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Vortex line in the unitary Fermi gas
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We report diffusion Monte Carlo results for the ground state of unpolarized spin-1/2 fermions in a cylindrical
container and properties of the system with a vortex-line excitation. The density profile of the system with a
vortex line presents a nonzero density at the core. We calculate the ground-state energy per particle, the superfluid
pairing gap, and the excitation energy per particle. These simulations can be extended to calculate the properties
of vortex excitations in other strongly interacting systems such as superfluid neutron matter using realistic nuclear
Hamiltonians.
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I. INTRODUCTION

Ultracold Fermi gases are dilute systems with interparticle
interactions that can be controlled through Feshbach reso-
nances, which allow the access of strongly interacting regimes.
Until recently, superfluids were classified as either Bardeen-
Cooper-Schrieffer (BCS) states or Bose-Einstein condensates
(BECs). In fact they are limit cases of a continuum of the
interaction strength. The possibility of tuning the parameters
to observe changes from one regime to the other is conceptually
interesting, but real enthusiasm came from the experimental
realization of the BCS-BEC crossover [1].

The three-dimensional unitary Fermi gas is a strongly
interacting system with short-range interactions of remarkable
properties. When the scattering length a diverges, 1/akF → 0
(kF is the Fermi momentum of the system), the low-energy
s-wave scattering phase shift is δ0 = π/2. The ground-state
energy per particle E0 is proportional to that of the noninter-
acting Fermi gas EFG in a box,

E0 = ξEFG = ξ
3
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where the constant ξ is known as the Bertsch parameter and
M is the mass of the fermion. In the limit akF → −∞,
quantum Monte Carlo (QMC) results give the exact value
ξ = 0.372(5) [2], in agreement with experiments [3,4].

One signature of superfluidity is the formation of quantized
vortices. Since their first observations in superfluid 4He a
large body of experimental and theoretical work has been
carried out concerning bosonic systems [5–8]. On the other
hand, the discovery of vortex lattices in a strongly interacting
rotating Fermi gas of 6Li [9] was a milestone in the study of
superfluidity in cold Fermi gases.

A vortex line consists of an extended irrotational flow
field, with a core region where the vorticity is concentrated.
The quantization of the flow manifests itself in the quantized
units h/2M of circulation. There is no evidence of quantized
vortices with more than one unit of circulation. Many questions
remain to be answered concerning the structure of the vortex
core for fermions.
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In this paper we focus on ultracold Fermi gases, but our
results are useful also to understand the properties of related
systems. Ultracold atomic gases and low-density neutron
matter are unique in the sense that both exhibit pairing gaps
of the order of the Fermi energy [10]. The neutron scattering
length is about −18.5 fm, which is significantly larger than
the interparticle spacing and the interaction range 2.7 fm [11],
therefore low-density neutron matter is also near unitarity.
In this regime both dilute cold fermion atoms and neutron
matter have similar properties [12]. The possibility of tuning
particle-particle interactions experimentally in cold atomic
gases provides an emulation of low-density neutron matter,
which is beyond direct experimental reach. We present results
of the vortex structure in cold atomic gases, which can be
extended to direct simulations of vortices in superfluid neutron
matter using realistic nuclear Hamiltonians.

Here we report results for a single vortex line in a unitary
Fermi gas in a cylindrical geometry. We found that the density
profile is flat at the center of the cylinder. We separated the
wall contribution from the ground state of the system and
determined an upper bound of the bulk energy as E0 = (0.50 ±
0.01)EFG per particle. EFG is the free Fermi gas energy in the
same geometry, defined as

EFG = 3
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where A is the number of particles and V is the volume. We also
estimated an upper-bound value of the superfluid pairing gap
for this geometry, � = (1.12 ± 0.02)EFG. For the system with
a vortex line we obtained the density profile with a nonzero
density at the core and an excitation energy of Eex = (8.6 ±
0.3)10−3EFG per particle.

We have organized this work as follows. In Sec. II we
present the methods employed to treat our system. We begin
with the solution of Schrödinger’s equation for a spinless free
particle in a cylindrical container. In Sec. II B we show that
the component of the BCS wave function with a fixed number
of particles can be written as an antisymmetrized product of
pairing functions, determined for the cylindrical geometry.
We introduce the ground-state wave function and the wave
function for the system with a vortex line in Secs. II C and II D,
respectively. The QMC methods we employed are briefly
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described in Sec. II E. Section III contains our results. First, we
present the spatial distribution of the particles in the cylinder
for both the ground state and the system with a vortex line.
Energy-related quantities, such as the ground-state energy, the
superfluid pairing gap, and the vortex excitation energy are
given in Sec. III B. Finally, we discuss our results in Sec. IV.

II. METHODS

Previous calculations on Bose systems like 4He have often
used a periodic array of counter-rotating vortices in order to
have periodic boundary conditions to minimize surface effects.
For example, in 4He the calculations in Ref. [13] used 300
particles and four counter-rotating vortices in the simulation
cell. In order to use the same number of fermion pairs we would
require a system of 600 fermions. While a few simulations of
fermions have been performed with this number of particles,
the required variance for a detailed optimization is beyond the
goals of this paper. We used a circular cylindrical simulation
cell of radius R with hard wall boundary conditions, at this
radius. The system is periodic in the axial direction.

We begin our calculations by investigating properties of
the ground state of the system. The model we considered
consists of A spin-1/2 fermions in a cylinder of radius R
and height L. Because the system is dilute, the interaction is
s-wave. Fermions of the same spin do not interact and we use
a short-range potential that is attractive, which can reproduce
the regime of akF → −∞. The s-wave potential V (r) acting
between particles with opposite spin has the form

V (r) = −v0
2�

2

M

μ2

cosh2 (μr)
, (3)

where v0 can be adjusted to tune the value of akF and
μ controls the effective range reff of the potential. We set
v0 = 1, which, for this potential, corresponds to a = ±∞
and reff = 2/μ [14,15]. In this paper all the calculations are
performed with μr0 = 24 and 4πr3

0 n0 = 3, where n0 is the
number density, but the results could be straightforwardly
extrapolated as done in Ref. [16].

A. Schrödinger’s equation in cylindrical coordinates

We considered the free-particle solution of Schrödinger’s
equation in a cylinder of radiusR and heightL, finite at ρ = 0,
and subject to the boundary conditions

�nmp(ρ = R,ϕ,z) = 0,

�nmp(ρ,ϕ,z) = �nmp(ρ,ϕ + 2π,z), (4)

�nmp(ρ,ϕ,z) = �nmp(ρ,ϕ,z + L),

where (ρ,ϕ,z) are the usual cylindrical coordinates. The
solution is given by

�nmp(ρ,ϕ,z) = NmpJm(kmpρ) exp [i(kzz + mϕ)], (5)

where Nmp is a normalization constant, Jm(kmpρ) are Bessel
functions of the first kind, kmp = jmp/R, jmp is the pth zero
of Jm, and kz = 2πn/L. The quantum numbers n and m

can take the values 0, ± 1, ± 2, . . . and p = 1,2, . . . . The

eigenvalues of these functions are

Enmp = �
2

2M

[(
jmp

R

)2

+
(

2πn

L

)2]
. (6)

The set of states {�nmp} is complete, therefore it is used to
expand our many-body trial wave function.

B. BCS wave function projected to a fixed number of particles

The BCS wave function used to describe the Cooper pairs
in the ground state is written as

|BCS〉θ = ∏
k

(uk + eiθ vkâ
†
k↑â

†
−k↓)|0〉,

u2
k + v2

k = 1, (7)

where uk and vk are real numbers, θ is a phase, k is the wave-
number vector, â†

k↑(↓) creates a fermion with momentum k and
spin up (down), and |0〉 represents the vacuum. However, this
function is not an eigenstate of the particle number operator.
The BCS wave function projected to a fixed number A of
particles, half with spin up and the other half with spin down,
can be written as the antisymmetrized product [17]

ψBCS(R,S) = A[φ(r1,s1,r2,s2)φ(r3,s3,r4,s4) . . .

×φ(rA−1,sA−1,rA,sA)], (8)

where R is a vector containing the particle positions ri , S

stands for the spins si , and φ is the pairing function. This wave
function can be calculated efficiently as a Slater determinant or
a pfaffian [18]. The simulation is performed by using pairing
orbitals constructed from the functions of Eq. (5), instead of
the plane waves typically employed in a periodic box or in a
harmonic trap [19]. The pairing orbitals are given by

φ(r1,s1,r2,s2) =
∑

k

vk

uk
N 2

mpJm

(
jmpρ1

R

)
Jm

(
jmpρ2

R

)

× exp {i[kz(z1 − z2) + m(ϕ1 − ϕ2)]}
×[〈s1s2|↑↓〉 − 〈s1s2|↓↑〉], (9)

where we have explicitly included the spin part to impose
singlet pairing.

We also want to simulate systems that are not fully paired,
by including unpaired states using a superposition of free-
particle solutions,

�(ρ,ϕ,z) =
∑
n,m,p

νnmp�nmp(ρ,ϕ,z), (10)

where the νnmp are variational parameters. For q pairs and o

unpaired states, A = 2q + o, we have

ψBCS(R,S) = A[φ(r1,s1,r2,s2) . . . φ(r2q−1,s2q−1,r2q,s2q)

× �2q+1(r2q+1) . . . �2q+o(r2q+o)] (11)

as described in Ref. [14].

C. Ground state

For the ground state of fermions in a cylindrical container,
we use Eq. (8), or Eq. (11) if we have unpaired particles.
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The momentum vectors in the cylinder are quantized and the
system has a shell structure that depends on R and L; see
Eq. (6). We consider αk ≡ vk/uk variational parameters [20]
and we assume the pairing wave functions to be

φ(r,r′) = β̃(r,r′) +
∑
I≤IC

αIN 2
mpJm

(
jmpρ

R

)
Jm

(
jmpρ ′

R

)

× exp {i[kz(z − z′) + m(ϕ − ϕ′)]}, (12)

where we hereafter adopt primed indexes to denote spin-down
particles, and unprimed ones to refer to spin-up particles, and
we omit the spin part. In Eq. (12), IC is a cutoff shell number
and we assume that contributions of shells with I > IC are
included through the β̃(r,r′) function, given by

β̃(r,r′)

=

⎧⎪⎨
⎪⎩
N 2

01J0
(

j01ρ

R
)
J0

(
j01ρ

′
R

)
× β(r) + β(L − r) − 2β(L/2) for r ≤ L/2,

0 for r > L/2,

and

β(r) = [1 + γ br][1 − e−cbr ]
e−br

cbr
, (13)

where r = |r − r′| and b, c, and γ are variational parameters.
This functional form of β(r) describes the short-distance
correlation of particles with antiparallel spins. We consider
c = 10, γ = 5, and b = 0.5 kF .

We also include a one-body Jastrow factor of the form

χ (ρi) =
(

a√
2πσ 2

exp

{
(ρi − ρ̄)2

2σ 2

}
+ ν

)λ

, (14)

where a, σ, ρ̄, ν, and λ are variational parameters. The
correlation between antiparallel spins is included in the two-
body Jastrow factor f (rij ′) obtained from solutions of the
two-body Schroedinger equation[

− 1

M
∇2 + V (r)

]
f (r < d) = λf (r < d), (15)

where d is a variational parameter. The boundary conditions
are f (r > d) = 1 and f ′(r = d) = 0 [21]. The total wave
function for the ground state of fermions in a cylindrical
container is then written as

ψ0(R) =
∏
k

χ (ρk)
∏
i,j ′

f (rij ′)ψBCS(R). (16)

D. Vortex line

The simulation of a vortex excitation is done by considering
pairing orbitals that are eigenstates of Lz with eigenvalues
±�. This is done by coupling single-particle states of quantum
numbers m and (−m + 1). In this case we consider pairing
orbitals of the form

φV (r,r′) = β̃(r,r′) +
K∑

i=1

α̃iNm;pN−m+1;p

×
(

Jm

(
jmpρ

R

)
J−m+1

(
j−m+1;pρ ′

R

)

× exp {i[kz(z − z′) + mϕ + (−m + 1)ϕ′]}

+ Jm

(
jmpρ ′

R

)
J−m+1

(
j−m+1;pρ

R

)

× exp {i[kz(z
′ − z) + mϕ′ + (−m + 1)ϕ]}

)
,

(17)

where K is the number of single-particle states with quantum
numbers (n,m,p) being paired with (−n, − m + 1,p). Since
we do not want to have a winding number in the z direction,
we consider the quantum number n for a particle and the
time-reversed −n for the other. Also, the largest contribution
is assumed to be from states with the same quantum number
p in the radial part.

E. Diffusion Monte Carlo method

The Hamiltonian of our system is given by

H = − �
2

2M

∑
i

∇2
i +

∑
i<j

V (rij ). (18)

The diffusion Monte Carlo (DMC) method is used to extract
the lowest energy state of H from an initial state ψT obtained
through variational Monte Carlo (VMC) calculations. The
propagation of the system in an imaginary time τ can formally
be written as

ψ(τ ) = e−(H−ET )τψT , (19)

where we introduce an energy offset ET , used to control the
normalization of ψ(τ ). In the limit τ → ∞, only the lowest
energy component �0, not orthogonal to ψT , survives:

lim
τ→∞ ψ(τ ) = lim

τ→∞ e−(H−ET )τψT = �0. (20)

The evolution in imaginary time is performed by solving the
integral equation

ψ(R,τ ) =
∫

dR′G(R,R′,τ )ψT (R′), (21)

where G(R,R′,τ ) is the Green’s function of the Hamiltonian,
which contains a diffusion term, related to the kinetic operator,
and a branching term depending on the potential. The exact
form of G(R,R′,τ ) is known only for very simple cases, but it
can be approximated in the limit of �τ → 0. An importance
sampled version of Eq. (21) is then solved iteratively with
a small time step, for a large number of steps. The DMC
method can only sample positive distributions. A system
formed by fermions has the so-called fermion sign problem.
We overcome this problem by using the usual fixed-node
approximation [22]. For a detailed description of the DMC
algorithm, the importance sample technique, and the fermion
sign problem, the reader is referred to the review in Ref. [23],
and references therein.

Note that the trial wave function �T (R) is used in two
ways: as an approximation of the ground state in the VMC
calculation and as an importance function that also determines
the nodal surface followed by the fixed-node approximation.
The variational parameters for the pairing functions and two-
body Jastrow factor have been optimized using the stochastic
reconfiguration method [24]. The parameters for the one-body
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FIG. 1. Ground-state density profile for systems with closed
shells, corresponding to different numbers of particles as indicated in
the legend.

term are chosen to maximize the overlap of the density profile
along the radial coordinate calculated using DMC and VMC.

III. RESULTS

In this section we present the results obtained with the BCS
wave function ψ0 for fermions in a cylinder, Eq. (16), and
the results for the system with a vortex line along the z axis
ψV using the pair orbitals of Eq. (17). Expectation values of
operators that do not commute with the Hamiltonian, such as
the density, can be calculated using a combination of mixed
and variational estimators,

〈�|Ŝ|�〉 ≈ 2〈�|Ŝ|�T 〉 − 〈�T |Ŝ|�T 〉 + O[(� − �T )2].

(22)

Such combinations of VMC and DMC estimators are called
extrapolated estimators [25].

We have fixed the number density at k3
F /(3π2), which is

the density of the free Fermi gas, and we have freedom to
choose the radius R and the height L of the cylinder. In most
simulations we set L = 2R, so that the diameter is equal to the
height of the cylinder; we have verified that the latter choice
does not affect the results.

A. Density profile

The spatial distribution of the particles in the cylinder was
studied by calculating the density profile D(ρ) along the radial
direction ρ. The normalization is chosen so that∫

V

D(ρ)dv = 1, (23)

where the integral is over the volume V = πR2L of the
cylinder.

The ground-state density profile for closed shells of the
system is presented in Fig. 1. Boundary effects decrease as
the number of particles considered is increased. For the largest
system the density has small fluctuations near the center of the
cylinder and it smoothly decreases until it vanishes at the wall.
The almost-constant density for small ρ is consistent with the
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FIG. 2. Density profile for systems with a vortex line and closed
shells for different numbers of particles.

ground state, since it corresponds to the bulk of the system. For
the largest number of particles we have considered we assume
size effects to be negligible.

We present the density profile for closed-shell systems
with a vortex-line excitation in Fig. 2. The most interesting
feature of this quantity is the nonzero density at the core, near
ρ = 0. Previous calculations using Bogoliubov–de Gennes
theory [26,27], while showing a finite density at the origin,
give a much larger suppression of the density at the origin.
Their density at the origin and unitarity is about one-quarter of
the bulk density. We do not see such a large suppression. The
reasons for these differences could be due to our geometry, the
fixed-node approximation we use, or the approximations in the
Bogoliubox–de Gennes theory. Future calculations using both
methods in the same geometry could help shed light on these
differences.

We calculated the particle number a distance R from the
cylinder axis as

η(R) =
∫ L

0
dz

∫ 2π

0
dϕ

∫ R

0
dρ ρ D(ρ). (24)

We find that the difference in η(R) for the ground state vs
the vortex-line state is at most two particles. The optimization
process is computationally costly and it may be responsible for
the difficulties in resolving the densities of the two systems.

B. Energy

1. Ground state

The energy per particle of the system in the cylindrical
geometry goes to the value of the bulk energy per particle in
the limit ofR,L → ∞. Since the wave function vanishes at the
cylinder walls of our finite system, the energy has a dependence
on the surface area of the wall, S = 2πRL = 4πR2. However,
we are still able to estimate the bulk energy. We extrapolate
the energy per particle as a function of the radius using the
functional form

E(R)

A
= E0 + Es

4πR2
, (25)

where E0 and Es are constants that represent the
bulk and surface energies. The resulting parameters are
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FIG. 3. Ground-state energy per particle for different system
sizes. The solid line corresponds to the energy per particle as a
function of R, Eq. (25).

E0 = (0.50 ± 0.01)EFG and Es = (55.2 ± 1.0)EFGk−2
F , and

E(R) is shown in Fig. 3. The E0 parameter in this geom-
etry is analogous to the Bertsch parameter in a box with
periodic boundary conditions. The energy levels are much
more degenerate in the box compared to the cylinder. The
translational invariance gives a good basis for plane waves,
while Bessel functions are not as well defined for the radial
direction, which leads to a trial function with more parameters
needed to simulate systems with the same number of particles.
For example, early QMC calculations in the box [14] obtained
an upper bound of the Bertsch parameter ξ = 0.440(2) for
A = 38 using five parameters analogous to the αI of Eq. (12),
so that the highest energy single-particle state has k2

max ≈
1.46 k2

F . If we consider the same number of particles and
number density in the cylindrical geometry, we require 12
αI ’s to reach the same k2

max. This increased degeneracy may
account for the higher values of E0 compared to the upper
bound of the Bertsch parameter ξ = 0.383(1) [28,29] and its
exact value [2], ξ = 0.372(5).

These differences between the periodic box simulations and
the cylindrical simulations show that the calculated properties
are significantly biased by the geometry. The clear dependence
on system size shown in Fig. 3 further indicates that the
main cause is due to nodal surface errors in our fixed-node
calculations.

We performed one simulation doubling the height of the
cylinder and the number of particles used in our calculation
with A = 26. The energy per particle for this system is
(0.683 ± 0.001)EFG, which differs less than 1% from the
value found for A = 26, (0.678 ± 0.001)EFG, verifying that
our results are independent of the condition L = 2R.

2. Superfluid pairing gap

Experiments with cold-atom gases determined the pairing
gap to be approximately half the Fermi energy [30,31].
The pairing gap at T = 0 is calculated using the odd-even
staggering formula [10],

�(A + 1) = E(A + 1) − 1
2 [E(A) + E(A + 2)]. (26)

 16
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E
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]

A
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Odd

FIG. 4. Ground-state energy for even (circles) and odd (triangles)
numbers of particles. Solid lines correspond to linear fits of the energy
as a function of the number of particles for systems with even and
odd numbers of particles.

We consider that, for an even number of particles, all of them
are paired. For a system with an odd number of particles, the
unpaired particle is described by Eq. (10), and we take the
coefficients νnmp as variational parameters. We assume that n

and m are good quantum numbers for the unpaired particle,
because we employ periodic boundary conditions in the z

direction and the wave function must be an eigenstate of Lz.
Thus, we chose the wave function of the unpaired particle to be
a linear combination of free-particle states with the same n and
m but different p, hence Eq. (10) reduces to a sum only over
p. We perform independent simulations for different values
of n and m and we determine the {νnmp} which minimize the
total energy of the system. In the calculation of the gap we
choose the unpaired orbital that gives the lowest energy. This
is analogous to previous calculations in the bulk [15,32]. In
Fig. 4 we show the total energy of the system for 26 ≤ A ≤ 58.
The pairing gap is estimated through Eq. (26), � = (1.12 ±
0.02)EFG. It is noteworthy that the pairing gap is calculated
using the difference in energy upper bounds, thus the result
is sensitive to the relative quality of the nodal structure. It is
likely that the optimization of the excited-state wave function
is less effective, which would overestimate the pairing gap.
We also note that finite-size effects might be canceled out in
this calculation, which does not consider the vortex line.

3. Excitation energy

The excitation energy for a system with a vortex line in our
geometry is given by the difference in energies between the
excited state and the ground state. In Fig. 5 we present the
excitation energy, as well as the ground state and the system
with a vortex-line energy, for 26 � A � 58. The average of the
excitation energies per particle in our geometry for the larger
systems (42 � A � 58) is Eex = (1.03 ± 0.04)10−2EFG.

IV. DISCUSSION AND CONCLUSIONS

In this work, we have calculated the density profiles of
the ground state and an excited state with a vortex line for a
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FIG. 5. Excitation energy per particle. Inset: Ground-state en-
ergies (triangles) and the energy of the system with a vortex line
(circles).

system of ultracold fermionic atoms at unitarity. For systems
with A � 36 the ground-state density profiles are flat near the
center of the cylinder and they smoothly decrease until the
density vanishes at the wall. The most interesting feature of
the density profile of the systems with a vortex line is the
nonvanishing density at the core, ρ = 0. However, it is lower
than the ground-state density by a small amount. Since the
Cooper pairs have nonzero size, it is possible for a pair to
have nonzero angular momentum at the origin and still have a
nonzero density there.

For the cylindrical geometry, we calculated the energy of
the ground state for an even number of particles (all paired).
Because the wave function vanishes at the walls of the cylinder,
we need very large values of R and L to neglect the effects in-
troduced by this condition. We proposed a functional form for
the energy per particle as a function of the radius of the cylinder
which takes into account the energy term due to the walls.

The superfluid pairing gap of these ultracold atomic gases
is of interest because it is comparable to the Fermi energy

of the system. The usual odd-even staggering formula [10]
yields a gap of � = (1.12 ± 0.02)EFG. Previous quantum
Monte Carlo simulations of fermions in a box, using periodic
boundary conditions, predicted � = (0.84 ± 0.05)EFG [32],
while an experiment at finite temperature produced the value
� = (0.45 ± 0.05)EFG [31].

Future calculations will include a more detailed study of
the vortex structure, the excitations of the fluid in the presence
of a vortex, and calculations of the reduced density matrices
in order to better understand the condensate in the presence
of vortices.

We developed a wave function to study superfluidity and
vortices in a cylindrical geometry. This geometry enabled
us to simulate a vortex line in a superfluid Fermi gas using
a bare Hamiltonian. These calculations allowed theoretical
predictions of the structure of vortices that can be compared
with experiments. Our results have implications both for
cold-atom research and for astrophysics, where the vortex
structure in the superfluid crust of neutron stars is not well
understood. This work can be extended to study vortices in
superfluid neutron matter by extending the calculations in
Refs. [18] and [33].
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