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Kondo effect in alkaline-earth-metal atomic gases with confinement-induced resonances
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Alkaline-earth-metal atoms have a long-lived electronic excited state, and when atoms in this excited state
are localized in the Fermi sea of ground-state atoms by an external potential, they serve as magnetic impurities,
due to the spin-exchange interaction between the excited- and the ground-state atoms. This can give rise to
the Kondo effect. However, in order to achieve this effect in current atomic gas experiments, it requires the
Kondo temperature to be increased to a sizable portion of the Fermi temperature. In this paper we calculate the
confinement-induced resonance (CIR) for the spin-exchanging interaction between the ground and the excited
states of the alkaline-earth-metal atoms and propose that the spin-exchange interaction can be strongly enhanced
by utilizing the CIR. We analyze this system by the renormalization-group approach and show that near a CIR,
the Kondo temperature can be significantly enhanced.
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I. INTRODUCTION

Cold alkaline-earth-metal atomic gases have been widely
used for building atomic clocks, with which the record of the
most accurate optical lattice clock has been achieved [1]. This
is because alkaline-earth-metal atoms have a very-long-lived
excited 3P0 state whose single-particle lifetime can be as long
as many seconds. This excited 3P0 state and the ground 1S0

state are viewed as two internal states of the orbital degree
of freedom. Recently, there has been increasing experimental
interest in studying many-body physics with alkaline-earth-
metal atoms, including the SU(N ) symmetric interaction and
the orbital degree of freedom [2–7]. In particular, recent
experiments have demonstrated the interorbital spin-exchange
scattering between the ground state 1S0 and this 3P0 state in
fermionic 88Sr [4] and 173Yb atoms [5,6].

Utilizing different ac polarizability of 1S0 and 3P0 states, one
can realize the situation that atoms in the 3P0 state experience
a deep lattice and are localized, while atoms in the 1S0 states
experience a shallow lattice and remain itinerant, as shown
in Fig. 1. Therefore, due to the spin-exchange scattering
between these two states, atoms in the 3P0 state can play
the role of magnetic impurities in the Fermi sea of atoms
in the 1S0 state, which can give rise to the Kondo effect [8].
Realizing the Kondo effect with cold atoms [8–17] can add
a few new components of the Kondo physics, such as the
SU(N ) Kondo model and manifestation of the Kondo effect
other than transport properties and nonequilibrium dynamics.
When the magnetic coupling is much weaker compared to the
Fermi energy, such as in the cases of solid-state materials,
the Kondo temperature is a few orders of magnitude lower
than the Fermi temperature. However, with the current cooling
power, normally an atomic Fermi gas can only be cooled
to ∼0.1TF (TF denotes the Fermi temperature). Therefore,
the most challenging question is how to increase the Kondo
temperature to the range attainable by current experiments.
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In this paper we propose a scheme to overcome this
challenge by using confinement-induced resonance (CIR).
The CIR phenomenon describes resonant enhancement of the
one-dimensional (1D) effective interaction strength when a
system is confined in a quasi-one-dimensional tube [18,19].
This phenomenon has been observed in previous cold-atom
experiments with alkali-metal atoms [20]. Here we generalize
the CIR phenomenon to the interorbital scattering between 1S0

and 3P0 states of alkaline-earth-metal atoms. We will show
that a CIR can strongly enhance the spin-exchange scattering
and consequently the Kondo temperature can be increased to
a sizable fractional of the Fermi temperature when a CIR is
approached.

II. CONFINEMENT-INDUCED RESONANCE

A. Zero magnetic field

To illustrate the basic ideas, we first discuss a two-body
problem at zero magnetic field. Let us briefly review the
interaction between two fermions in two different orbital states
3P0 (denoted by |e〉) and 1S0 (denoted by |g〉) and different
nuclear spin states (for simplicity, here we only take two
nuclear spin states denoted by |↑〉 and |↓〉), respectively. We
can introduce four antisymmetric bases for the internal degrees
of freedom

|±〉 = 1

2
(|ge〉 ± |eg〉)(|↑↓〉 ∓ |↓↑〉), (1)

|g↑; e↑〉 = 1√
2

(|ge〉 − |eg〉)|↑↑〉, (2)

|g↓; e↓〉 = 1√
2

(|ge〉 − |eg〉)|↓↓〉, (3)

in which s-wave scattering is allowed. Here |+〉 is an orbital
triplet and nuclear spin singlet and the other three are an
orbital singlet and nuclear spin triplet. Since nuclear spin
does not participate in the interatomic interaction process, the
interaction part possesses the nuclear spin rotational symmetry,
for which the spin singlet and triplet will not mix and the
interaction potentials are the same for |−〉 and |g↑; e↑〉 and
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FIG. 1. Schematic of the system under consideration. The red
balls are alkaline-earth-metal atoms in the 3P0 state. They are trapped
in a deep lattice, are localized, and have a lower density. The blue
balls are alkaline-earth-metal atoms in the 1S0 state. They are trapped
in a shallow lattice and are itinerant. The arrows denote the nuclear
spin degree of freedom. The system is confined in a one-dimensional
tube.

|g↓; e↓〉 channels. Therefore, the interatomic potential V̂ (r) is
diagonal in the bases {|+〉,|−〉,|g↑; e↑〉,|g↓; e↓〉} as

V+(r)P+ + V−(r)(P− + P↑↑ + P↓↓),

where Pi = |i〉〈i| (i = ±), P↑↑ = |g↑; e↑〉〈g↑; e↑ |, and
P↓↓ = |g↓; e↓〉〈g↓; e↓ |. The two interaction potentials are
denoted by V±(r) = 2π�

2a±δ(r) ∂
∂r

(r)/μ where μ is the
two-body reduced mass and a± are two independent scattering
lengths.

We can rotate the interaction potential V̂ (r) in other bases
{|g↑; e↓〉,|g↓; e↑〉,|g↑; e↑〉,|g↓; e↓〉}, where |g↑; e↓〉 =
(1/

√
2)(|+〉 + |−〉) and |g↓; e↑〉 = (1/

√
2)(|−〉 − |+〉), and

V (r) becomes

V̂ = V+ + V−
2

(P↑↓ + P↓↑) + V− − V+
2

(Sex + S†
ex)

+V−(P↑↑ + P↓↓), (4)

where P↑↓ = |g↑; e↓〉〈g↑; e↓ |, P↓↑ = |g↓; e↑〉〈g↓; e↑ |, and
Sex = |g↑; e↓〉〈g↓; e↑ |. In the presence of a lattice as de-
scribed in Fig. 1, when atoms in the |e〉 state are localized
as impurities while atoms in the |g〉 state remain itinerant,
the off-diagonal (V− − V+)/2 represents the process that an
itinerant fermion exchanges its spins with impurities and this
spin-exchange process is the essential process responsible for
the Kondo effect [21]. Normally, this interaction strength is
much smaller compared to the Fermi energy and the Kondo
temperature is exponentially suppressed [21].

Now let us consider atoms confined in a quasi-one-
dimensional tube by a transverse harmonic trap. Here we
consider the situation that the transverse confinement is the
same for both 3P0 and 1S0 states, which can be achieved by
applying a two-dimensional optical lattice in the x-y plane
with the magic wavelength [22]. We first consider the situation
without a lattice along the longitudinal z direction. The free
Hamiltonian Ĥ0 can be separated into the center-of-mass part
and the relative motion part Ĥr, where

Ĥr = − �
2

2μ
∇2

r + μω2

2
(x2 + y2). (5)

For a single interaction channel with a three-dimensional
scattering length as, it is known that the interaction strength
of the effective one-dimensional interaction potential g0δ(z) is
given by [18]

g0 = 2π�
2as

μ
|φ00|2

(
1 − C as

a⊥

)−1

, (6)

where φ00 is the ground-state wave function of Ĥr, a⊥ =√
μω/� is the harmonic length, and C = 1.4603 . . . is a

constant. Here g diverges when a⊥ = Cas, which is known as
CIR [18]. This resonance occurs when the energy of a bound
state in the transverse excited modes matches the scattering
threshold [19].

At zero field, it is easy to show that |+〉, |−〉, |g↑; e↑〉,
and |g↓; e↓〉 are all eigenstates of the free Hamiltonian Ĥ0.
Hence, under confinement, these four scattering channels
can be treated as independent channels and the reduced
one-dimensional interaction still takes a diagonal form as

V̂1D = [g+P+ + g−P− + g0P↑↑ + g0P↓↓]δ(z), (7)

where g+ is related to a+ and g−,g0 are related to a− via Eq. (6).
Therefore, when rotated to the {|g↑; e↓〉,|g↓; e↑〉,|g↑;
e↑〉,|g↓; e↓〉} bases, the spin-exchange interaction term is
now given by (g− − g+)δ(z)/2. When a⊥ → Ca+, g+ diverges
and g− remains finite and when a⊥ → Ca−, g− diverges
and g+ remains finite, as shown in Fig. 2(a). Therefore, the
spin-exchange interaction becomes very strong near these
two CIRs and consequently the Kondo temperature can be
dramatically enhanced. This is the basic idea of our proposal.

B. Finite magnetic field

In a real experiment there is always a finite magnetic
field. Due to the difference in the Landé g-factor between
|g〉 and |e〉 states, the |g↑; e↓〉 and |g↓; e↑〉 states differ by
a finite energy δ proportional to the magnetic-field strength
[25]. In other words, this leads to a mixing term between
|+〉 and |−〉 given by δ/2(|+〉〈−| + H.c.) [5,6]. Therefore,
these two channels can no longer be treated independently,
which presents an additional complication for our proposal.
Under the condition δ � �ω, both channels are retained
in the one-dimensional effective mode. To deduce the one-
dimensional interactional strength, our calculation follows the
standard procedure of CIR discussed before [18], that is, one
first obtains an effective one-dimensional scattering amplitude
in both the |g↑; e↓〉 and |g↓; e↑〉 channels by solving the
three-dimensional Hamiltonian with the confinement potential
and then constructs an effective one-dimensional model that
gives exactly the same scattering amplitude.

The Hamiltonian for the relative motion of the two-body
system with a confinement potential can be written as

Ĥc =
[
− �

2

2μ
∇2

r + μω2

2
(x2 + y2)

]
(P+ + P−)

+ δ

2
(Sc + S†

c ) + V+(r)P+ + V−(r)(P− + P↑↑ + P↓↓),

(8)

where Sc = |+〉〈−|. Two important features at finite δ are
worth emphasizing here. First, in three dimensions, the
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FIG. 2. One-dimensional interaction strengths g+, g−, and gc

(�2/μ103a0 is taken as the unit) as a function of a⊥/a−
s for the

magnetic field (a) B = 0, where gc = 0, and (b) B = 35 G, where
we use 173Yb as an example and take δ = 2π × (112 Hz/G)�B, and
therefore δ = 25 kHz� at 35 G. In both cases, g0 always behaves the
same as g− in case (a). For 173Yb we take a+  10a− and a− = 200a0

[23,24]. The first CIR takes place around a⊥ ≈ Ca− and the second
CIR takes place around a⊥ ≈ Ca+, though the exact locations of the
CIRs will be shifted by the magnetic field. The insets in (b) show g’s
near the first CIR and δg = g− − g+.

interaction does not mix |+〉 and |−〉 because it respects the
nuclear spin rotational symmetry. However, the finite Zeeman
field δ in the single-particle Hamiltonian breaks the nuclear
spin rotational symmetry. In the quasi-one-dimensional sys-
tem, since the virtual processes to the transverse excited
levels are taken into account when reducing dimensionality,
the effect of this Zeeman energy term enters the effective
one-dimensional interaction term V̂1D through the intermediate
state energy of these virtual processes. Hence, the effective 1D
Hamiltonian is expected to take the form

Ĥ1D =
(

− �
2

2μ

d2

dz2

)
(P+ + P−) + δ

2
(Sc + S†

c ) + V1D, (9)

where

V̂1D = [g+P+ + g−P− + gc(Sc + S†
c )

+ g0(P↑↑ + P↓↓)]δ(z). (10)

It should be noted that V1D no longer respects the nuclear spin
rotational symmetry and contains a nonzero off-diagonal term
gc that couples the |+〉 and |−〉 channels. A similar effect has
also been discussed in the CIR of spinor atoms [26]. Here
g+, g−, and gc depend on the strength of the Zeeman field, as
shown in Fig. 2(b). The detailed derivation of these parameters

are given in the Appendix, while the g0 are still related to a−
via Eq. (6) since the |g↑; e↑〉 and |g↓; e↓〉 states are still
eigenstates despite the presence of the Zeeman term.

Second, when g+ diverges, g− and gc will also diverge, as
shown in Fig. 2(b), and similarly when g− diverges. After the
base rotation, the interaction term becomes

Ĥint =
[(

g+ + g−
2

+ gc

)
P↑↓ +

(
g+ + g−

2
− gc

)
P↓↑

+ g− − g+
2

(Sex + S†
ex) + g0(P↑↑ + P↓↓)

]
δ(z), (11)

where the spin-exchange term is still given by (g− −
g+)δ(z)/2. Fortunately, as shown in Fig. 2(b), one can see that
near one of the CIRs, either g− diverges much slower than g+
or g+ diverges much slower than g−. Therefore, (g− − g+)/2
still displays a divergent behavior and the insight gained from
the zero-field limit will hold.

III. KONDO EFFECT

A. Lattice model with a single impurity

Now we consider turning on the lattice potential as shown
in Fig. 1, which localizes atoms in the |e〉 state as impurities
in a Fermi sea of atoms in the |g〉 state. We also consider
the regime where the density of impurity atoms is much more
dilute than the density of itinerant atoms and for simplicity we
consider a single impurity problem. The tight-binding model
is given by

Ĥ = Ĥ0 + ĤI, (12)

Ĥ0 =
∑
k,σ

(−t cos k)c†kσ ckσ + δSz/2 − δ

2L

∑
k

sz
kk, (13)

ĤI = 1

L

∑
k,q

{
J+
2

S+s−
kq + J−

2
S−s+

kq + Jz

2
Szsz

kq + Unkq

+ U1

2
Sznkq + U2s

z
kq

}
, (14)

where ckσ and dσ are fermion operators for itiner-
ant fermions and impurity fermion, respectively, S+ =
d
†
↑d↓, S− = d

†
↓d↑, Sz = (1/2)(d†

↑d↑ − d
†
↓d↓), s−

kq = c
†
k,↓cq,↑,

s+
kq = c

†
k,↑cq,↓, sz

kq = (1/2)(c†k,↑cq,↑ − c
†
k,↓cq,↓), and nkq =

c
†
k,↑cq,↑ + c

†
k,↓cq,↓. In addition, t is the hopping amplitude

of itinerant fermions. The interaction parameters J⊥, Jz, Uz,
U+, and U− are related to g+, g−, and gc via

J± ∝ −(g+ − g−), Jz ∝ −(g+ + g− − 2g0), (15)

U ∝ g+ + g− + 2g0

4
, U1 ∝ −2gc, U2 ∝ gc, (16)

where the proportional constant depends on the details of
the Wannier function overlap between localized atoms and
itinerant atoms (in the following figures, this constant has been
chosen as 0.03).

Here we discuss a few features of this lattice model.
(i) The first three terms (J± and Jz terms) in ĤI describe

the Kondo coupling. From Fig. 2 one can see that (a) on the
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left side of the first CIR and the right side of the second CIR,
J±,Jz < 0 and (b) on the right side of the first CIR and the left
side of the second CIR, J±,Jz > 0. Thus, both ferromagnetic
and antiferromagnetic Kondo couplings can be accessed by
tuning the confinement length a⊥. At zero field, when g0 =
g−, from Eq. (15) we have J± = Jz and the Kondo coupling
respects spin-rotational symmetry, while at finite Zeeman field,
generally g0 is not equal to g− and it gives rise to an anisotropic
Kondo model.

(ii) The fourth term (U term) in ĤI describes a potential
scattering that does not depend on spins. This comes from the
diagonal term in Eq. (11). Furthermore, at finite field, due to
the absence of the full spin rotational symmetry (a rotational
symmetry along the spin z axis is still present), there exist two
other scattering terms (U1 and U2 terms) in ĤI. It naturally
raises the question of whether these extra terms will affect the
Kondo physics.

(iii) The δ term in Ĥ0 comes from the different g-factor
between localized and itinerant fermions. When this term is
sufficiently large, it tends to polarize fermions and will destroy
the Kondo physics.

We remark that here the interaction between itinerant
fermions is ignored since microscopically it is described by
another independent scattering length between atoms in |g〉
states with different nuclear spins (normally denoted by agg.)
The CIR for agg is reached at a different confinement radius
when a⊥ = Cagg, where the interaction between itinerant
fermions will become very strong. With interactions, the effect
of a magnetic impurity in a Luttinger liquid has been studied
before [27,28], and in the strongly interaction limit the results
will be reported elsewhere [29]. In contrast, at the two CIRs
we focus on here, this interaction is rather weak and can be
safely ignored.

B. Renormalization-group studies

To address the effect of these extra terms and to make a
more concrete predication of the Kondo temperature, here
we adopt the renormalization-group (RG) approach well
established for the Kondo problem [21,30]. The key idea is
to iteratively integrate out the high-energy modes of itinerant
fermions and see how the interaction parameters flow. In this
analysis we only consider the lowest-order virtual processes.
For simplicity, only the scattering processes that renormalize
J− are shown explicitly in Fig. 3 as an example. The
renormalization to the J− term from the processes in Fig. 3(a)
when the cutoff is reduced from D to D − δD reads∑

p

J−
2

S−c
†
k,↑cp,↓

1

ω + εq − εp

Jz↓
2

Szc
†
p,↓cq,↓

≈ Jz↓J−
4

S−Szρ0|δD|c†k↑cq↓
1

−D

= −1

8
Jz↓J−ρ0|δD|S−c

†
k↑cq↓

1

D
, (17)

where ρ0 is the density of states of the itinerant atoms near
the Fermi surface and we have set cpc

†
p = 1 for the p states

in the energy scale between D and D − δD and Sz = 1/2
for up-spin impurity. The approximation in Eq. (17) comes
from the fact that εp ≈ D and D � ω,εq . Similarly, one can

FIG. 3. Second-order diagram that can renormalize J− for (a) and
(b) the particle process and (c) and (d) the hole process. Black arrows
denote the itinerant atomic spin and red arrows denote the impurity
atomic spin.

write the renormalization contribution to the J− term from
Figs. 3(b)–3(d) as

1

8
Jz↑J−ρ0|δD|S−c

†
k↑cq↓

1

D + δ
, (18)

− 1

8
Jz↓J−ρ0|δD|S−c

†
k↑cq↓

1

D + δ
, (19)

1

8
Jz↑J−ρ0|δD|S−c

†
k↑cq↓

1

D
. (20)

It turns out that the contribution of the diagrams that involve
the Uσ term is zero. Thus one can sum up all the diagrams and
obtain the renormalization equation for J− as

dJ−
dD

= ρ0

4
J−(Jz↓ − Jz↑)

(
1

D + δ
+ 1

D

)
. (21)

By repeating similar procedures, one can find the renormal-
ization equations of all the interaction parameters in Eq. (14)
as follows:

dJ+
dD

= −ρ0

2
J+Jz

(
1

D − δ
+ 1

D

)
, (22)

dJ−
dD

= −ρ0

2
J−Jz

(
1

D + δ
+ 1

D

)
, (23)

dJz

dD
= −ρ0

2
J+J−

(
1

D − δ
+ 1

D + δ

)
, (24)

dU2

dD
= ρ0

4
J+J−

(
1

D − δ
− 1

D + δ

)
, (25)

dU1

dD
= 0,

dU

dD
= 0, (26)

where we have taken D as the energy cutoff and its initial value
is chosen to be an energy scale of the order of the Fermi energy.
For simplicity, we have also assumed a constant density of state
denoted by ρ0. When δ = 0, Eq. (26) can be reduced to the RG
equations derived in Ref. [30]. At this level of approximation,
the U and U1 terms are renormalized.

Here we focus on the antiferromagnetic case. In Fig. 4(a)
we show a typical flow of the RG equations with δ � EF. We
find that upon lowering the energy cutoff, the J± and Jz terms
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FIG. 4. (a) Flow of parameters J±, Jz, and U2 for lowering energy
cutoff D. Here we have taken a typical density that gives rise to EF =
5� × 104 Hz and the initial values of J±, Jz, and U2 as ρ0J± = 0.2377,
ρ0Jz = 0.2376, and ρ0Uz = −3 × 10−4. (b) The Kondo temperature
increases as the confinement length a⊥ is tuned toward the first CIR
from the antiferromagnetic coupling side. Here we have taken δ =
0.07EF.

diverge much faster than the U2 term. This in fact can already
be seen in the RG equation, since dU2/dD scales with δ/D2

and therefore evolves very slowly when δ � D. Thus, at the
energy scale when J± and Jz diverge, the Kondo effect appears
while the strength of other terms remains quite small. Hence,
we conclude that the extra interaction terms in the lattice model
(14) will not affect the Kondo effect in this system.

The divergent energy scale for J± and Jz is normally taken
as the Kondo temperature [21]. In Fig. 4(b) we show the
dramatic increase of the Kondo temperature upon approaching
one of the CIRs. The Kondo temperature can increase to
∼0.1TF, which is attainable by current experiments. The
underlying physics is basically the increasing of spin-exchange
coupling as we discussed above. In the plot of Fig. 4(b) we have
restricted out initial interaction parameter ρ0J±,ρ0Jz � 0.2.
When it is very close to the CIR, the initial value of these
interaction parameters are already very large, which invalidates
the perturbative RG approach. The impurity physics with a
large or even divergent spin-exchange interaction remains a
challenging issue and this makes the experimental quantum
simulation studies of this model even more interesting.

Solving the RG equations for δ ∼ EF or δ � EF, we find
none of the interaction parameters will diverge even when the

0 0.2 0.4 0.6 0.8 1
D/EF

-2

-1

0

1

2

ρ
0J

J+
J−
Jz

U2

FIG. 5. The RG flow of parameters J±, Jz, and U2 in a strong
magnetic field with B = 100 G and δ/EF  1.4.

cutoff D is lowered to zero as shown in Fig. 5, which means
the absence of the Kondo effect. Therefore, for a fixed a⊥/as,
increasing δ simply by increasing the magnetic field can drive
a crossover from a Kondo regime to a non-Kondo regime.

IV. CONCLUSION

We have studied the CIR for two-orbital alkaline-earth-
metal atoms with interorbital spin-exchange interaction at
finite magnetic field. We show that the CIR can strongly
enhance the spin-exchange scattering and hence dramatically
increase the Kondo temperature. The signature of the Kondo
effect will manifest not only in the transport properties, but
also in other quantities such as spin susceptibility that can
be measured by a cold-atom experiment [31]. Our proposal
is very useful to ongoing experiments on many-body physics
with alkaline-earth-metal atoms.
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APPENDIX: CONFINEMENT-INDUCED
RESONANCE AT FINITE MAGNETIC FIELD

To determine g+, g−, and gc, we can rewrite the Hamilto-
nian in Eq. (8) as

Ĥc =
[
− �

2

2μ
∇2

r + μω2

2
(x2 + y2) + V0

]
(P↑↓ + P↓↑)

+ δP↑↓ + V1(Sex + S†
ex), (A1)

where it is not necessary to consider the |g↑; e↑〉 and |g↓; e↓〉
channels at present since they do not couple to other channels
even in the presence of a magnetic field. Here the operators
V0 and V1 are given by Vi = 2π�

2asiδ(r) ∂
∂r

(r)/μ (i = 1,2)
with as0 = (a+

s + a−
s )/2 and as1 = (a−

s − a+
s )/2. In Eq. (A1)
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we have shifted the threshold energy by a constant −δ/2. The
relative motion of incident atoms is in the transverse ground
state φn=0,mz=0(ρ), where ρ =

√
x2 + y2, n = 0,1,2, . . . is the

transverse principle quantum number, and mz = n,n − 2,n −
4, . . . ,ξn is the quantum number for the angular momentum
along the z direction. Here ξn = 0 (1) when n is even (odd).
Since the system is invariant under the rotation along the z

direction, mz is conserved and only the transverse states with
mz = 0 are involved in this problem. We further assume that
both the Zeeman energy δ and the relative kinetic energy ε of
the two atoms in the channel |g↓; e↑〉 are much smaller than
the energy gap 2�ω between the first transverse excited state
and the transverse ground state, i.e.,

ε,δ � 2�ω. (A2)

In this system the two-atom scattering wave function can be
written as

|�(r)〉=�(↑↓)(z,ρ)|g↑; e↓〉+�(↓↑)(z,ρ)|g↓; e↑〉, (A3)

where the functions �(↑↓)(z,ρ) and �(↓↑)(z,ρ) are given by

�(↑↓)(z,ρ) = [αeik(↑↓)z + f (↑↓)eik(↑↓)|z|]φn=0,mz=0(ρ)

+
∑

n=2,4,6,8,...

B(↑↓)
n e−κ

(↑↓)
n |z|φn,mz=0(ρ), (A4)

�(↓↑)(z,ρ) = [βeik(↓↑)z + f (↓↑)eik(↓↑)|z|]φn=0,mz=0(ρ)

+
∑

n=2,4,6,8,...

B(↓↑)
n e−κ

(↓↑)
n |z|φn,mz=0(ρ). (A5)

Here we consider the general case where ε could be either
larger or smaller than δ. When ε < δ, the incident atoms are in
the state |g↓; e↑〉, which means (α,β) = (0,1). When ε > δ,
the incident atoms are in the state |g↑; e↓〉 or |g↓; e↑〉, which
means either (α,β) = (1,0) or (α,β) = (0,1) for the system.
In Eqs. (A4) and (A5) the function φn,mz

(ρ) is the eigenwave
function of the transverse Hamiltonian (i.e., the Hamiltonian
of a two-dimensional harmonic oscillator in the x − y plane
with frequency ω) with quantum numbers (n,mz), which sat-
isfies φn,mz=0(ρ = 0) = 1/

√
πa⊥, with a⊥ = √

�/μω being
the characteristic length of the transverse confinement. The
parameters k(↑↓), k(↓↑), κ

(↑↓)
n , and κ

(↓↑)
n are given by

k(↑↓) =
√

2μ(ε − δ)

�2
, κ (↑↓)

n =
√

2μ(2n�ω + δ − ε)

�2
,

k(↓↑) =
√

2με

�2
, κ (↓↑)

n =
√

2μ(2n�ω − ε)

�2
, (A6)

while the scattering amplitudes f (↑↓) and f (↓↑) and the coef-
ficients B

(↑↓)
n and B

(↓↑)
n can be obtained from the Schrödinger

equation

Ĥc|�(r)〉 = (ε + �ω)|�(r)〉, (A7)

where the term �ω on the right-hand side of Eq. (A7) is
contributed by the zero-point energy of the transverse ground
state.

Substituting Eqs. (A4) and (A5) into Eq. (A7) and perform-
ing the operation

1√
2π

lim
ε→0

∫ +ε

−ε

dz

∫ ∞

0
ρ dρ φ∗

n,mz=0(ρ)

on both sides of Eq. (A7), we can obtain the relations

f (↑↓) = −i
2
√

π

k(↑↓)a⊥
(as0η

(↑↓) + as1η
(↓↑)), (A8)

B(↑↓)
n = − 2

√
π

κ
(↑↓)
n a⊥

(as0η
(↑↓) + as1η

(↓↑)), (A9)

f (↓↑) = −i
2
√

π

k(↓↑)a⊥
(as0η

(↓↑) + as1η
(↑↓)), (A10)

B(↓↑)
n = − 2

√
π

κ
(↓↑)
n a⊥

(as0η
(↓↑) + as1η

(↑↓)), (A11)

where

η(↑↓) = ∂

∂z
[z�(↑↓)(z,ρ = 0)]

∣∣∣∣
z→0+

, (A12)

η(↓↑) = ∂

∂z
[z�(↓↑)(z,ρ = 0)]

∣∣∣∣
z→0+

. (A13)

Furthermore, substituting Eqs. (A9) and (A11) into Eqs. (A4)
and (A5) and using the fact that φn,mz=0(ρ = 0) = 1/

√
πa⊥,

we obtain

�(↑↓)(z,ρ = 0) = αeik(↑↓)z

√
πa⊥

− [as0η
(↑↓) + as1η

(↓↑)]

×
{
i

2eik(↑↓)|z|

�k(↑↓)a2
⊥

+ �
[ 2|z|

a⊥
, − (

k(↑↓)

2 a⊥
)2]

�a⊥

}
,

(A14)

�(↓↑)(z,ρ = 0) = βeik(↓↑)z

√
πa⊥

− [as0η
(↓↑) + as1η

(↑↓)]

×
{
i

2eik(↓↑)|z|

�k(↓↑)a2
⊥

+ �
[ 2|z|

a⊥
, − (

k(↓↑)

2 a⊥
)2]

�a⊥

}
,

(A15)

where the function �[ξ,ν] is defined as �[ξ,ν] =∑∞
s ′=1 e−√

s ′+νξ /
√

s ′ + ν. As shown in Ref. [18], this function
can be expanded as

�[ξ,ν] = 2

ξ
+ ζ

[
1

2
,1 + ν

]
+ O(ξ ), (A16)

with ζ (s,a) being the Hurwitz zeta function. Substituting
Eqs. (A14) and (A15) into Eqs. (A12) and (A13) and using
Eq. (A16), we can obtain the factors η(↓↑) and η(↑↓). Further
using these results and Eqs. (A8)–(A11), we can finally obtain
the expressions of the scattering amplitudes f (↑↓) and f (↓↑):(

f (↑↓)

f (↓↑)

)
= −1

I + iAP + i
∑∞

s=1

(
ε

2�ω

)s
A′

sP

(
α

β

)
, (A17)

where I , A, P , and A′
s are ε-independent 2 × 2 matrices

expressed as

I =
(

1 0
0 1

)
, P =

(
k(↑↓) 0

0 k(↓↑)

)
, (A18)
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and

A = −a2
⊥
2

[(
as0 as1

as1 as0

)−1

+
(

ζ [ 1
2 ,1+ δ

2�ω
]

a⊥
0

0
ζ [ 1

2 ,1]
a⊥

)]
.

(A19)

The expressions of A′
s can be obtained by the straightforward

calculation we introduced above and are not needed in the
following discussion. In Eq. (A17), 1

[··· ] means the inverse
matrix of [· · · ].

On the other hand, according to Eqs. (A4) and (A5),
in the long-range limit |z| → ∞ (i.e., |z| � a⊥) the
asymptotic wave function of the two-atom relative motion
reads

|�(r)〉 |z|→∞−−−→ [(αeik(↑↓)z + f (↑↓)eik(↑↓)|z|)|g↑; e↓〉
+ (βeik(↓↑)z + f (↓↑)eik(↓↑)|z|)|g↓; e↑〉]φ0,0(ρ). (A20)

Therefore, the long-range behavior of the two-atom
relative wave function is completely determined by
Eq. (A17).

Now let us consider a pure one-dimensional system with the
Hamiltonian Ĥ1D defined in Eq. (9). Similar to the above, in the
bases {|g↑; e↓〉,|g↓; e↑〉}, this Hamiltonian can be rewritten
as

Ĥ1D =
(

− �
2

2μ

d2

dz2

)
(P↑↓ + P↓↑) + δP↑↓

+
[
g+ + g− + 2gc

2
P↑↓ + g+ + g− − 2gc

2
P↓↑

+ g− − g+
2

(Sex + S†
ex)

]
δ(z). (A21)

With straightforward calculation, it is easy to find that the
one-dimensional scattering wave function in this system is
given by

|�1D(z)〉 = (αeik(↑↓)z + f
(↑↓)
1D eik(↑↓)|z|)|g↑; e↓〉

+ (βeik(↓↑)z + f
(↓↑)
1D eik(↓↑)|z|)|g↓; e↑〉, (A22)

with α, β, k(↑↓), and k(↓↑) defined the same as above, and
the one-dimensional scattering amplitudes f

(↑↓)
1D and f

(↓↑)
1D are

given by (
f

(↑↓)
1D

f
(↓↑)
1D

)
= − 1

I + iA1DP

(
α

β

)
, (A23)

where P is defined in Eq. (A18) and

A1D = −2�
2

μ

(
g+ + g− + 2gc g− − g+

g− − g+ g+ + g− − 2gc

)−1

(A24)

is the one-dimensional scattering length matrix.
By comparing Eqs. (A17) and (A19) with Eqs. (A23) and

(A24), we find that in the systems where ε is much smaller
than �ω so that the high-order terms i

∑∞
s=1( ε

2�ω
)sA′

sP can be
neglected in Eq. (A17), when the one-dimensional parameters

0 0.5 1 1.5
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0.6

0.8

1

|f
|2
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1

|f
|2

1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

f (↑↓)

f
(↑↓)
1D

f (↓↑)

f
(↓↑)
1D

1 1.2 1.4 1.6 1.8 2
/δ

0

0.2

0.4

0.6

0.8

1
(b)

(c) (d)

(a)

/δ

/δ /δ

FIG. 6. Scattering amplitude as a function of incident energy (a)
and (c) ε � 0, where incident atoms are in state |g↓; e↑〉(α = 0,β =
1), with α and β defined in Eqs. (A4) and (A5), respectively, and
(b) and (d) ε � δ, where incident atoms are in state |g↑; e↓〉(α =
1,β = 0). As shown in (a) and (b), if δ ≈ 0.1�ω, the scattering
amplitude given by the 1D model almost coincides with that given
by the complete calculation, while if δ ≈ 0.4�ω, the difference in the
scattering amplitude appears, as shown in (c) and (d).

g± and gc satisfy

(
as0 as1

as1 as0

)−1

+ 1

a⊥

[
ζ
(

1
2 ,1 + δ

2�ω

)
0

0 ζ
(

1
2 ,1

)]

= 4�

μa2
⊥

(
g+ + g− + 2gc g− − g+

g− − g+ g+ + g− − 2gc

)−1

, (A25)

0 0.5 1 1.5 2 2.5 3 3.5
δ/E+

0

20

40

60

80

a
⊥
/
a
− s

a
(1)
⊥ res

a
(2)
⊥ res

a⊥ = 2h̄2/μδ 3D
OFR

FIG. 7. Red and blue solid lines denote the positions a
(1)
⊥res and

a
(2)
⊥res of the first and second CIR, respectively. The blue dashed line

shows that if one extends the calculation to the limit of low trapping
frequency, the position of the second CIR approaches the position of
the orbital Feshbach resonance (OFR) in the 3D system [32], which
is shown by the red dashed line. The black dotted line shows the
condition a⊥ = √

2�2/μδ. Our effective 1D model is applicable only
in the region with a⊥ <

√
2�2/μδ, i.e., the region below the dotted

line.
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we have the relation A ≈ A1D, which gives

f
(↑↓)
1D ≈ f (↑↓), f

(↓↑)
1D ≈ f (↓↑) (A26)

and

|�(r)〉 |z|→∞−−−→ φn=0,mz=0(ρ)|�1D(z)〉. (A27)

Therefore, the Hamiltonian Ĥ1D in Eq. (9) with the parameters
g± and gc given by Eq. (A25) is the correct one-dimensional
model for these systems and the values of g+, g−, and gc

at finite magnetic field are plotted in Fig. 2(b). In Fig. 6 we
plot f (↑↓) and f (↓↑) given by the complete calculation [i.e.,
Eq. (A17)] and f

(↑↓)
1D and f

(↓↑)
1D from the one-dimensional

model [i.e., Eq. (A23)]. It is shown that as long as δ is small
enough, the scattering amplitude given by the one-dimensional

model almost coincides with that given by the complete
calculation, no matter where the incident channel is located, as
shown in Figs. 6(a) and 6(b). However, when δ is comparable
to �ω, the difference between these scattering amplitudes in
the high-energy regime begins appears, as shown in Figs. 6(c)
and 6(d).

In Fig. 7 we show the characteristic length a(1,2)
res for the

first and second CIRs as a function of the Zeeman energy
δ. The position of the first CIR is insensitive to the Zeeman
field, while that of the second CIR is quite sensitive to the
Zeeman field. It should be noted that since our calculation
is based on the condition (A2), the effective one-dimensional
model is applicable only in the parameter region δ < 2�ω or
a⊥ <

√
2�2/μδ, i.e., the light region below the dotted line in

Fig. 7.
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Lett. 115, 265302 (2015).

[24] G. Pagano, M. Mancini, G. Cappellini, L. Livi, C. Sias, J.
Catani, M. Inguscio, and L. Fallani, Phys. Rev. Lett. 115, 265301
(2015)

[25] M. M. Boyd, T. Zelevinsky, A. D. Ludlow, S. Blatt, T. Zanon-
Willette, S. M. Foreman, and J. Ye, Phys. Rev. A 76, 022510
(2007).

[26] X. Cui, Phys. Rev. A 90, 022705 (2014).
[27] D. H. Lee and J. Toner, Phys. Rev. Lett. 69, 3378 (1992).
[28] A. Furusaki and N. Nagaosa, Phys. Rev. Lett. 72, 892 (1994).
[29] D. P. Zhang, W. Chen, and H. Zhai, arXiv:1510.08303.
[30] P. W. Anderson, J. Phys. C 3, 2436 (1970).
[31] C. Sanner, E. J. Su, A. Keshet, W. Huang, J. Gillen, R. Gommers,

and W. Ketterle, Phys. Rev. Lett. 106, 010402 (2011).
[32] R. Zhang, Y. Cheng, H. Zhai, and P. Zhang, Phys. Rev. Lett.

115, 135301 (2015).

043601-8

http://dx.doi.org/10.1126/science.1240420
http://dx.doi.org/10.1126/science.1240420
http://dx.doi.org/10.1126/science.1240420
http://dx.doi.org/10.1126/science.1240420
http://dx.doi.org/10.1038/nature12941
http://dx.doi.org/10.1038/nature12941
http://dx.doi.org/10.1038/nature12941
http://dx.doi.org/10.1038/nature12941
http://dx.doi.org/10.1038/nphys2430
http://dx.doi.org/10.1038/nphys2430
http://dx.doi.org/10.1038/nphys2430
http://dx.doi.org/10.1038/nphys2430
http://dx.doi.org/10.1038/nphys2878
http://dx.doi.org/10.1038/nphys2878
http://dx.doi.org/10.1038/nphys2878
http://dx.doi.org/10.1038/nphys2878
http://dx.doi.org/10.1126/science.1254978
http://dx.doi.org/10.1126/science.1254978
http://dx.doi.org/10.1126/science.1254978
http://dx.doi.org/10.1126/science.1254978
http://dx.doi.org/10.1038/nphys3061
http://dx.doi.org/10.1038/nphys3061
http://dx.doi.org/10.1038/nphys3061
http://dx.doi.org/10.1038/nphys3061
http://dx.doi.org/10.1038/nphys3338
http://dx.doi.org/10.1038/nphys3338
http://dx.doi.org/10.1038/nphys3338
http://dx.doi.org/10.1103/PhysRevLett.113.120402
http://dx.doi.org/10.1103/PhysRevLett.113.120402
http://dx.doi.org/10.1103/PhysRevLett.113.120402
http://dx.doi.org/10.1103/PhysRevLett.113.120402
http://dx.doi.org/10.1103/PhysRevLett.114.239903
http://dx.doi.org/10.1103/PhysRevLett.114.239903
http://dx.doi.org/10.1103/PhysRevLett.114.239903
http://dx.doi.org/10.1088/0034-4885/77/12/124401
http://dx.doi.org/10.1088/0034-4885/77/12/124401
http://dx.doi.org/10.1088/0034-4885/77/12/124401
http://dx.doi.org/10.1088/0034-4885/77/12/124401
http://dx.doi.org/10.1038/nphys1535
http://dx.doi.org/10.1038/nphys1535
http://dx.doi.org/10.1038/nphys1535
http://dx.doi.org/10.1038/nphys1535
http://dx.doi.org/10.1103/PhysRevLett.92.140402
http://dx.doi.org/10.1103/PhysRevLett.92.140402
http://dx.doi.org/10.1103/PhysRevLett.92.140402
http://dx.doi.org/10.1103/PhysRevLett.92.140402
http://dx.doi.org/10.1209/epl/i2004-10115-8
http://dx.doi.org/10.1209/epl/i2004-10115-8
http://dx.doi.org/10.1209/epl/i2004-10115-8
http://dx.doi.org/10.1209/epl/i2004-10115-8
http://dx.doi.org/10.1103/PhysRevLett.94.040404
http://dx.doi.org/10.1103/PhysRevLett.94.040404
http://dx.doi.org/10.1103/PhysRevLett.94.040404
http://dx.doi.org/10.1103/PhysRevLett.94.040404
http://dx.doi.org/10.1103/PhysRevA.71.063608
http://dx.doi.org/10.1103/PhysRevA.71.063608
http://dx.doi.org/10.1103/PhysRevA.71.063608
http://dx.doi.org/10.1103/PhysRevA.71.063608
http://dx.doi.org/10.1103/PhysRevA.77.051601
http://dx.doi.org/10.1103/PhysRevA.77.051601
http://dx.doi.org/10.1103/PhysRevA.77.051601
http://dx.doi.org/10.1103/PhysRevA.77.051601
http://dx.doi.org/10.1103/PhysRevLett.111.135301
http://dx.doi.org/10.1103/PhysRevLett.111.135301
http://dx.doi.org/10.1103/PhysRevLett.111.135301
http://dx.doi.org/10.1103/PhysRevLett.111.135301
http://dx.doi.org/10.1103/PhysRevA.93.011606
http://dx.doi.org/10.1103/PhysRevA.93.011606
http://dx.doi.org/10.1103/PhysRevA.93.011606
http://dx.doi.org/10.1103/PhysRevA.93.011606
http://dx.doi.org/10.1103/PhysRevLett.111.215304
http://dx.doi.org/10.1103/PhysRevLett.111.215304
http://dx.doi.org/10.1103/PhysRevLett.111.215304
http://dx.doi.org/10.1103/PhysRevLett.111.215304
http://dx.doi.org/10.1103/PhysRevB.91.165131
http://dx.doi.org/10.1103/PhysRevB.91.165131
http://dx.doi.org/10.1103/PhysRevB.91.165131
http://dx.doi.org/10.1103/PhysRevB.91.165131
http://dx.doi.org/10.1103/PhysRevLett.115.165302
http://dx.doi.org/10.1103/PhysRevLett.115.165302
http://dx.doi.org/10.1103/PhysRevLett.115.165302
http://dx.doi.org/10.1103/PhysRevLett.115.165302
http://dx.doi.org/10.1103/PhysRevLett.81.938
http://dx.doi.org/10.1103/PhysRevLett.81.938
http://dx.doi.org/10.1103/PhysRevLett.81.938
http://dx.doi.org/10.1103/PhysRevLett.81.938
http://dx.doi.org/10.1103/PhysRevLett.91.163201
http://dx.doi.org/10.1103/PhysRevLett.91.163201
http://dx.doi.org/10.1103/PhysRevLett.91.163201
http://dx.doi.org/10.1103/PhysRevLett.91.163201
http://dx.doi.org/10.1103/PhysRevLett.104.153203
http://dx.doi.org/10.1103/PhysRevLett.104.153203
http://dx.doi.org/10.1103/PhysRevLett.104.153203
http://dx.doi.org/10.1103/PhysRevLett.104.153203
http://dx.doi.org/10.1103/PhysRevLett.100.103002
http://dx.doi.org/10.1103/PhysRevLett.100.103002
http://dx.doi.org/10.1103/PhysRevLett.100.103002
http://dx.doi.org/10.1103/PhysRevLett.100.103002
http://dx.doi.org/10.1103/PhysRevLett.115.265302
http://dx.doi.org/10.1103/PhysRevLett.115.265302
http://dx.doi.org/10.1103/PhysRevLett.115.265302
http://dx.doi.org/10.1103/PhysRevLett.115.265302
http://dx.doi.org/10.1103/PhysRevLett.115.265301
http://dx.doi.org/10.1103/PhysRevLett.115.265301
http://dx.doi.org/10.1103/PhysRevLett.115.265301
http://dx.doi.org/10.1103/PhysRevLett.115.265301
http://dx.doi.org/10.1103/PhysRevA.76.022510
http://dx.doi.org/10.1103/PhysRevA.76.022510
http://dx.doi.org/10.1103/PhysRevA.76.022510
http://dx.doi.org/10.1103/PhysRevA.76.022510
http://dx.doi.org/10.1103/PhysRevA.90.022705
http://dx.doi.org/10.1103/PhysRevA.90.022705
http://dx.doi.org/10.1103/PhysRevA.90.022705
http://dx.doi.org/10.1103/PhysRevA.90.022705
http://dx.doi.org/10.1103/PhysRevLett.69.3378
http://dx.doi.org/10.1103/PhysRevLett.69.3378
http://dx.doi.org/10.1103/PhysRevLett.69.3378
http://dx.doi.org/10.1103/PhysRevLett.69.3378
http://dx.doi.org/10.1103/PhysRevLett.72.892
http://dx.doi.org/10.1103/PhysRevLett.72.892
http://dx.doi.org/10.1103/PhysRevLett.72.892
http://dx.doi.org/10.1103/PhysRevLett.72.892
http://arxiv.org/abs/arXiv:1510.08303
http://dx.doi.org/10.1088/0022-3719/3/12/008
http://dx.doi.org/10.1088/0022-3719/3/12/008
http://dx.doi.org/10.1088/0022-3719/3/12/008
http://dx.doi.org/10.1088/0022-3719/3/12/008
http://dx.doi.org/10.1103/PhysRevLett.106.010402
http://dx.doi.org/10.1103/PhysRevLett.106.010402
http://dx.doi.org/10.1103/PhysRevLett.106.010402
http://dx.doi.org/10.1103/PhysRevLett.106.010402
http://dx.doi.org/10.1103/PhysRevLett.115.135301
http://dx.doi.org/10.1103/PhysRevLett.115.135301
http://dx.doi.org/10.1103/PhysRevLett.115.135301
http://dx.doi.org/10.1103/PhysRevLett.115.135301



