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Theoretical analysis of the spectroscopy of atomic Bose-Hubbard systems
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We provide a numerical method to calculate comprehensively the microwave and the laser spectra of ultracold
bosonic atoms in optical lattices at finite temperatures. Our formulation is built up with the sum rules, up to the
second order, derived from the general principle of spectroscopy. The sum rule approach allows us to discuss
the physical origins of a spectral peak shift and also a peak broadening. We find that a spectral broadening of
superfluid atoms can be determined from number fluctuations of atoms, while that of normal-state atoms is mainly
attributed to quantum fluctuations resulting from hopping of atoms. To calculate spectra at finite temperatures,
based on the sum rule approach, we provide a two-mode approximation assuming that spectra of the superfluid
and normal state atoms can be calculated separately. Our method can properly deal with multipeak structures
of spectra resulting from thermal fluctuations and also coexisting of the superfluid and the normal states. By
combining the two-mode approximation with a finite temperature Gutzwiller approximation, we calculate spectra
at finite temperatures by considering realistic systems, and the calculated spectra show nice agreements with
those in experiments.
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I. INTRODUCTION

Ultracold atoms in an optical lattice allows us to simulate
quantum phase transitions of lattice fermions and also bosons
[1,2]. In fact, the superfluid (SF) to the Mott insulator (MI)
transition of bosonic atoms has been demonstrated by using
various measurement techniques [3–16]. The signature of the
phase transitions can be observed in certain thermodynamic
quantities [3–10]. One of the examples is to characterize the
transition by observing the disappearance of a coherent peak
structure in the number distribution of atoms in the momentum
space [3–6]. A spectroscopic measurement is another useful
tool to detect phase transitions [11–16]. This is because much
information is included in spectra that reflect the dynamical
response of many-body systems after excitations caused by
a certain external field. Furthermore, when the external field
is very weak and perturbative, the dynamical response can be
connected to thermodynamic quantities of thermal equilibrium
states before excitations. In condensed matter physics, such
a relationship, e.g., fluctuation-dissipation theorem, has been
used to discuss quantum many-body phenomena. It is thus
required to deeply discuss such spectroscopic relationships
specific to cold-atom systems.

One of the pioneering studies on spectroscopic mea-
surement on atoms in a lattice is microwave spectroscopy
experiments, where the Mott shell structure has been observed
by spectroscopically distinguishing the different number states
of atoms [12]. Theoretically, the corresponding spectra have
been studied with an approximation satisfying the (first-order)
spectral sum rule [17–20], which is derived from the general
principle of spectroscopy [21]. The first-order sum rule
determines the relationship between the spectral peak position
and the two-body correlation function of atoms [17]. This is a
prominent example that connects thermodynamics to dynam-
ics in cold-atom systems. This calculation assumed that the
system is at zero temperature, while the realistic experiments
have been done at low but finite temperatures. In addition, such
a first-order approximation is insufficient to discuss important
properties of spectra, such as, a standard deviation and a

spectral broadening, which can be connected to fluctuations of
atoms in thermal equilibrium. On the other hand, the laser spec-
troscopy is now being established [22–24]. The laser and the
microwave spectroscopy are understood as a similar type spec-
troscopy based on electromagnet-field excitations. However,
the laser spectroscopy cannot be straightforwardly described
by the formulation of the previous studies [17]. This is mainly
due to the difference in wavelengths of the external fields.
A reliable theoretical method for comprehensively analyzing
these spectroscopy at finite temperatures is now required.

In this paper we theoretically discuss a common for-
mulation for the microwave and the laser spectroscopy of
ultracold bosonic atoms in a three-dimensional optical lattice.
We start with analyzing the sum rules in the same way as the
previous work [17], while we extend the approximation to the
second order. This approach allows us to clarify that number
fluctuations of atoms in thermal equilibrium can be connected
to a broadening of spectra. Phenomenological discussions
based on the sum rule approach allow us to establish a method
for calculating spectra at finite temperatures. We propose
a two-mode approximation assuming that the spectra of
condensed SF atoms and uncondensed normal state (NS) atoms
are separately dealt with. The multipeak structures resulting
from thermal fluctuations and also the coexisting of the SF
and NS atoms can be appropriately taken account. Using this
approximation combined with a finite temperature Gutzwiller
approximation [25], we numerically calculate the microwave
and the laser spectra by considering realistic experimental
parameters [12,26]. We find that our approximations reproduce
essential features of spectra seen in the microwave experiments
[12], and we predict spectra of the realistic laser spectroscopy
experiments [26].

II. THEORY OF SPECTROSCOPY

This section is devoted to the general theoretical framework
of spectroscopy. We first explain the model Hamiltonian,
and then we show the common formulation to describe the
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microwave and the laser spectroscopy. To capture essence of
the present spectroscopy, we discuss physical properties of
spectra in simple model cases. For simplicity we set � = 1
and kB = 1.

A. Model Hamiltonian

Before spectroscopic excitations, thermal equilibrium prop-
erties of atoms in an optical lattice is well described by the
following single-band Bose-Hubbard Hamiltonian [27,28]:

Ĥg = −Jg

∑
〈i,j〉

ĉ
†
g,i ĉg,j +

∑
i

(Vg,i − μ)n̂g,i

+ Ug,g

2

∑
i

n̂g,i(n̂g,i − 1), (1)

where ĉ
†
g,i (ĉg,i) is the creation (annihilation) operator of an

unexcited atom at the i th site, and n̂g,i is the corresponding
number operator. Here contributions of higher orbitals can be
neglected when we consider the low energy properties. We
note that higher orbitals have a role in the spectroscopy as
discussed later. The Hubbard parameters, i.e., the interaction
strength Ug,g and the hopping integral Jg , are evaluated by
the ab initio calculations based on the second quantization
using experimental parameters: a lattice constant aL and a
lattice depth V0, which are determined from a wavelength
and an intensity of the lattice laser, respectively, and ag,g a
scattering length between two unexcited atoms. The chemical
potential μ is determined so as to fix the expectation value
of the total number of atoms Ntot = ∑

i〈n̂g,i〉 and Vg,i is the
trapping potential, where 〈Â〉 means thermal expectation value
of the operator Â given by Tr exp(−βĤ )Â. In the following,
for simplicity, we omit to explicitly write down μ, which can
be included in a global shift of Vg,i .

B. Spectroscopy

In the microwave and the laser spectroscopy, excitation
processes caused by an external electro-magnetic field are
generally described by �Ôexe

iωt+iKex·r̂ [17], where �, ω,
and Kex are a nondimensional normalized amplitude, an
angular frequency, and a wave vector of the external field,
respectively, and t and r are time and position. Here Ôex is
an excitation operator defined as follows. For convenience we
define

∑
α ραÔex,α as a second quantization of Ôexe

iKex·r̂, and

Ôex,α =
∑

i

eikex·ri ĉ
†
eα,i ĉg,i + H.c., (2)

where ĉeα,i is the annihilation operator of an excited atom in
the αth orbital at the ith site of the position ri . Note that kex

is a reduced wave vector in the first Brillouin zone defined
by kex ≡ Kex + G, where G represents any reciprocal vectors
with eiG·ri = 1. An excitation matrix ρα is defined by

ρα =
∫

drW ∗
α (r − ri)e

iKex·(r−ri )W1(r − ri), (3)

where Wα(r − ri) is the αth Wannier orbital at the ith site
for the excited atoms, and W1(r − ri) is that for the unexcited
atoms (i.e., α = 1). Here |ρα|2 represents the probability that
the orbital of atoms changes from the lowest to the αth orbital

during excitations. The orthogonality of the Wannier orbitals
assures a condition

∑
α |ρα|2 = 1. Note that ρα in Eq. (3)

characterizes the difference between microwave and laser
spectroscopy as detailed in Sec. IV A. In this paper we neglect
the probability that atoms are excited to the different lattice
sites (i.e., intersite excitation), because it is exponentially
smaller than that of the on-site excitations. Namely, we
assume that ρ

i,j
α = ∫

drW ∗
α (r − rj )eiKex·(r−ri )W1(r − ri) are

negligible except for i = j . In fact, using parameters in
Sec. IV A, we found that the relative intensities of such intersite
excitations, which are proportional to | ρ

i �=j
α

ρα
|2, are less than

∼0.2% for V0 = 4Er and are much smaller for deeper lattices.
We focus on the weak excitation limit under the condition

of |�| � 1. The excitation spectra can be formally given by
I (ω) = ∑

α |ρα|2Iα(ω), and

Iα(ω) = |�|2
∑
n′,n

|〈n′|Ôex,α|n〉|2e−(En−�)/T δ(ω − E′
n + En),

(4)

where |n〉 is the eigenstate of Hamiltonian Hg in Eq. (1) with
energy En, and �(= −T ln

∑
n e−En/T ) is the grand potential.

Note that the conservation law of the number of excited atoms
allows us to decompose I (ω) into the sum of Iα(ω). The excited
state |n′〉 is the eigenstate of Hamiltonian Ĥ ≡ Ĥg + Ĥe +
Ĥge, and E′

n is its energy. Here Ĥe and Ĥge are given by

Ĥe = −
∑

〈i,j〉,α
Jeαĉ

†
eα,i ĉeα,j +

∑
i,α

(	eα + Veα,i)n̂eα,i , (5)

Ĥge =
∑
i,α

Ug,eαn̂eα,i n̂g,i , (6)

where Jeα is the hopping integral of excited atoms in the
αth orbital, and Ug,eα is the on-site interaction between the
first orbital unexcited and the αth orbital excited atoms. Note
that the interaction between two excited atoms Ueα,eβ can
be reasonably neglected in the limit of weak excitations.
	eα represents the energy difference between the unexcited
atoms in the lowest orbital and the excited atoms in the αth
orbital. We can always set 	e1 = 0 by appropriately choosing
the origin of the spectral frequency. The spectral intensity
proportional to |�|2 is determined so as to satisfy the integral
condition

∫
I (ω)dω = const, when we compare our analyses

with the experimental observations. Thus we can neglect the
quantitative aspect of � by setting � = 1 without loss of
generality.

C. Sum rules

We discuss the moment expansions of the spectral function
by following the previous studies [17–20]. In general, spectra
given by Eq. (4) should satisfy the following sum rules in terms
of M (n)

α the nth order moment:

M (n)
α ≡

∫
dω ωnIα(ω),

= 〈[[[Ô†
ex,α,Ĥ],Ĥ], . . . ]Ôex,α〉, (7)

where [[[Ô†
ex,α,Ĥ],Ĥ], . . . ] denotes the n-times commutator

between Ôex,α and Ĥ. These relations indicate that certain
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statistic quantities in thermal equilibrium have a relation with
some properties of spectral functions reflecting a dynamical
response of the system. For example, by considering up to the
second-order moments, the spectral mean value ω̄α is given by
ω̄α = M (1)

α /M (0)
α , and the standard deviation σα can be written

as σ 2
α = M (2)

α /M (0)
α − (M (1)

α /M (0)
α )2. Naively we can stress that

ω̄α and σα determine a spectral peak position and its width,
respectively, and the relations defined by Eq. (7) can describe
the physical origin of the peak shift and also broadening caused

by the many-body effects. In what follows, to discuss these
important spectral properties, we analyze the sum rules up to
the second order.

We can derive the following expressions with respect to the
corresponding sum rules. The zeroth order is given by

M (0)
α = 〈Ô†

ex,αÔex,α〉 =
∑

i

〈n̂g,i〉 = Ntot. (8)

The first-order moment is written as

M (1)
α = 〈[Ô†

ex,α,H]Ôex,α〉
= (Ug,eα − Ug,g)

∑
i

〈ĉ†g,i ĉ
†
g,i ĉg,i ĉg,i〉 +

∑
i

(Veα,i − Vg,i + 	eα)〈n̂g,i〉

+
∑

i

∑
d

(Jg − Jeαeikex·d)〈ĉ†g,i ĉg,i+d〉, (9)

where
∑

d represents a summation over the adjacent sites, and the second order is

M (2)
α = 〈[[Ô†

ex,α,H],H]Ôex,α〉
= (Ug,eα − Ug,g)2

∑
i

〈ĉ†g,i ĉ
†
g,i ĉ

†
g,i ĉg,i ĉg,i ĉg,i〉 + (Ug,eα − Ug,g)2

∑
i

〈ĉ†g,i ĉ
†
g,i ĉg,i ĉg,i〉

+
∑

i

(Veα,i − Vg,i + 	eα)2〈n̂i〉 +
∑

i

2(Ug,eα − Ug,g)(Veα,i − Vg,i + 	eα)〈ĉ†g,i ĉ
†
g,i ĉg,i ĉg,i〉

+
∑

i

∑
d

2(Jg − Jeαeikex·d)(Ug,eα − Ug,g)〈ĉ†g,i ĉg,i ĉ
†
g,i ĉg,i+d〉+

∑
i

∑
d

2(Jg − Jeαeikex·d)(Veα,i − Vg,i + 	eα)〈ĉ†g,i ĉg,i+d〉

+
∑

i

∑
d,d′

(Jg − Jeαeikex·d)(Jg − Jeαeikex·d′
)(1 − δd+d′,0)〈ĉ†g,i ĉg,i+d+d ′ 〉 +

∑
i

∑
d

|Jg − Jeαeikex·d|2〈n̂g,i〉. (10)

The expressions in Eqs. (8)–(10) include the on-site
multibody correlation functions G�,i ≡ 〈(ĉ†g,i)

�(ĉg,i)�〉, where
G1,i is equivalent to the averaged number of atoms ni ≡
〈n̂g,i〉. The hopping Hamiltonian yields the intersite corre-
lations such as Gi,j ≡ 〈ĉ†g,i ĉg,j 〉, where Gi,i = ni , and G2,i,j ≡
〈ĉ†g,i ĉg,i ĉ

†
g,i ĉg,j 〉. In the second (or higher) order of moment,

the hopping Hamiltonian yields also the on-site one-body
correlation G1,i(= ni) [see the last term in Eq. (10)]. Note that
this type of term is caused by a round-trip hopping process.
These terms are proportional to Jg − Jeαeikex·d, where eikex·d
describes the momentum transfer from the external field to
atoms. The momentum transfer can be regarded as a back
action of the measurements, which plays an important role in
spectra.

D. Physical meaning of the spectral deviations
and spectral mean value

It is convenient to discuss the physical meaning of spectra,
which can be figured out from the sum-rule approach. The
spectral mean value ω̄α can be written as the sum of δUα ,
δVα , δ	α , and δJα , which are spectral energy shifts caused
by the effects of interaction, trapping potential, band gap,
and hopping, respectively. As discussed in the previous
study [17], δUα ≡ (Ug,eα − Ug,g)

∑
i G2,i/Ntot is a collisional

energy shift. Two terms, δVα ≡ ∑
i(Veα,i − Vg,i)ni/Ntot and

δ	α ≡ ∑
i 	eαni/Ntot, are related to the statistical average

of the number of atoms. Here δ	α reduces to a constant
	eα having no connection to any thermodynamic quantities,
while δVα describes the effects of the inhomogeneity of
the system. The hopping energy shift δJα ≡ ∑

i

∑
d(Jg −

Jeαeikex·d)Gi,i+d/Ntot is related to the intersite correlation. The
Bloch band picture makes physical meanings of this term
clear. We define the kinetic energy shift δKα ≡ δJα + δ	α ,
which can be rewritten as

∑
k(εeα,k+kex − εg,k)ng,k/Ntot, where

ng,k = ∑
i,j eik·(ri−rj )Gi,j is the momentum space distribution,

and εg,k and εeα,k are the dispersions of the unexcited atoms
in the lowest orbital and of the excited atoms in the α orbital,
respectively. Because of the momentum conservation law, a
wave vector kex is transferred from an external field to atoms.
It turns out that δKα becomes large for a large kex. Note that the
discrete translational symmetry imposes kex to be a reduced
wave vector in the first Brillouin zone.

We next discuss the standard deviation σα related to the
second-order moment as σ 2

α = M (2)
α /M (0)

α − (M (1)
α /M (0)

α )2.
Roughly speaking, the standard deviation characterizes broad-
ening of spectra. For clear vision we now focus on a uniform
system by setting Veα,i − Vg,i = 0. Considering the physical
origin of the deviation, we can rewrite σα as σ 2

α ≡
σ 2

U,α + σ 2
K,α + σ 2√

UK,α
, where the deviation induced by the

correlations σU,α is defined as σ 2
U,α ≡ (Ug,eα − Ug,g)2[

∑
i

(G3,i + G2,i)/Ntot − (
∑

i G2,i/Ntot)2], and that caused by
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kinetic terms σK,α is defined as σ 2
K,α ≡ ∑

k(εg,k −
εeα,k+kex )2ng,k/Ntot − [

∑
k(εeα,k+kex − εg,k)ng,k/Ntot]2, and

that originating from the cross terms σ√
UK,α

is given by σ 2√
UK,α

≡ 2(Ug,eα − Ug,g)
∑

d(Jg − Jeαeikex·d)

[
∑

i G2,i,i+d/Ntot − (
∑

i G2,i/Ntot)(
∑

i Gi,i+d/Ntot)].
In the following we consider two simplified model cases

and calculate a mean value ω̄α and a deviation σα , so as to
discuss what are the physical origins of spectral peak shifts
and broadening. Here we focus on uniform systems at zero
temperature for simplicity, and inhomogeneous systems at
finite temperatures will be discussed in Sec. III. We first
consider SF states at zero temperature and use the following
simple mean-field approximation. We assume that 〈ĉg,i〉 is
finite and is given by a classical complex number ci , which
leads to G�,i ∼ |ci |2�, 〈ĉ†g,i ĉg,j 〉 ∼ c∗

i cj , and ng,k ∼ δk,k0NSF,
where NSF is the number of the condensed SF atoms, and k0 is
a wave vector at the bottom of a dispersion εg,k (usually k0 = 0
for a positive Jg). We here also assume that almost all atoms are
in the condensed state NSF ∼ Ntot. The spectral mean value is
now given by ω̄α = (Ug,eα − Ug,g)ni + (εeα,k0+kex − εg,k0 ). It
is consistent with the previous study [17], while the additional
kinetic energy shift is found. The deviation now reduces to
σ 2

α = (Ug,eα − Ug,g)2ni(=σ 2
U,α). Interestingly, we find that the

deviation has a contribution of an interaction term σU,α only.
Here, because of the subtraction in M (2)

α /M (0)
α − (M (1)

α /M (0)
α )2,

the deviations σK,α and σ√
KU,α are canceled out under the

pure-condensation condition ng,k ∼ δk,k0Ntot. The number of
the coherent SF atoms is indefinite, and number fluctuations
	ni of such a coherent state are written as

√
ni , where

(	ni)2 = 〈n̂2
g,i〉 − n2

i . Thus we can conclude that the spectral
deviation of coherent SF states is connected to number fluctu-
ations in thermal equilibrium as σα = |Ug,eα − Ug,g|	ni .

We next consider MI states with m atoms in each site at
zero temperature. For MI states, it is reasonable to set intersite
correlations Gi,j for i �= j to be zero. The spectral mean
value is now given by ω̄α = (Ug,eα − Ug,g)(m − 1) + 	eα ,
which is equivalent to the previous study [17]. The spec-
tral deviation reduces to σ 2

α = ∑
d |Jg − Jeαeikex·d|2(=σ 2

K,α).
In the same manner as the above, the correlation-induced
deviation σU,α cancels out as σ 2

U,α = m(m − 1)(m − 2)/m +
m(m − 1)/m − [m(m − 1)/m]2 = 0. The cross-term-induced
deviation σ√

UK,α is also zero because of negligible intersite
correlations. For MI atoms at zero temperature, the number of
atoms is definite, and there are no number fluctuations 	ni =
0. On the other hand, the phase and the momentum is indefinite,
and thus a spectral broadening of MI atoms is caused by kinetic
fluctuations described by σK,α . By executing the k summation
in σK,α with a constant momentum distribution ng,k(= m) of
uniform MI states, we obtain σ 2

K,α = ∑
d |Jg − Jeαeikex·d|2.

This deviation can be connected to quantum fluctuations
resulting from the round-trip hopping process given in the
last term in Eq. (10).

As demonstrated by the previous experiments [12], the
present spectroscopy has an ability to distinguish the different
number states, when |Ug,eα − Ug,g| is large enough. This
feature of spectra can be explained by the first-order sum
rule, ω̄α = (Ug,eα − Ug,g)(m − 1), as discussed in the previous
study [17]. The above second-order sum rule approach further
indicates that number fluctuations of atoms in thermal equilib-

rium 	ni play an important role in such number-resolving
spectroscopy. In fact, a spectral deviation σα of coherent
SF atoms can be determined from number fluctuations:
σα = |Ug,eα − Ug,g|	ni . Even for MI atoms with 	ni = 0,
a spectral deviation is finite owing to kinetic fluctuations,
which is attributed to the indefinite phase and momentum in
a reflection of the definite number and position of MI atoms.
This deviation of the number definite states is not related to
any thermodynamic quantities, and thus this constant σα of√∑

d |Jg − Jeαeikex·d|2 is the intrinsic lower limit of a spectral
linewidth (see Sec. III B). On the other hand, the deviations
of general states with both phase and number fluctuations are
given by the summation σ 2

U,α + σ 2
K,α + σ 2√

UK,α
. We find that

the spectral deviations of a specific ground state (SF and MI)
with a definite quantity (phase and number) are characterized
by fluctuations resulting from the conjugate indefinite quantity
(number and phase, respectively). It should be noted that the
second-order sum rule makes clear the fact that the spectral
measurements are governed by the uncertainty principle.

These physical properties of spectra mentioned above are
figured out from the general principle of weak excitation
spectroscopy with given Hamiltonian Ĥ and an operator
Ôex,α . For example, an excitation operator Ôex,α characterizes
the intrinsic spectral broadening of

√∑
d |Jg − Jeαeikex·d|2,

where a momentum transfer of kex, which is a back action
of the measurements, determines a quantitative aspect of
a spectral width. Bose-Hubbard Hamiltonian Hg includes
kinetic and interaction terms, and the competition between
these two conjugate terms is the origin of the SF-MI transitions.
The second-order sum rule approach clarifies that spectral
deviations reflect the completely different properties of these
two conjugate states, SF and MI. We can thus conclude that
the present spectroscopy will be a sensitive tool for detecting
the SF-MI transitions. Note that the first-order sum rule
approach is insufficient to clarify these important features
of spectroscopy. However, the above simplified discussions
cannot be straightforwardly applied to the finite temperature
spectra. In the next section we thus propose a two-mode
approximation to numerically calculate spectra that satisfy the
sum rules.

III. METHODS

In this section we provide a numerical method for calcu-
lating spectra at finite temperatures. We first explain the finite
temperature Gutzwiller approximation [25], which allows us
to efficiently obtain the thermodynamic quantities in Eqs. (8)–
(10). We next provide a two-mode approximation to numer-
ically calculate finite temperature spectra in inhomogeneous
systems. At the end of this section we compare our method
with the previous formulations [17–19].

A. Finite temperature Gutzwiller approximation

The Gutzwiller approximation allows us to efficiently
analyze the thermal equilibrium properties described by the
Bose-Hubbard Hamiltonian in Eq. (1). This is a mean-field
approximation considering up to the first-order collection in
terms of Jg and well describes the SF-MI transitions in high
dimensional systems. Here Ĥg is then approximated by a set
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of the effective local Hamiltonian Ĥloc = ∑
i Ĥloc,i with

Ĥloc,i = J eff
g,i ĉ

†
g,i + J eff∗

g,i ĉg,i + Vg,i n̂g,i + Ug,g

2
n̂g,i(n̂g,i − 1),

(11)

where J eff
g,i is determined from a self-consistent condition

J eff
g,i = −∑

d Jg〈ĉg,i+d〉. Using exact diagonalization, we can
numerically calculate statistical quantities such as ci ≡ 〈ĉg,i〉
at finite temperatures [25].

As discussed in Sec. II D, a finite ci effectively describes
the Bose-Einstein condensates (BEC) within the mean-field
approximation. Here the number of condensed SF atoms
in each site can be defined by nSF,i = |ci |2. Both thermal
fluctuations and interactions cause coexisting of condensed SF
and uncondensed NS such as MI and normal fluid (NF). The
annihilation operator of NS atoms at the ith site is effectively
given by ĉNS,i = ĉg,i − ci , where NS atoms satisfy always a
condition 〈ĉNS,i〉 = 0 resulting from the conservation law of
the number of NS atoms. The number of NS atoms nNS,i ≡
〈ĉ†NS,i ĉNS,i〉 can be written as nNS,i = ni − nSF,i . This leads to
the following reasonable condition: Ntot = NSF + NNS, where
NSF(NS) = ∑

i nSF(NS),i . The total number of atoms is given by
the sum of the total number of SF and NS atoms.

It is useful to briefly explain how to calculate the thermal
quantities in the moments Eqs. (9) and (10). The on-site
correlation functions Gn,i can be calculated straightforwardly
by diagonalizing the effective local Hamiltonian Ĥloc,i . On
the basis of this local approximation, the intersite correlation
is described by Gi,j ∼ 〈ĉ†g,i〉〈ĉg,j 〉(=c∗

i cj ) for i �= j . The
higher-order intersite correlations G2,i,i+d also reduce to
〈ĉ†g,i ĉg,i ĉ

†
g,i〉〈ĉg,j 〉. These expressions mean that the intersite

correlations of NS atoms 〈ĉ†NS,i ĉNS,j 〉 for i �= j are approxi-
mately set to be zero, and thus, two kinds of NS states, MI and
NF, are dealt with approximately in the same way. We should
note that the MI states appearing at lower temperatures can
be characterized by focusing on the creation of the Mott shell
structures and also the suppressed entropy per site [25]. We
can thus effectively calculate that thermal fluctuations cause
the MI-NF crossover within this local approximation.

B. Two-mode approximation

Next we provide a two-mode approximation that helps us to
calculate spectra at finite temperatures. We assume that Iα(ω)
in Eq. (4) can be decomposed into two components resulting
from the contributions of SF and NS atoms:

Iα(ω) = I SF
α (ω) + INS

α (ω). (12)

Two types of uncondensed NS (MI and NF) states appear
at finite temperatures. As mentioned in Sec. III A, within
the Gutzwiller approximation, NF states are approximately
dealt with in the same way as MI states based on the
local Hamiltonian picture. As discussed in Sec. II D, at zero
temperature, spectra of coherent SF atoms show completely
different properties by comparing with those of MI atoms.
Note that the special characteristics of spectra of SF atoms
result from the phase coherence caused by BEC. We thus deal
with spectra of SF atoms in a different way to two types of NS
atoms.

On the basis of the two-mode approximation, we reconsider
the sum rules for the spectral moments:

M (n)
α =

∫
dω ωnINS

α (ω) +
∫

dω ωnI SF
α (ω).

The sum rules up to the second order (i.e., up to n = 2) provide
the following relations:

M (0)
α = NSF + NNS, (13)

M (1)
α = NNSω̄

NS
α + NSFω̄

SF
α , (14)

M (2)
α = [(

σ NS
α

)2 + (
ω̄NS

α

)2]
NNS + [(

σ SF
α

)2 + (
ω̄SF

α

)2]
NSF,

(15)

where ω̄NS
α and ω̄SF

α are the spectral mean value, and σNS and
σSF are the spectral standard deviation for the NS and SF
spectra, respectively. The zeroth-order sum rule in Eq. (13)
simply offers the condition associated with the total number
of atoms, which is always satisfied within the Gutzwiller
treatment as mentioned in Sec. III A. On the other hand,
the first- and second-order sum rules require the balance
conditions between INS

α (ω) and I SF
α (ω), and these conditions

allow us to properly calculate spectra.

1. Spectra of uncondensed normal state atoms

In what follows we discuss the properties of INS
α (ω) and

I SF
α (ω) at finite temperatures, separately. Here we begin

with INS
α (ω) by assuming that NSF = 0, and accordingly

I SF
α (ω) vanishes. We also assume that the intersite correlations

are negligible Gi,j for i �= j by comparing to the on-site
correlations ni . The density matrix of such a localized state
is given by

∏
i(
∑

m e−Em,i/T |m〉i〈m|i) at finite temperatures,
where Em,i = Ug,gm(m − 1)/2 − Vg,im is the energy of the
local number state |m〉i . The spectra can be obtained in a form
of the exact representation:

INS
α (ω) =

∑
i,m

wα,i,mδ(ω − pα,i,m). (16)

The spectral weight wα,i,m and the peak position pα,i,m are
given by

wα,i,m = me−(Em,i−�i )/T , (17)

pα,i,m = (m − 1)(Ug,eα − Ug,g) + 	eα + Veα,i − Vg,i,

(18)

where e−(Em,i−�i )/T is the Boltzmann factor of the number state
|m〉i , and �i(= − T ln

∑
m e−Em,i/T ) is the grand potential in

the ith site. Note that, even for the uniform systems, spectra
at finite temperatures have multipeak structures depending on
the thermal distributions of the number states |m〉i described
by e−(Em,i−�i )/T .

We now discuss that the zeroth- and the first-order sum
rules are always satisfied in the above expression in Eq. (16)
when Gi,j � ni . By using Eqs. (17) and (18) we obtain
M (0)

α =∑
i,m me−β(Em,i−�i ) and M (1)

α = ∑
i,m m[(m−1)(Ug,eα−

Ug,g) + 	eα + Veα,i − Vg,i]e−β(Em,i−�i ). Using relations ni =∑
m me−β(Em,i−�i ) and G2,i = ∑

m m(m − 1)e−β(Em,i−�i ), we
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find that M (0)
α = NNS, and M (1)

α reduces to
∑

i[(Ug,eα −
Ug,g)G2,i + (	eα + Veα,i − Vg,i)ni]. These facts suggest that
INS
α (ω) in Eq. (16) reproduces the zeroth- and the first-order

moments in Eqs. (8) and (9) when we can neglect the term
proportional to the intersite correlations [the last term in
Eq. (9)].

In contrast, the second-order sum rule is not straightfor-
ward. When Gi,j � ni , almost all terms are reproduced in the
same way as the above. Namely, M (2)

α = ∑
i,m wα,i,mp2

α,i,m is
equivalent to the first four terms in Eq. (10). However, we
cannot reproduce one of the terms in Eq. (10), which is the
round-trip hopping term given by

∑
i

∑
d |Jg − Jeαeikex·d|2ni .

This means that, even though the intersite correlations are
negligible, quantum fluctuations resulting from the round-trip
hopping broaden the spectral width of each peak in Eq. (16).
Namely, the sum rule requires that the delta function δ(ω) in
Eq. (16) should be replaced with a certain function with a finite
spectral width. We here use a Gaussian function, and INS

α (ω)
is now given by

INS
α (ω) =

∑
i,m

wα,i,m

exp
[−(ω − pα,i,m)2

/(
2γ 2

α

)]
γα

√
2π

, (19)

where γα is the spectral width defined by γ 2
α = ∑

d |Jg −
Jeαeikex·d|2. We comment that a Lorentzian function is not
suitable for the substituting function, because the second-order
moment does not converge:

∫ ∞
−∞ dωω2γ /π (ω2 + γ 2) → ∞.

The extended representation in Eq. (19) with Eqs. (17)
and (18) properly satisfies the sum rules up to the second
order when Gi,j � ni . In the same way as above, we can
straightforwardly confirm that the zeroth- and the first-order
sum rules are satisfied. The second-order M (2)

α is extended as
follows:

∫
ω2 ∑

i,m wα,i,me−(ω−pα,i,m)2/2γ 2
α /(γα

√
2π )dω =∑

i,m wα,i,mp2
α,i,m + γ 2

α

∑
i,m wα,i,m. The first term∑

i,m wα,i,mp2
α,i,m is equivalent to the second-order moment

obtained from the original representation in Eq. (16). The
additional term γ 2

α

∑
i,m wα,i,m(= γ 2

α NNS) properly describes
the last term in Eq. (10).

We here estimate the magnitude of γα that characterizes
an intrinsic spectral broadening caused by hopping-induced
quantum fluctuations. For simplicity we consider α = 1 and set
Jg ∼ Je1, which leads to γ 2

1 = 2zJ 2
e1[1 − ∑

d cos(kex · d)/z],
where z is the number of the neighboring lattice sites (z = 6
in the cubic lattice). For kex ∼ 0, γ1 reduces to zero. For
kex ∼ (π,π,π ), γ1 takes a maximum 2

√
z|Je1| = W1/

√
z,

where Wα = 2z|Jeα| is a bandwidth of the αth orbital. We
next consider higher orbitals α �= 1 by assuming |Jg| �
|Jeα|, and then we obtain γα = √

z|Jeα| = Wα/2
√

z. Simply
put, the kinetic spectral broadening is proportional to the
bandwidth γα ∝ Wα , where the wave vector conservation law
determines the proportionality coefficient ranging from 0 to
1/

√
z depending on kex.

Before closing the discussions on INS
α (ω), we consider the

validity of the condition Gi,j � ni . For Jg = 0, this condition
is exactly satisfied: Gi,j = 0 for i �= j . For a finite but small
Jg(�Ug,g), where MI states will appear at low temperatures,
the effects of interactions strongly suppress the intersite
correlations. Large potential differences strongly suppress the
intersite correlations (e.g., |Vg,i − Vg,j | � Jg), and thermal

fluctuations also decrease Gi,j . We thus expect that the NS
atoms in the realistic systems with interactions and trapping
potential at finite temperatures will satisfy well the condition
of small Gi,j (�ni). This condition is equivalent to flattened
momentum distributions ng,k, which can be confirmed in
experiments by using the time-of-flight measurements with
the projection onto the first Brillouin zone [29].

2. Spectra of the superfluid atoms

Next we consider the opposite limit NSF � NNS, where we
neglect INS

α (ω). Taking account of the physical properties of
BEC, we assume that I SF

α (ω) can be described by the following
single peak structure:

I SF
α (ω) = NSF

exp
[−(

ω − ω̄SF
α

)2/
2
(
σ SF

α

)2]
(
σ SF

α

√
2π

) , (20)

where a spectral peak position ω̄SF
α and a spectral width σ SF

α

are determined from the sum rules in Eqs. (14) and (15),
respectively. For such a single peak structure, the deviation
coincides with the spectral width. This single peak assumption
may be oversimplification. It should be noted that we carefully
take account of the spectral broadening caused by number
fluctuations, which allows us to reasonably use this simple
assumption.

To compare I SF
α (ω) with INS

α (ω), here we mention again
the properties of INS

α (ω) at finite temperatures. As shown in
Eq. (19), INS

α (ω) has many peaks at positions pα,i,m(∝Ug,eα −
Ug,g) with a spectral width of γα(∝ Wα). Note that peak
positions and a width are usually determined from the different
energy scales. Thermal fluctuations change relative spectral
weights and also increase the number of spectral peaks. This
multipeak structure is an essential feature of INS

α (ω) at finite
temperatures, which can be properly dealt with in Eq. (19).
In contrast, as discussed in Sec. II D, for SF atoms, a spectral
mean value is proportional to the average number of atoms
ω̄SF

α ∝ (Ug,eα − Ug,g)n̄, and a spectral deviation is given by
σ SF

α ∼ |Ug,eα − Ug,g|
√

n̄. This fact suggests that ω̄SF
α and σ SF

α

will be usually comparable. A main role of thermal fluctuations
is a decrease in the number of condensed atoms NSF. We
thus expect that the essence of I SF

α (ω) at finite temperatures
can be captured by a single peak broadened by large number
fluctuations. The effects of decrease in NSF on the spectra are
considered via calculations on the sum rules in Eq. (13), and
also Eqs. (14) and (15), which properly describe decreases in
a peak height, a peak shift, and broadening, respectively.

3. Spectra for coexisting region

We next explain the formulation for the middle region
NSF �= 0 and NNS �= 0, where NS and SF atoms coexist. Here
I SF
α (ω) and INS

α (ω) are separately calculated, and INS
α (ω) is the

first. We assume that NS atoms are affected by a mean-field
potential resulting from interactions with SF atoms. Thus we
here consider the following effective local Hamiltonian of NS
atoms excluding SF atoms:

ĤNS =
∑

i

(Vg,i + VSF,i)n̂NS,i + Ug,g

∑
i

n̂NS,i(n̂NS,i − 1)/2,

(21)
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where the potential VSF,i describes effectively mean-field
interactions between SF and NS atoms given by VSF,i =
2Ug,gnSF,i + δμi . To impose a self-consistent condition
〈n̂NS,i〉ĤNS

= 〈n̂g,i〉 − |〈ĉg,i〉|2, we further define a chemical
potential shift δμi , where 〈Â〉ĤNS

is the thermal expectation
value of an operator Â with Hamiltonian ĤNS given by
Tre−βĤNSÂ, while 〈Â〉 is that defined by the localized Hubbard
Hamiltonian in Eq. (11). We note that δμi ∼ 0 for nSF,i �
nNS,i or nSF,i � nNS,i , because the mean-field treatment is
appropriate for these dilute regions.

We summarize a procedure for calculating the full spec-
tra I (ω) = I SF(ω) + INS(ω), where I SF(ω) ≡ ∑

α |ρα|2I SF
α (ω)

and INS(ω) ≡ ∑
α |ρα|2INS

α (ω).
(1) We first calculate thermal equilibrium states of Hub-

bard Hamiltonian based on the finite temperature Gutzwiller
approximation. We use exact diagonalization to solve the
localized Hamiltonian in Eq. (11) at finite temperatures.
We obtain the moments M (n)

α from Eqs. (8)–(10), and other
statistical quantities such as nSF,i and nNS,i .

(2) Next, we calculate INS
α (ω) in Eq. (19) by exactly

diagonalizing the effective Hamiltonian in Eq. (21). After that
we can directly calculate ω̄NS

α and σ NS
α from INS

α (ω). For the
self-consistent condition mentioned above, we need ni and ci ,
which should be obtained in the previous process 1.

(3) Finally, we determine ω̄SF
α and σ SF

α by using Eqs. (14)
and (15), where we use M (n)

α , ω̄NS
α , and σ NS

α obtained in the
previous processes 1 and 2. Then we can calculate the full
spectra I (ω).

In this way, based on the sum rule approach, completely
different features of INS

α (ω) and I SF
α (ω) are properly dealt with,

and multipeak structures resulting from finite temperature
effects and coexisting of SF and NS atoms will be taken
account of precisely.

C. Role of the sum rules in the two-mode approximation

We finally discuss what a role the sum rules play in
the present calculation procedure. The sum-rule approach
combined with the two-mode approximation provides us with
the reasonable relationship between INS

α (ω) and I SF
α (ω). As

discussed below, ω̄SF
α and σ SF

α can be determined reasonably
within the level of the mean-field treatment.

We here consider the first-order moment
M (1)

α (= NNSω̄NS,α + NSFω̄SF,α) and focus on the
effects of interactions [the first term in Eq. (9)]:
(Ug,eα − Ug,g)

∑
i G2,i , and other terms are neglected

for clarity. Using a definition of ĉNS,i = ĉg,i − ci , we
can rewrite G2,i as GNS

2,i + 4nNS,inSF,i + n2
SF,i , where

GNS
2,i ≡ 〈ĉ†NS,i ĉ

†
NS,i ĉNS,i ĉNS,i〉. Three terms, GNS

2,i , nNS,inSF,i ,
and n2

SF,i , represent the two-body correlations between two
NS atoms, between NS and SF atoms, and between two SF
atoms, respectively. As discussed in Sec. III B 1, the first-order
moment of INS

α (ω) is easily obtained:

NNSω̄
NS
α = (Ug,eα − Ug,g)

∑
i

(
GNS

2,i + 2nNS,inSF,i

)
,

where the latter term results from the mean-field potential VSF,i

in Eq. (21). Consequently, the sum rule in Eq. (14) allows us to

determine the correlation term in the first moment of I SF
α (ω):

NSFω̄
SF
α = (Ug,eα − Ug,g)

∑
i

(
n2

SF,i + 2nSF,inNS,i

)
.

The SF-NS correlation 4nNS,inSF,i is shared equally between
INS
α (ω) and I SF

α (ω). We now again consider the uniform
system to compare this expression with those in Sec. II D.
The collisonal energy shift for the SF atoms is now given by
ω̄SF

α = (Ug,eα − Ug,g)(nSF,i + 2nNS,i). The first term (Ug,eα −
Ug,g)nSF,i is equivalent to that of the pure SF atoms as
discussed in Sec. II D and also in the previous study [17], while
the second term is the additional contribution originating from
the mean-field NS-SF interactions.

In the same way as above, we can obtain the correlation
terms in the second-order moment of INS

α (ω) and
I SF
α (ω): NNS[(σ NS

α )2 + (ω̄NS
α )2] = (Ug,eα − Ug,g)2 ∑

i[G
NS
3,i +

GNS
2,i (1 + 4nSF,i) + 4nNS,in

2
SF,i], and NSF[(σ SF

α )2 + (ω̄SF
α )2] =

(Ug,eα − Ug,g)2 ∑
i[n

3
SF,i + n2

SF,i(1 + 5nNS,i) + nSF,i(4n2
NS,i +

5GNS
2,i )]. For the uniform system, (σ SF

α )2 is written as
(Ug,eα − Ug,g)2[nSF,i + nSF,inNS,i + GNS

2,i + 4(	nNS,i)2],
where (	nNS,i)2 = 〈n̂2

NS,i〉 − n2
NS,i . Note that 	nNS,i ∼ 0

at low temperatures. The first term corresponds to number
fluctuations of the SF atoms, and the other terms suggest that
the NS-SF correlations enhance number fluctuations of the SF
atoms and further broaden I SF

α (ω).

D. Comparison with the previous studies

Here, to discuss difference between the present and the
previous treatment, we summarize the previous formulation
[17], which has been successfully applied to the microwave
spectroscopy experiments [12]:

I(ω) =
∑

i

niδ(ω − (Ug,e1 − Ug,g)G2,i/ni). (22)

This approximation satisfies the zeroth-order sum rule M (0)
α =

Ntot and partly satisfies the first-order M (1)
α = ∑

i G2,i(Ug,eα −
Ug,g), while the second-order sum rule is not satisfied at all.
Note that, without a consideration of the deviation σα , the spec-
tral broadening is effectively described by the site-dependent
G2,i and ni resulting from the inhomogeneity of the system.
When kex = 0, |Jg − Jeαeikex·d| = 0, Veα,i − Vg,i = 0, T = 0
and the coexisting of NS and SF states is neglected (either
NNS = 0 or NSF = 0), the spectral position ω̄SF

α obtained
from Eq. (9) or pi,α,m in Eq. (18) and the corresponding
term (Ug,e1 − Ug,g)G2,i/ni in Eq. (22) are equivalent with
each other. Thus, within the first-order approximation, our
method is consistent with Eq. (22) in the following two
limits; pure SF or MI phases at zero temperature. We note
that, at least, the conditions kex = 0, |Jg − Jeαeikex·d| = 0,
and Veα,i − Vg,i = 0 are well satisfied in the microwave
spectroscopy (see Sec. IV A). In Refs. [18,19] the extended
two-peak formulation has been discussed for the strongly
correlated region at low temperatures. Our approach further
provides the multipeak formulation for both weakly and
strongly correlated regions at finite temperatures and will
reproduce the two-peak formulation at low temperatures.
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IV. NUMERICAL SIMULATIONS

In this section we show numerical results calculated
by considering realistic parameters of the following two
experiments; the microwave spectroscopy of 87Rb atoms and
the laser spectroscopy of 174Yb atoms. We first explain the
parameters and then discuss obtained results.

A. Parameters

We first point out intrinsic differences of the microwave
and the laser spectroscopy, and provide parameters used in
the calculations. A length of microwave is much longer than
a lattice constant aL(=λL/2) and a lattice laser wavelength
λL (e.g., of 1064 nm), and as a result, a wave vector kex can
be set zero. Therefore, the parameter region of the microwave
spectroscopy corresponds to the perfect Lamb-Dicke regime,
where excitation matrices ρα in Eq. (3) are given by ρ1 = 1
and ρα �=1 = 0. Here the kinetic energy shift δKα and deviations
σK,α and σ√

UK,α are also negligible. In contrast, for the laser
spectroscopy, a wavelength of the excitation laser λex (e.g.,
of 507 nm) is comparable to λL (e.g., of 532 nm). Namely,
kex is the same order as a lattice wave vector 2π/aL. Thus,
orbital-changing excitations and kinetic contributions will be
important in the laser spectroscopy.

The microwave spectroscopy of 87Rb atoms uses an
excitation between different hyperfine states [12], while the
laser spectroscopy of 174Yb atoms uses an excitation between
different electron configurations, 1S0 and 3P2 states [22–24]. Rb
atoms are trapped by the combination of optical and magnetic
potential, and Yb atoms are trapped with optical potential. For
the microwave spectroscopy, we consider a harmonic trap-
ping potential Vg,i = M/2(ω2

xx
2
i + ω2

yy
2
i + ω2

zz
2
i ), where M is

mass of the atoms, and the trapping frequencies (ωx,ωy,ωz)
are determined from the experimental parameters as 2π ×
(20,70,70) Hz for V0 = 0 [12]. Note that the lattice potential
increases the trapping frequencies as 2π × (30,110,110) Hz
for V0 = 40Er [12]. For the laser spectroscopy we use
an anharmonic potential by carefully considering the laser
configurations in experiments. At the bottom, the trapping
potential can be approximated by the harmonic trapping
potential with trapping frequencies of 2π × (109,216,176) Hz
for V0 = 15Er [26]. The trapping potential of two hyperfine
states was set to be the nearly same [12], while 1S0 and 3P2

states of Yb atoms are trapped in the different potential due to
the greatly different polarizability. Thus, Veα,i − Vg,i can be
set zero for the microwave spectroscopy, while it is finite for
the laser spectroscopy.

Differences in scattering lengths ag,e − ag,g are −0.13
and −30 nm for the microwave and laser spectroscopy,
respectively. Both of them are negative, so that differences
in the interaction strengths Ug,eα − Ug,g are also negative.
In addition to the spectral broadening caused by quantum
fluctuations (see Sec. II D), we consider linewidths of the
excitation laser of about 1 kHz and of the microwave of about
5 Hz, including the Fourier width of the excitation pulse.

Finally, we should comment that the direct observation
of temperature T of atoms in optical lattices is difficult in
experiments. In this section we thus use T as a free parameter,
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FIG. 1. Spectra I (ω) for the microwave and laser spectroscopy
in a deep lattice calculated by the following parameters: (a) V0 =
35Er , Ntot = 105, and T = 100 nK, and (b) V0 = 15Er , Ntot = 2.2 ×
104, and T = 100 nK. There are no SF atoms because of the strong
interactions NSF ∼ 0 and I (ω) ∼ INS(ω).

so that quantitative comparison with the experiments is
beyond the current scope. Quantitative comparison with laser
spectroscopy experiments will be published elsewhere, where
temperatures of the trapped atomic gas without lattices are
precisely evaluated in experiments [26], and then temperatures
in a lattice are numerically estimated by assuming the
lattice loading process to be isentropic. In the following, we
will discuss the qualitative properties of spectrum at finite
temperatures with given T .

B. Comparison between two spectroscopy for the deep lattice

We first discuss spectra in a deep lattice and compare two
kinds of spectroscopy. Figure 1 shows the spectra calculated
at a temperature T of 100 nK. The other parameters in the
microwave spectroscopy are V0 = 35Er and Ntot = 105, and
those in the laser spectroscopy are V0 = 15Er and Ntot =
2.2 × 104, where Er is the recoil energy. A spectral peak
appearing at ω = 0 always means that the m = 1 number
state (|m = 1〉) is excited without orbital changing, because
the origin of spectra is renormalized by setting 	e1 = 0.
Since Ug,eα − Ug,g is negative for both spectroscopy, peaks
of |m〉 with m � 2 appear orderly in the region of ω < 0. The
orbital-changing excitation requires a large positive band gap
energy 	e2. Thus, spectra in the laser spectroscopy show some
peaks in ω > 0, which have the similar characteristics to those
in ω < 0 but have the small intensities because of a small
excitation probability |ρ2|2(∼0.1|ρ1|2).

Next, we discuss a spectral peak width. For a deep lattice,
spectral broadening is mainly attributed to the effects of
inhomogeneity. Equation (9) shows that potential energy dif-
ference (Veα,i − Vg,i)ni/Ntot causes just a peak shift. However,
due to the inhomogeneity, a variation of (Veα,i − Vg,i)ni/Ntot

for different i effectively induces broadening of spectra. For
the laser spectroscopy, an energy scale of this variation is
estimated to be about 1 kHz, which is consistent with the
obtained spectral features in Fig. 1. In the present parameter
region, broadening effects resulting from the hopping terms are
negligible by comparing with this inhomogeneous broadening.
On the other hand, since |Veα,i − Vg,i | ∼ 0 for the present
microwave spectroscopy, a width of each peak nearly equals
to a linewidth of the microwave pulse.
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FIG. 2. Spectra I (ω) of the microwave spectroscopy for Ntot =
105 at T = 25 nK for V0 = 25Er , 10Er , and 5Er . For V0 = 10Er , the
contributions of SF and NS atoms I SF(ω) and INS(ω) are also shown
by thick and thin lines, respectively, where I (ω) = I SF(ω) + INS(ω).
For 5Er , NNS ∼ 0 and I (ω) ∼ I SF(ω), while for 25Er , NSF ∼ 0 and
I (ω) ∼ INS(ω).

C. Lattice depth dependence of spectra
in the microwave spectroscopy

Next, by focusing on the microwave spectroscopy, we
discuss how spectra change as the lattice depth varies. Figure 2
shows the spectra I (ω) calculated with V0 = 5Er,10Er, and
25Er for Ntot = 105. Here we set a parameter T of 25 nK.
For V0 = 25Er , the number of SF atoms NSF is zero, and
a discrete peak structure resulting from INS(ω) appears. In
contrast, for V0 = 5Er , almost all atoms are in condensed
states NSF ∼ Ntot and NNS ∼ 0. From discussions in Sec. II C,
we can naively expect that the spectra of SF atoms I SF(ω)
are centered at around (Ug,eα − Ug,g)n̄, and a peak width is
determined from |Ug,eα − Ug,g|

√
n̄, where n̄ is the averaged

number of atoms. From these features we can estimate n̄ ∼ 2.
For a middle region V0 = 10Er , we find an asymmetric
broadened peak structure. We note that this characteristic
asymmetric structure can be attributed to the coexisting of
NS and SF atoms. Figure 2 also shows spectra of SF atoms
I SF(ω) and those of NS atoms INS(ω). The spectra of SF
atoms I SF(ω) are centered at around 2.5(Ug,eα − Ug,g). On
the other hand, INS(ω) has a large intensity at around ω ∼ 0
corresponding to the |m = 1〉 excitation. Here we find no
discrete peak structures, because |Ug,eα − Ug,g| is smaller than
the microwave linewidth. The sum of two spectra yields the
characteristic asymmetric spectra.

The obtained spectra for all three parameters in Fig. 2
capture essential qualitative features of those observed in
experiments (see Fig. 1 in Ref. [12]): The experimental spectra
show the symmetric single peak structure for V0 = 5Er , and
the asymmetric broadened peak structure, or an overlapped
double-peak structure, for V0 = 10Er , and the discrete peak
structure for V0 = 25Er . Our assumptions, e.g., the single peak
assumption for the SF atoms, and the two-mode approxima-
tion, appropriately reproduce characteristic structures of the
spectra seen in experiments.
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FIG. 3. Spectra I (ω) for the microwave spectroscopy for V0 =
35Er and Ntot = 105 at T = 100, 50, and 10 nK.

D. Temperature dependence of spectra
in the microwave spectroscopy

Next we discuss the temperature dependence of spectra
by focusing on the microwave spectroscopy again. In Fig. 3
we first show the spectra for V0 = 35Er at T = 100, 50, and
10 nK. From Fig. 3 we find that spectral peak height of each
|m〉 state varies depending on temperature, which indicates the
change in thermal distributions of the number states |m〉. At
low temperatures (T = 10 nK), the m = 2 peak is highest. On
the other hand, at higher temperatures (T = 100 and 50 nK),
the m = 1 peak is dominant. To clearly discuss this behavior,
in Fig. 4 we show the in situ column-density distributions
of the number states |m〉, which can be calculated by exact
diagonalization for the localized Hamiltonian in Eq. (11). At
higher temperatures (T = 100 nK), the |m = 1〉 state spreads
widely, while larger-m states prefer center of the potential.
Thus, Nm the total number of |m〉 monotonically decreases
with increasing m. This behavior is consistent with those seen
in spectra in Fig. 3. In contrast, at low temperatures (T = 10
nK), the Mott shell structures develop, and as a result, the
number state distributions for m � 2 show a dip structure
as shown in Fig. 4. Here a three-dimensional shell structure

(a) T= 100 nK (b) T=  10 nK

180 μm

80
μm

 0

 5

 10

 15

 20m  = 1

m  = 2

m  = 3

m  = 4

m  = 5

FIG. 4. In situ distribution of the number states |m〉 for V0 = 35Er

and Ntot = 105 at T = 100 nK (a) and 10 nK (b), and cross sections
along the (white) line.
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is projected onto the dip structure in the column-density
distributions. Thus Nm becomes nonmonotonic and Nm=2

becomes maximum, leading to a large intensity of the peak
of |m = 2〉 in spectra (see Fig. 3). These features suggest that
the present spectroscopy can be a thermometer.

We finally compare these results with the experimental
observations in Ref. [12], in which spectra and also in situ
number-state distributions have been measured. We find that
both spectra and distributions agree well with the calculations
at higher temperatures than those at lower temperatures. It
thus suggests that temperature will be an important parameter
to discuss the quantitative aspect of experiments. Although
nearly pure BEC can be created before loading atoms into a
lattice, the loading usually induces a certain amount of heating
[25]. In the present calculations, a harmonic trapping potential
is used by focusing on the bottom of the experimental trapping
potential [12], whereas in Ref. [17], by carefully considering
the anharmonicity of trapping potential, experimental spectra
can be reproduced even at zero temperature. The calculations
considering both anharmonic potentials and thermal fluctua-
tions may be required for more quantitative agreements.

V. SUMMARY

In summary, we theoretically investigate the microwave
and the laser spectroscopy on the bosonic Hubbard systems.
We first discuss the sum rules of spectra up to the second
order, which can be derived from the general principle of spec-
troscopy. This principle provides various useful information on
the physical properties of spectra. The spectra of superfluid
states with phase coherence is broadened by the many-
body effects, and its broadened width can be characterized

by number fluctuations in thermal equilibrium. In contrast,
the spectra of the number definite Mott insulating states
are broadened by quantum fluctuations caused by tunneling
effects.

We next propose a two-mode approximation to calculate
spectra at finite temperatures. This approximation assumes that
spectra can be decomposed into two contributions originated
from Bose-Einstein condensates and uncondensed normal
states. Our method is built up by considering the spectral
characteristics figured out from the sum rules, so that the
multipeak structures resulting from coexisting of superfluid
and normal states at finite temperatures can be successfully
dealt with. The relative intensities of each spectrum reflect the
number of superfluid atoms, suggesting that the disappearance
of such a multipeak structure can be a signature of the
superfluid transition.

Finally, by combining the two-mode approximation with
the finite temperature Gutzwiller approximation, we numer-
ically calculate spectra by considering realistic experimental
parameters of the microwave and the laser spectroscopy. We
find that our method can reproduce the essential features
of spectra in experiments. We also discuss the lattice depth
dependence and the temperature dependence of the microwave
spectra. These results clarify that the present spectroscopy
can be sensitive tools for investigating the quantum phase
transitions at finite temperatures.
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S. Fölling, L. Pollet, and M. Greiner, Science 329, 547 (2010).
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