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Application of the partial-Fourier-transform approach for tunnel ionization of molecules
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Combining the partial-Fourier-transform approach with Wenzel-Kramers-Brillouin approximation, we theo-
retically study the strong-field tunneling ionization of diatomic and polyatomic molecules. First we obtain the
analytical expression of momentum distribution at the tunnel exit of diatomic molecules, and then we calculate
the alignment-dependent ionization rate at different laser intensities and internuclear distances. We show that
the internuclear distance has a significant effect on the alignment dependence of the ionization rate. Using this
approach, we can also separate the contributions of each atomic center and show the interference effect between
them. Finally, we extend this method to a polyatomic molecule, benzene, as an example.
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I. INTRODUCTION

The tunneling of atoms and molecules is the foundation of
attosecond science, which is the first step of the important
three-step model [1]. A strong laser field suppresses the
Coulomb potential, forming an instantaneous potential barrier.
The bond electrons can be freed by tunneling and then will
oscillate in the laser field. A fraction of the tunneled electrons
can be driven back to its parent ion, then scatter off it, or
recombine with it accompanied by the emission of a photon.
In the last decade, the tunneling of molecules attracted a lot of
attention, and several state-of-the-art attosecond techniques
are based on it. In photoelectron tomography experiments
[2], the tunneling of molecules determines the calibration
of continuum wave packets, which will further influence the
tomographic reconstruction of molecular orbitals. Part of the
tunneling electrons are diffracted by molecular ions, and the
diffraction pattern in photoelectron momentum distribution
encodes information about molecular orbitals as reveled in
laser-induced electron diffraction experiments [3–6]. While
the tunneling of atoms has been studied thoroughly from the
famous work of Keldysh [7] for more than 50 years [8–11], the-
oretical investigation of molecular tunneling is still ongoing.
The most common approaches include molecular strong-field
approximation (MO-SFA) [12–14] and molecular Ammosov-
Delone-Krainov (MO-ADK) theory [15]. While both theories
have achieved great success in describing experimental results,
the former suffers from gauge noninvariance, and the latter
does not include the effect of multicenter interference.

Recently, Murray et al. proposed a simple and straight-
forward method to study the tunneling of atoms [16]. The
authors introduce the partial Fourier transform of field-free
ground state wave function of atoms. With the help of this
specific wave function, they reduce the three-dimensional
tunneling problem to one dimension and utilize the results
of Wentzel-Kramers-Brillouin (WKB) approximation directly.
They successfully reproduce the ADK ionization rate for
atoms and explain the alignment-dependent ionization rate of
CO2 [17].

In our work we present the application of the partial-
Fourier-transform approach to the study of strong-field tun-
neling ionization of homonuclear diatomic molecules as well
as polyatomic molecules. We represent the highest occupied

molecular orbitals (HOMO) by linear combination of atomic
orbitals and obtain the amplitude and phase structure of
the tunneling wave packet at the tunnel exit analytically.
The analytical expression of the tunneling wave packet at the
tunnel exit is critical for the calibration of a continuum wave
packet in tomographic experiments, and its phase structure
has been demonstrated to have a significant effect on the
alignment-dependent holography pattern of N2 [18]. Thus our
method will facilitate the study of various molecular imaging
approaches. Different from MO-ADK theory, utilizing the
two-center expression of the HOMO of diatomic molecules,
we separate the contributions of each atomic center and show
the interference between them explicitly. This approach can
also be straightforwardly extended to polyatomic molecules.

In Sec. II of this paper, we present the derivation of the
tunneling wave packet of homonuclear diatomic molecules.
Then we show the results of H2 in Sec. III and O2 in Sec. IV.
In Sec. V we extend this method to a polyatomic molecule,
benzene. Finally, we give the conclusions in Sec. VI.

II. TUNNELING THEORY FOR HOMONUCLEAR
DIATOMIC MOLECULES

First we introduce the partial-Fourier-transform method
for atoms briefly. We consider the situation of zero range
potential and a static electric field, as shown in Fig. 1(a). The
Hamiltonian in length gauge of this system is

Ĥ = p̂2

2
− Fz. (1)

Here F is the strength of electric field, which points towards
the minus z axis. The atomic wave function in mixed
representation is

�atom(px,py,z) = 1

2π

∫∫
dx dy e−ixpx−iypy �atom(x,y,z).

(2)
Here the wave function is represented by two momentum
variables perpendicular to the polarization axis, as well as
one coordinate variable parallel to the polarization axis. With
the help of this specific expression, we can simplify the
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FIG. 1. (a) The sketch of the ionization of atoms in static electric
field. The thick black arrow indicates the direction of the static electric
field. The straight blue line represents the potential induced by the
static electric field, while the bent red line includes the Coulomb
potential. The vertical dashed line indicates the positions of tunnel
exit ze and matching point z0 (see text). (b) The configuration of
a diatomic molecule. The thick green line represents the molecular
axis. The static electric field points towards minus z direction. The
alignment angle is θM . The longitudinal displacement is R cos θM/2
for atom 1 and −R cos θM/2 for atom 2. The dashed red line indicates
the position of the new matching point for atom 1.

three-dimensional Schrödinger equation as follows:

−∂2�atom(px,py,z)

∂z2
= 2(E′ + Fz)�atom(px,py,z). (3)

Here E′ = −(Ip + p2
x/2 + p2

y/2), and Ip is the ionization po-
tential. Then we can utilize the technique of one-dimensional
WKB approximation. According to WKB approximation, the
wave function should take the form of

�atom(px,py,z) = C√
pz(z)

exp[iS(px,py,z)]. (4)

Here S(px,py,z) is the classical action, and pz(z) =
|∂S(px,py,z)/∂z| is the kinetic momentum along the

polarization axis. Then we find a point z0 in the classically
forbidden region where z0 � 1 so that we can adopt the
asymptotic form of field-free wave function, and z0 � ze

(ze = Ip/F is the tunnel exit) so that the laser field is still
small compared with Coulomb potential. At this point the
WKB solution should match with the field-free wave function.
The constant C in Eq. (4) can be determined by this matching
procedure and the wave function at tunnel exit is given by

�atom(px,py,z → ze)

= �atom(px,py,z0)
√

κ

pz(z)

× exp{i[S(px,py,z) − S(px,py,z0)]}. (5)

Here �atom(px,py,z0) is the field-free wave function at
matching point, and κ = √

2Ip. Note that WKB approximation
is not applicable right at the tunnel exit. The expression in
Eq. (5) is applicable for some point just beyond the tunnel
exit. In the following paragraphs we will omit the notation
z → ze. The expression in Eq. (5) also represents the transverse
momentum distribution at the tunnel exit.

We start from the treatment of homonuclear diatomic
molecules using the partial-Fourier-transform approach. The
HOMO of a homonuclear diatomic molecule is the superposi-
tion of two atomic orbitals, one at each atomic center,

�molecule(r) = 1√
2 ± 2SOI

[�atom1(r − R/2)

±�atom2(r + R/2)]. (6)

Here R points from one atomic center to the other, and SOI is
the overlap integral. The positive sign in Eq. (6) represents the
bonding orbital, and the negative sign the antibonding orbital.
In the following paragraphs we will neglect the coefficient
before the square brackets in Eq. (6), which is of no physical
significance when calculating the relative ionization rate. The
partial Fourier transform of this molecular orbital is

�molecule(px,py,z) = exp(−ipxR sin θM cos ϕM/2 − ipyR sin θM sin ϕM/2)�atom1(px,py,z − R cos θM/2)

± exp(ipxR sin θM cos ϕM/2 + ipyR sin θM sin ϕM/2)�atom2(px,py,z + R cos θM/2). (7)

Here θM and ϕM are the polar and azimuthal angles of the molecular axis, respectively. From Eq. (7) the wave function in mixed
representation of a homonuclear diatomic molecule is also the superposition of two atomic components, but the contribution
of each atom is multiplied by a phase factor, which originates from the transverse displacement from the molecular center
perpendicular to the electric field. Because of the longitudinal displacement parallel to the electric field, the atomic contributions
�atom1 and �Atom2 are different from the original expression in Eq. (5). We take atom 1, for example, to elucidate the derivation
of these contributions. As there is a longitudinal displacement, the matching point of each atom will move accordingly. The
longitudinal displacement of atom 1 is R cos θM/2, and thus we assume the new matching point is z1 = z0 + R cos θM/2, then
the wave function in mixed representation is

�atom1(px,py,ze − R cos θM/2) = �atom1(px,py,z1 − R cos θM/2)
√

κ

pz(ze)
exp{i[S(px,py,ze) − S(px,py,z1)]}. (8)

Under the condition that z1 � ze we can expand the exponential term in Eq. (8) in powers of z1 up to the first order,

�atom1(px,py,ze − R cos θM/2) = �atom(px,py,z0)
√

κ

pz(ze)
exp

(
− κ3

3F
− κp2

⊥
2F

+ κz0 + κR cos θM/2

)
. (9)

Here p⊥ =
√

p2
x + p2

y . We can see that the exponential term is modified by κR cos θM/2, which originates from the longitudinal
displacement and gives the relative weight of two atomic contributions. The treatment of atom 2 is similar. The modification of
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relative weight is easy to understand. For the specific configuration in Fig. 1(b), the potential barrier which electrons from atom
1 are going to penetrate is narrower than that for atom 2, so the probability that electrons penetrate the potential barrier from
atom 1 is bigger than that from atom 2. After inserting these atomic terms into Eq. (7) and including the Coulomb correction
under the barrier [16,19], we get the expression in mixed representation for homonuclear diatomic molecules,

�molecule(px,py,ze) =
{

exp(−ipxR sin θM cos ϕM/2 − ipyR sin θM sin ϕM/2) exp(κR cos θM/2)

± exp(ipxR sin θM cos ϕM/2 + ipyR sin θM sin ϕM/2) exp(−κR cos θM/2)

}

×�atom(px,py,z0)
√

κ

pz(ze)

(
2κ2

Fz0

)Q/κ

exp

(
− κ3

3F
− κp2

⊥
2F

+ κz0

)
(10)

Here Q is the charge of the molecular ion. In order to cancel the matching point in the final expression, we still use atomic
potential when calculating the Coulomb correction under the barrier for each atomic contribution. The asymptotic form of atomic
wave function is

�κlm(r) = (−1)(m+|m|)/2ilCκlNlmκ3/2(κr)Q/κ−1e−κrP
|m|
l (cos θ )eimϕ. (11)

Here,

Nlm =
√

2l + 1

4π

(l − |m|)!
(l + |m|)! . (12)

The expression in mixed representation is

�κlm(px,py,z) = il−m(−1)|m| CκlNlm

2|m||m|!
(l + |m|)!
(l − |m|)!κ

Q/κ−1/2zQ/κe−κz
(p⊥

κ

)|m|
eimφ0 . (13)

Here φ0 is the azimuthal angle of p⊥. In the derivation of Eq. (13) we make the assumption that p⊥/κ � 1. So far we have
not considered the rotation of molecules. If the molecular axis rotates, the atomic orbitals constituting the molecular orbital will
rotate accordingly. The rotated atomic orbitals can be represented as follows:

�κlm(px,py,z) =
∑
m′

Dl
m′m(θM,ϕM,γM )il−m′

(−1)|m
′| CκlNlm′

2|m′||m′|!
(l + |m′|)!
(l − |m′|)!κ

Q/κ−1/2zQ/κe−κz
(p⊥

κ

)|m′|
eim′φ0 . (14)

Here Dl
m′m(θM,ϕM,γM ) is the rotation matrix, and γM specify the rotation around the molecular axis. After inserting Eq. (14)

into Eq. (10), we get the final expression in mixed representation at the tunnel exit for a homonuclear diatomic molecule,

�molecule(px,py,ze) =
{

exp(−ipxR sin θM cos ϕM/2 − ipyR sin θM sin ϕM/2) exp(κR cos θM/2)

± exp(ipxR sin θM cos ϕM/2 + ipyR sin θM sin ϕM/2) exp(−κR cos θM/2)

}

×
∑
m′

Dl
m′m(θM,ϕM,γM )

(i)l−m′
(−1)|m

′|
√

pz(ze)

CκlNlm′

2|m′||m′|!
(l + |m′|)!
(l − |m′|)!

(p⊥
κ

)|m′|
eim′φ0

(
2κ3

F

)Q/κ

× exp

(
− κ3

3F
− κp2

⊥
2F

)
(15)

From Eq. (15) we can see that the wave function in mixed representation is the one for atoms multiplied by a structural factor.
The structural factor in the curly brackets in Eq. (15) depends on the orientation of the molecules, the distance between two
atomic centers, and the transverse momentum at the tunnel exit. It reflects the effect of the structure of molecular orbital on the
momentum distribution at tunnel exit. Finally, the ionization rate in the linearly polarized laser field can be given by the integral

� =
(

3F

πκ3

)1/2 ∫
dpx dpy pz(ze)|�molecule(px,py,ze)|2. (16)

III. HYDROGEN

We take H2, for example, to show the application of the partial-Fourier-transform approach. The HOMO of H2 is 1σg , and
there is one 1s orbital at each atomic center. Because the 1s orbital is spherically symmetric, the sum in Eq. (15) is unnecessary.
The corresponding wave function in mixed representation at tunnel exit is

�H2 (px,py,ze) =
{

exp(−ipxR sin θM cos ϕM/2 − ipyR sin θM sin ϕM/2) exp(κR cos θM/2)
+ exp(ipxR sin θM cos ϕM/2 + ipyR sin θM sin ϕM/2) exp(−κR cos θM/2)

}

× Cκ0

2
√

πpz(ze)

(
2κ3

F

)Q/κ

exp

(
− κ3

3F
− κp2

⊥
2F

)
(17)
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After inserting this expression into Eq. (16), we get the ionization rate at different alignment angles,

�H2 = |Cκ0|2
4π

(
2κ3

F

)2Q/κ(
3F

πκ3

)1/2

exp

(
−2κ3

3F

)

×
∫∫

dpx dpy[exp(κR cos θM ) + exp(−κR cos θM ) + 2 cos(pyR sin θM )] exp

(
−κp2

⊥
F

)
(18)

In Fig. 2 we show the numerical results of Eq. (18). We
neglect the constant Cκ0, which is of no physical significance
when calculating the relative ionization rate of homonuclear
diatomic and polyatomic molecules. If the atomic orbitals
constituting the HOMO are different, e.g., the case of heteronu-
clear diatomic molecules, this constant must be considered
carefully. In Fig. 2(a), we show the alignment dependence of
the ionization rate at different laser intensities. We can see that
the alignment-dependent ionization rate takes on a “peanut”
shape which maximizes when the molecular axis is parallel to
the polarization axis and minimizes when the molecular axis
is perpendicular to the polarization axis. The laser intensity
will strongly influence the overall ionization rate, and the
ionization rate will increase dramatically with the increase of
laser intensity. In Fig. 2(b) we show the same ionization rate,
but normalized so that the maximum is unity for each laser
intensity. The curves for different intensities almost overlap
with each other, manifesting that the laser intensity has little
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FIG. 2. (a) The alignment-dependent ionization rate of H2 at
equilibrium internuclear distance when the laser intensity is 1.4 ×
1014 W/cm2 (dashed blue line), 1.2 × 1014 W/cm2 (dash-dotted red
line), 1.0 × 1014 W/cm2 (dotted green line), and 0.8 × 1014 W/cm2

(solid magenta line). Because we neglect the coefficients in Eqs. (6)
and (18), only the relative value among different curves is meaningful.
(b) The same ionization rate as shown in (a), but normalized so that the
maximum value for each intensity is unity. (c) Normalized ionization
rate when the internuclear distance is 1.42 a.u. (dashed blue line, the
equilibrium internuclear distance), 2 a.u. (dash-dotted red line), 4 a.u.
(dotted green line), and 6 a.u. (solid magenta line).

effect on the alignment dependence of the ionization rate. In
Fig. 2(c) we show the normalized ionization rate at different
internuclear distances. We can see that the ionization rates for
different internuclear distances differ significantly from each
other. The minimum at perpendicular alignment gets smaller
when the internuclear distance gets larger.

The integral in Eq. (18) can be separated into three parts.
From the derivation above we can see that the first two terms in
the square brackets in Eq. (18) represent the ionization of two
atoms without interfering with each other, and the third term
represents two-center interference. In Fig. 3(a) we show the
total ionization rate (dashed black line), and the contributions
of atom 1 (dash-dotted blue line), atom 2 (dotted red line),
and two-center interference (solid green line) at equilibrium
internuclear distance. In Fig. 3(b) we show the corresponding
result when R = 4 (a.u.). From Fig. 3(a) we can see that
when the molecular axis is parallel to the polarization axis,
the ionization of one of the two atoms is enhanced, and
the other is suppressed [20], whereas when the molecular
axis is perpendicular to the polarization axis, the two atoms
contribute equally. The interference term is always positive,
which reflects the bonding property of H2 and will enhance
the ionization. When increasing the internuclear distance, as
shown in Fig. 3(b), the interference term decreases over all
alignment angles, and one of the two atoms will dominate the
distribution of corresponding side lobes.

IV. OXYGEN

The HOMO of O2 is 1πg . In O2 πg2px and πg2py orbitals
are degenerate, and both orbitals have one electron with the
same energy [21,22]. For clarity, here we present the treatment
of the πg2py orbital. As shown in Fig. 4(a), the πg2py orbital is
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FIG. 3. (a) The total ionization rate (dashed black line) of H2,
and the contributions of atom 1 (dash-dotted blue line), atom 2
(dotted red line), and two-center interference (solid green line).
H2 is at equilibrium internuclear distance. The laser intensity is
1.2 × 1014 W/cm2. (b) Same as (a) except that the internuclear
distance is 4 a.u.
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FIG. 4. (a) The configuration of O2. The thick green line indicates
the molecular axis. The alignment angle is θM . The dashed black lines
indicate the orientation of the 2py orbital. The polar angle of the axis
of symmetry of the 2py orbital is θp . (b) The alignment-dependent
ionization rate of O2 at equilibrium internuclear distance (2.282
a.u.) when the laser intensity is 1.2 × 1014 W/cm2 (solid blue line),
1.0 × 1014 W/cm2 (dashed red line), and 0.8 × 1014 W/cm2 (dotted
green line). (c) The same ionization rate as shown in (b), but
normalized so that the maximum value for each intensity is unity.
(c) Normalized ionization rate when the internuclear distance is
2.282 a.u. (solid blue line), 4 a.u. (dashed red line), and 6 a.u. (dotted
green line).

the antibonding superposition of two 2py orbitals, one at each
atomic center. Different from the 1s orbital, the 2py orbital is
cylindrically symmetric, and we have to consider the orien-
tation of the 2py orbital. We represent this orientation by the
polar (θp) and azimuthal (ϕp) angles of the axis of symmetry
of the 2py orbital. Because of the cylindrical symmetry of the
2py orbital, we do not need to consider the rotation around
the axis of symmetry. Based on the description in Sec. II, an
arbitrarily oriented 2py orbital can be represented as follows:

�2py (arb.ori.)(r) = 1√
2

sin θpe−iϕp�211(r)

− 1√
2

sin θpeiϕp�21−1(r) − cos θp�210(r).

(19)

The corresponding expression in mixed representation at
tunnel exit is

�2py (arb.ori.)(px,py,ze) = 1√
2

sin θpe−iϕp�211(px,py,ze)

− 1√
2

sin θpeiϕp�21−1(px,py,ze)

− cos θp�210(px,py,ze). (20)

The expression of each atomic eigenstate can be given by
Eqs. (9) and (13). After inserting the corresponding results into
Eq. (20), we get the expression for an arbitrarily oriented 2py

orbital,

�2py (arb.ori.)(px,py,ze)

= Cκ0√
πpz(ze)

√
3

2

[
cos θp − i sin θp

p⊥ cos(ϕp − φ0)

κ

]

×
(

2κ3

F

)Q/κ

exp

(
− κ3

3F
− κp2

⊥
2F

)
. (21)

Here the part in square brackets represents the effect of
the structure and the orientation of the 2py orbital on the
momentum distribution at tunnel exit.

As the HOMO of O2 is the antibonding superposition
of two 2py orbitals, one can give the expression in mixed
representation straightforwardly, following the treatment of
H2. Note that the axis of symmetry of the 2py orbital is
perpendicular to the molecular axis of O2, thus only three
of the four angles θM , ϕM , θp, and ϕp are independent. We
make a further restriction that both the molecular axis and the
axis of symmetry of 2py orbitals lie in the y-z plane; then the
final expression is given by

�O2 (px,py,ze)

=
{[

exp(−ipyR sin θM/2) exp(κR cos θM/2)
− exp(ipyR sin θM/2) exp(−κR cos θM/2)

]

×
[
sin θM + i cos θM

py

κ

]}

× Cκ1√
πpz(ze)

√
3

2

(
2κ3

F

)
Q/κ

exp

(
− κ3

3F
− κp2

⊥
2F

)
(22)

From this expression, the structural factor is composed of two
parts. The part in the first pair of square brackets originates
from the displacement of corresponding atomic centers, and
the part in the second pair of square brackets is the structural
factor of the 2py orbital.

After inserting Eq. (22) into Eq. (16), we get the alignment-
dependent ionization rate, as shown in Fig. 4. We can see
that the overall ionization rate takes on a “flower” shape,
consisting of four lobes [23]. Similar to the case of H2, the laser
intensity will change the overall ionization rate dramatically
[see Fig. 4(b)], but has little effect on the alignment dependence
[see Fig. 4(c)]. As shown in Fig. 4(d), the internuclear distance
will change the alignment dependence significantly. The four
lobes will bend towards the horizontal axis when we increase
the internuclear distance.

Similar to the treatment of H2, we separate the total
ionization rate into three parts. In Fig. 5(a) we show the
total ionization rate (dashed black line), and the contributions
of atom 1 (dash-dotted blue line), atom 2 (dotted red line),
and two-center interference (solid green line). Interestingly,
the interference term is always negative, which reflects the
antibonding property of the HOMO of O2, and will decrease
the overall ionization rate [24]. In Fig. 5(b) we show the
sum of the contributions from two atoms without interference
(dashed red line), which is much larger than the one including
interference (solid blue line). The huge difference between the
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FIG. 5. (a) The total ionization rate (dashed black line) of O2,
and the contributions of atom 1 (dash-dotted blue line), atom 2
(dotted red line), and two-center interference (solid green line).
O2 is at equilibrium internuclear distance. The laser intensity is
0.8 × 1014 W/cm2. The interference term is always negative, so we
plot these curves in Cartesian coordinates. (b) The total ionization
rate (solid blue line) and the sum of the contributions of atom 1 and
atom 2 (dashed red line). The internuclear distance and laser intensity
are the same as (a).

two curves in Fig. 5(b) manifests the significance of two-center
interference in the ionization of O2.

V. POLYATOMIC MOLECULE

As shown in Sec. II, the wave function in mixed represen-
tation at tunnel exit for homonuclear diatomic molecules is
the coherent superposition of the contributions of two atomic
centers. Thus, we can extend this approach to polyatomic
molecules straightforwardly. The corresponding expression
for a polyatomic molecule is the coherent superposition of
the contributions of every atomic center. The coefficients of

FIG. 6. (a) The sketch of the HOMO of benzene. Six carbon
atoms constitute a hexagon lying in the x-y plane. The length of each
side of this hexagon is 2.6267 a.u. There is one 2p orbital at each
carbon atomic center, whose axis of symmetry is parallel to the z

axis. Three of these 2p orbitals possess the same sign, and the other
three possess an opposite sign. The ionization potential of benzene is
9.24 eV. The static electric field points towards minus z axis. (b) The
momentum distribution at tunnel exit of benzene. The strength of the
static electric field is 0.0228 a.u.

these contributions constitute the total structural factor, which
encodes the information of the structure and the orientation of
molecules.

Take benzene, for example. The HOMO of benzene is
doubly degenerate. We consider one of the degenerate orbitals,
which is the coherent superposition of six 2p orbitals, as shown
in Fig. 6(a). Three of these 2p orbitals possess the same sign,
and the other three possess an opposite sign. Following the
same method as in previous sections, we give the expression
of the wave function in mixed representation at tunnel exit of
benzene:

�C6H6 (px,py,ze) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎣

+ exp(−ipxx1 − ipyy1) exp(κz1)
+ exp(−ipxx2 − ipyy2) exp(κz2)
+ exp(−ipxx3 − ipyy3) exp(κz3)
− exp(−ipxx4 − ipyy4) exp(κz4)
− exp(−ipxx5 − ipyy5) exp(κz5)
− exp(−ipxx6 − ipyy6) exp(κz6)

⎤
⎥⎥⎥⎥⎥⎦

[
cos θp − i sin θp

p⊥ cos(ϕp − φ0)

κ

]
⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

× Cκ0√
πpz(ze)

√
3

2

(
2κ3

F

)Q/κ

exp

(
− κ3

3F
− κp2

⊥
2F

)
(23)

Here (xi,yi,zi), i = 1,2, . . . ,6 are the positions of six carbon
atomic centers, respectively. Note that the six carbon atomic
centers lie in the same plane, which is perpendicular to the
axis of symmetry of the 2p orbital. Similar to the result of O2,
the expression in the curly braces is the total structural factor.
It is composed of two parts. The part in the first pair of square
brackets is composed of six exponential terms, and each of
them corresponds to the contribution of one atomic center.
The positive or negative sign before each term represents the
sign of the corresponding 2p orbital. The part in the second
pair of square brackets represents the effect of the structure
and the orientation of the 2p orbital, as the expression in
Eq. (21). For the specific configuration in Fig. 6(a), we show
the result of Eq. (23) in Fig. 6(b), which also represents the

two-dimensional transverse momentum distribution at tunnel
exit. We can see that the distribution is composed of two parts,
and a clear nodal structure originates from the interference
between three positive 2p orbitals and three negative 2p

orbitals. The wave function changes its sign across the nodal
structure, which represents a phase jump of π at this specific
configuration. The position of the nodal structure depends
on the configuration of the molecule, and if we rotate the
molecule, the nodal structure will rotate accordingly.

VI. CONCLUSION

We present a straightforward method to calculate the
strong-field ionization of aligned molecules, based on the
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combination of the partial-Fourier-transform approach and
WKB approximation, which possesses the capacity to deal
with homonuclear diatomic molecules, as well as polyatomic
molecules. We calculate the alignment-dependent ionization
rate of homonuclear diatomic molecules, and show that the
internuclear distance has a significant effect on the alignment
dependence of ionization rate. Different from the MO-ADK
theory, with the present method we can separate the contribu-
tions of each atom and show the interference effect between
them. We obtain the analytical expression of the momentum
distribution at tunnel exit, which can be regarded as the initial
conditions of semiclassical simulations [25] to calculate the
photoelectron momentum distribution of aligned diatomic and

polyatomic molecules [18]. We point out that the method in
present form is applied to the stationary tunneling problem,
which necessitates the use of a length gauge. It is possible to
generalize this method to the study of nonstationary problems
if the classical action under the barrier in an alternating field
is considered [26].
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