raman transitions along the rungs into the opposite
direction [62].

The presented work enables the realization of chiral phases
as attractor states of a dissipative dynamics. Additionally,
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we detail how the emerging chiral current can be measured
experimentally in a direct and nondestructive way using the
cavity output field.

The exact characterization of the dissipative temporal
dynamics going beyond the steady-state phase diagram is of
great interest for further studies. Additionally, the extension
of the presented scheme into two dimensions, where true edge
states separated by a bulk exist, is a direction to explore. Such
edge states could have a protection by the dissipative attractor
dynamics and by their topological nature.
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APPENDIX: DERIVATION OF THE EFFECTIVE
HAMILTONIAN

A fermionic quantum gas placed in an optical cavity and
subjected to optical lattice potentials and a transversal pump
beam can be described in the rotating-wave approximation by
the Hamiltonian [6]

H ≈ Hg + He + Hc + Hac + Hap, (A1)

where we define the different terms in the following. We
assume that only two internal states of the atom, the ground
and one excited state, are important for the atomic dynamics.
The atomic motion is described by the first contribution,

Hg =
∫

d3r
{
�†

g(r)

[
− �

2

2m
∇2 + Vg(r)

]
�g(r)

}
,

He =
∫

d3r �†
e (r)

{[
− �

2

2m
∇2 + �ωep + Ve(r)

]
�e(r)

}
,

where �g(r) and �e(r) denote the fermionic annihilation
operators at position r in the ground state and the excited
state, respectively. The excited-state operator is defined in the
frame rotating at the pump frequency. The atomic frequency
between the ground and the excited states is given by ωe and the
detuning of the pump laser from the atomic transition is defined
by ωep = ωe − ωp. The potentials Ve(r) and Vg(r) are the
external potentials for the atom in the excited and the ground
states, respectively. These contain the optical lattice potential
and other possible trapping potentials. The interaction between
the atoms in the ground and the excited states has been
neglected since the excited state is barely populated for large
detuning ωep.

The second term describes the cavity field dynamics

Hc = �ωcpa
†a.

Here ωcp = ωc − ωp is the detuning between the dispersively
shifted resonance frequency ωc of the cavity mode and the
pump frequency ωp and a the annihilation operator of cavity
photons in the frame rotating at ωp. In addition to the unitary
evolution described by the Hamiltonian, the cavity field is
subjected to loss which requires the description by a Lindblad
master equation.

The coupling between the atoms and the cavity field is
represented by

Hac = �g0

∫
d3r[�†

g(r) cos(kc · r)a†�e(r) + H.c.], (A2)

where g0 is the vacuum-Rabi frequency of the cavity and kc is
the wave vector of the cavity mode.

The interaction with the pump laser beam, which coherently
drives the atoms, reads

Hap = ��p

∫
d3r[�†

g(r)e−ikp ·r�e(r) + H.c.], (A3)

where �p denotes the Rabi frequency of the pump beam. Since
the internal time scales are fast and the excited state is hardly
occupied for far off-resonant driving, we can adiabatically
eliminate the excited state in order to obtain an effective
description of the dynamics of the atomic ground state and
the cavity field. Using the equation of motion of the excited
state,

i�
∂�e(r)

∂t
=

[
− �

2

2m
∇2 + Ve(r) + �ωep

]
�e(r)

+ [�g0 cos(kc · r)a + ��peikp ·r]�g(r), (A4)

its stationary value is found to be

�e(r) = − 1

ωep

[g0 cos(kc · r)a + �peikp ·r]�g(r). (A5)

The equations of motion for the atomic ground state and
the cavity field which result from substituting the stationary
value of the excited field can be obtained from the effective
Hamiltonian

Heff = Hc + Hg + Hac,

Hac = −�g0�p

ωep

∫
d3r(eikp ·ra† + e−ikp ·ra)

× cos(kc · r)�†
g(r)�g(r), (A6)

combined with the dissipative term of the Lindblad equation
for the cavity losses. Here we have only taken into account
the two-photon transitions involving one pump and one cavity
photon which will lead to the cavity-induced tunneling, and
we have neglected the ac-Stark shift induced by intracavity
photons or by the pump beam.

In a sufficiently strong optical lattice potential, a convenient
choice is to expand the fermionic field operators into the
corresponding Wannier basis of the lattice,

�†
g(r) =

∑
m,j

w∗(r − Rm,j )c†m,j , (A7)

where Rm,j denotes the position of the lattice site j on leg m

and c
†
m,j represents the corresponding creation operator of the

fermionic state on leg m and site j . The advantage of such a
representation is the localization of the Wannier functions in
the lattice wells.

Using the expansion into Wannier functions and neglecting
off-resonant terms of the two-photon transition, the resulting
effective Hamiltonian HF is given by Eq. (1) in the main text.
The factors φ‖ and φ⊥ are effective parameters which can
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be related to the microscopic parameters of the underlying
geometry. In particular, along the y direction the onsite
contribution of the overlap integrals of the Wannier functions
is typically most important such that φ‖ is dominated by

φ‖,0(kp) =
∫

dyw∗(y)w(y)e−ikpy .

Along the x direction two different processes can give
important contributions depending on the chosen lattice
geometry. The first one stems from the overlap between the
Wannier functions of neighboring lattice wells and is given by

φ⊥,±(kc) =
∫

dxw∗(x)w(x ± d⊥) cos(kcx).

Here d⊥ is the lattice spacing along the rungs of the ladder. The
second contribution stems from the oscillating energy offset

between the two sites on a rung. The amplitude of the energy
offset is related to the on-site overlap integrals,

φ⊥,m(kc)=
∫

dxw∗(x − md⊥)w(x − md⊥) cos [kc(x+md⊥)],

which are distinct on the two different legs m = 0,1. The
coupling to the cavity mode induces a time modulation of
the potential offset of the two sites along a rung and by this
leads to an effective tunneling with an amplitude proportional
to the difference φ⊥,1 − φ⊥,0 and inverse proportional to the
oscillation frequency. We assume that both parts are included
in the effective parameter φ⊥ of the main text.
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220408 (2013).
[20] G. Kónya, G. Szirmai, and P. Domokos, Phys. Rev. A 90, 013623

(2014).
[21] F. Piazza and H. Ritsch, Phys. Rev. Lett. 115, 163601 (2015).
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