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Lifetimes of metastable ion clouds in a Paul trap: Power-law scaling
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It is well known that ions stored in a Paul trap, one of the most versatile tools in atomic, molecular, and
optical (AMO) physics, may undergo a transition from a disordered cloud state to a geometrically well-ordered
crystalline state, the Wigner crystal. In this paper we predict that close to the transition, the average lifetime
τ̄m of the metastable cloud follows a power law, τ̄m ∼ (γ − γc)−β , where γc is the value of the damping
constant at which the transition occurs. The exponent β depends on the trap control parameter q, but is
independent of both the number of particles N stored in the trap and the trap control parameter a, which
determines the shape (oblate, prolate, or spherical) of the ion cloud. In addition, we find that for given a

and q, γc scales approximately like γc = C ln[ln(N )] + D as a function of N , where C and D are constants.
Our predictions may be tested experimentally with equipment already available at many AMO laboratories.
In addition to their importance in AMO trap physics, we also discuss possible applications of our results to
other periodically driven many-particle systems, such as, e.g., particle accelerator beams, and, based on our
trap results, conjecture that power laws characterize the phase transition to the Wigner crystal in all such
systems.

DOI: 10.1103/PhysRevA.93.043424

I. INTRODUCTION

The Paul trap [1,2] is an electrodynamic device for storing
charged particles free from contact with material walls for
very long periods of time. Trapping is achieved by applying
suitable dc and ac voltages to the hyperbolic electrodes of
the trap. The resulting electric potentials create an effective
potential minimum at the center of the trap, an immaterial
trough that confines charged particles, in principle, forever.
Storage times ranging from a few hours [3] to a few days [4]
have been reported.

One of the most interesting phenomena that has attracted
considerable interest in the atomic, molecular, and optical
(AMO) community for some time is the observation that
ions stored in a Paul trap can occur in two completely
different states, a well-ordered crystalline state [5–15], also
called the Wigner crystal [10,13,16], and a disordered cloud
state [17–20]. Experimentally observed transitions between
these two states [3,4,21–24], as well as their theoretical
interpretations [3,15,21,25], have also attracted attention in the
AMO community. Technological applications of ion crystals
are now emerging. For instance, linear and higher-dimensional
ion crystals have been proposed as quantum hardware compo-
nents for quantum computers [9,10].

Theoretically and experimentally, trapping of a single
charged particle in an ideal Paul trap is understood in
detail [1,2], and even its quantum regime has already been
explored [26,27]. However, if multiple particles are stored in
the trap simultaneously, the Coulomb interactions between
the particles cause their motions to be chaotic [2,3,28,29]. In
this case it is no longer possible to solve their equations of
motion analytically. The chaotic motion of the particles has
two consequences. (i) Due to the resulting high temperatures,
we do not have to worry about quantum effects; a classical
description of the trapped particles is sufficient. (ii) The chaotic
motion of the particles in the trap causes the phenomenon
of radio-frequency (rf) heating [3,19–21,30,31]. Damping

must be imparted to this system to counteract the heating,
whether through laser cooling [3], buffer gas cooling [4], or
some other method, for instance, cooling by the cold, neutral
particles of a magneto-optic trap [32]. With a relatively small
damping, the rf heating power of the ion cloud will come
into equilibrium with the cooling power, resulting from the
damping mechanism, and a stationary-state gas cloud will
result [3,19–21]. However, with stronger damping, the heating
of the cloud can be overcome, and the particles will transition
into the crystalline state [3,4,22–24].

In this paper we use large-scale molecular dynamics
simulations to predict that close to the cloud → crystal
transition the lifetimes of ion clouds stored in a Paul trap
follow a power law, which may be tested experimentally
with equipment available at many AMO laboratories. We also
obtain a scaling law for the critical amount of damping required
to collapse ion clouds into ion crystals.

Our paper is organized as follows. In Sec. II we present the
equations that govern the motion of ions in a Paul trap together
with our method of solving these equations and extracting life-
time information from our molecular-dynamics simulations.
In Sec. III we present the results of our molecular-dynamics
simulations that lead us directly to our two main predictions,
i.e., the power-law scaling of the lifetimes of metastable clouds
and the scaling of the critical damping required to force the
transition from the cloud state into the crystal state. In Sec. IV
we discuss our results and their potential applications in a
broad class of periodically driven multiparticle systems, such
as particle accelerator beams [33,34], dusty plasmas [35,36],
surface state electrons [37], and colloidal suspensions [38,39].
We summarize and conclude our paper in Sec. V.

II. THEORY AND METHODS

The coupled equations of motion governing the dynamics of
N particles stored in the Paul trap, in dimensionless units [19],
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where �ri = (xi,yi,zi) is the position vector of ion number
i, τ is the dimensionless time, γ is the damping constant,
N is the number of trapped particles, and a,q are the trap’s
dimensionless control parameters [19], proportional to the dc
and ac voltages applied to the trap’s electrodes, respectively.
The conversion between time τ and the number n of rf cycles
is accomplished via n = τ/π . For given values of N , a, q,
and γ , we solve (1) numerically with a standard fifth-order
Runge-Kutta integrator [40]. Each of our simulations starts
at τ = 0 with randomly chosen initial conditions drawn from
the phase-space box −10 < x,y,z < 10, −1 < vx,vy,vz < 1
with a uniform distribution. We checked that, because of
the chaotic nature of the particle dynamics in the trap,
all of our results are completely insensitive to both the
particular choice of random distribution and the size of the
box. To monitor the progress of our simulations, we plot
〈x2(τn = nπ )〉 = ∑N

i=1 x2
i (τn = nπ ), n integer.

III. RESULTS

The result of a typical simulation run is shown in Fig. 1.
Since they are chosen at random, all of our initial conditions
correspond to energetic particle clouds with large initial values
of 〈x2〉 (see data points for τ ≈ 0 in Fig. 1). However, because
of the chaotic nature of its dynamics, the particle cloud
very quickly loses the memory of its initial conditions and
thermalizes. This corresponds to the initial transient [see the
near-exponential decay over the first ∼1000 rf cycles (τ ≈ 0
to τ ≈ 3000) in Fig. 1], followed by the establishment of
a metastable stationary state (see the plateau in Fig. 1 of
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FIG. 1. Square displacement 〈x2(τ )〉 of a 100-particle cloud for
q = 0.2, a = 0.02, and γ = 8.81 × 10−4 > γc = 8.47 × 10−4. An
initial transient (thermalization stage) is followed by a plateau of
length τm (metastable state), which ultimately transitions into a state
of constant 〈x2(τ )〉 (flat line; crystalline state).

length τm ≈ 28 000), where the heating of the cloud comes into
equilibrium with the damping. Following this, if, as in Fig. 1,
a relatively large γ was chosen, the cloud eventually collapses
into the crystal state. In Fig. 1 this final collapse manifests
itself as the exponential decay phase immediately following
the metastable state (to the right of the second dashed line in
Fig. 1) and ending in the crystalline state, characterized by the
absence of fluctuations in 〈x2〉 for τ � 40 000. We checked
explicitly that during its plateau state the ion cloud is stable in
the sense that in addition to 〈x2〉 we checked the expectation
values of several other dynamical variables, but did not find
any that would decay during τm.

Confirming previous experimental [3,4] and numerical [3]
observations, we find that for given N,a,q the cloud → crystal
transition (the final collapse of the cloud in Fig. 1) occurs in
the vicinity of a critical value of γ , denoted by γc. In addition,
corroborating earlier qualitative experimental observations
(see, e.g., Fig. 3 in [3]), we find that, for finite N , and a
given finite simulation time τmax, γc is not sharply defined.
Therefore, to determine γc and its uncertainty, we proceed in
the following way. For given N,a,q, we scan γ from γmin =
10−5 to γmax = 2 × 10−2, a γ interval that we know from
experience contains γc with certainty for N ranging between
20 and 2000 trapped particles. We find that in the interval
γmin < γ < γ1(N,a,q), N -particle clouds are stable and never
transition into the crystal. Following this is the interval
γ1(N,a,q) < γ < γ2(N,a,q), an interval of uncertainty, in
which the clouds sometimes transition into the crystal and
sometimes not. Adjacent to this is the interval γ2(N,a,q) <

γ < γmax, in which all N -particle clouds, independently of
initial conditions, always transition into crystals. Defining
�γc = γ2 − γ1 as the width of the uncertainty interval, we
find that �γc shrinks, i.e., γ1 and γ2 both move toward each
other with increasing number N of stored particles according
to �γc ∼ 1/

√
N , and also with the maximal time τmax allowed

for our simulations. To be practical, however, we limited the
run time of our simulations to τmax = 5 × 105π , very much
larger than the typical decay time 1/γ of our system. We found
that this choice of τmax yielded consistent results, and we saw
no need to increase τmax. Having determined the uncertainty
interval [γ1,γ2], we define γc = (γ1 + γ2)/2.

As an example, for q = 0.2, a = q2/2, and N ranging from
25 to 1000 particles, we plot, in Fig. 2, the γc values (red, closed
circles) determined according to the numerical procedure
described above. The uncertainty �γc of γc is smaller than the
size of the plot symbols in Fig. 2. We found that neither a power
law (γc = ANB + C, where A,B,C are fit parameters; blue,
solid line in Fig. 2) nor a log law [γc = A ln(N ) + B, where
A,B are fit parameters; green, solid line in Fig. 2] fits the N

dependence of γc satisfactorily, but that the iterated log law,

γc(N,q = 0.2,a = 0.02) = C ln[ln(N )] + D (2)

(red, solid line in Fig. 2), provides an excellent fit, where
C = 7.49 × 10−4 and D = −2.97 × 10−4. For N = 100,
γc = 8.47 × 10−4. This is the reason for why the cloud
in Fig. 1, subjected to γ = 8.81 × 10−4 > γc, ultimately
collapses into the crystal state.

At present, we are not able to provide an analytical expla-
nation for the origin of the iterated-log scaling of γc. However,
the weak N dependence of γc, reflected in its ln[ln(N )]
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FIG. 2. Critical value γc(N,q = 0.2, a = 0.02) of the damping
constant γ [see (1)] as a function of N at which the cloud → crystal
transition occurs (red, closed circles). The best-fitting power law
(blue, solid line), log law (green, solid line), and the iterated log law
(red, solid line) are also shown. Only the iterated log law, according
to (2), provides a satisfactory fit.

scaling, may be understood qualitatively in the following way.
Since, in the large-N limit, and close to the cloud → crystal
transition, charged particles in the interior of the Paul trap
have a near-constant density (similar to a charged liquid in
a confining harmonic-oscillator potential), all particles deep
in the interior of the trap may be treated as equivalent, since
they are experiencing approximately the same homogeneous

surrounding charge density. Given that γ represents the energy
loss per particle [see (1)], γc(N ) is expected to be constant.
Thus, the small deviation of the γc(N ) scaling from constancy,
i.e., the presence of the ln[ln(N )] term, is a finite-size (surface)
effect that is hard to capture analytically.

We now turn to a more in-depth investigation of the cloud
→ crystal transition, i.e., we focus on the interval γ > γ2 > γc.
In particular, we are interested in the time it takes for a cloud
to crystallize, once it has achieved its metastable state (the
plateau in Fig. 1), i.e., we are interested in the length of time
τm the cloud spends in the metastable state before quickly
transitioning into the crystalline state (ultimate exponential
decay in Fig. 1). It is intuitively clear that the larger γ , the
shorter τm. Conversely, when approaching γ2 from above, and
taking into account that clouds are stable for γ < γ1 ≈ γc,
τm should increase as γ approaches γ2 ≈ γc. This suggests a
power law of the form,

τm(N,a,q; γ ) ∼ [γ − γc(N,a,q)]−β(N,a,q), (3)

for γ � γc, where β > 0. To find β we ran our simulations for
fixed N,a,q for γ values that approach γc(N,a,q) from above
and extracted τm via an automated, objective process [41].
Since the motion of the particles in the Paul trap is fully
chaotic, small changes in the initial conditions can produce
different values of τm. Therefore, we ran our simulations with
50 different initial conditions and defined τ̄m as the average
over the 50 resulting τm values. To characterize the statistical
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FIG. 3. Average time τ̄m spent in the metastable state versus the distance γ − γc from the critical point γc. (a) q = 0.15, (b) q = 0.20, and
(c) q = 0.25 for the spherical case a = q2/2. Shown are N = 100,200,500 (blue, red, green, respectively). (d) q = 0.20, where a = 0 (oblate,
red), a = q2/2 (spherical, blue), and a = 4q2/5 (prolate, green) for N = 100. The exponents β and the goodness of the fit, tested according to
χ 2 statistics, are available in Table I.
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TABLE I. Exponents β and the corresponding goodness-of-fit
parameters χ 2 obtained from fitting the power law (3) to the data in
Fig. 3. In the case of spherical clouds (a = q2/2), for a given q and
several different N , the exponents β lie within the margins of error,
with the exception of q = 0.15 and N = 100, which is an outlier. The
exponents β obtained from different shapes of clouds resulting from
several different choices of a lie within the margins of error as well.
Thus, β is approximately independent of a and N .

Simulation
parameters β χ 2

a = q2/2 (spherical) q = 0.15 N = 100 1.47 ± 0.13 0.95
N = 200 1.19 ± 0.10 1.00
N = 500 1.11 ± 0.09 0.69

q = 0.20 N = 100 1.63 ± 0.19 1.62
N = 200 1.82 ± 0.35 0.08
N = 500 1.55 ± 0.32 0.84

q = 0.25 N = 100 2.66 ± 0.69 0.22
N = 200 2.39 ± 0.41 0.34
N = 500 2.19 ± 0.34 1.98

N = 100, q = 0.2 a = 0 (oblate) 1.62 ± 0.23 0.83
a = q2/2 (spherical) 1.63 ± 0.19 1.62
a = 4q2/5 (prolate) 1.55 ± 0.24 0.39

spread of the τm values, we also computed the standard error
α = [(1/50)

∑50
j=1(τ (j )

m − τ̄m)2]1/2/
√

50. For q = 0.15, 0.20,
and 0.25 and a = q2/2 (spherical clouds), Figs. 3(a)–3(c) show
the resulting dependence of τ̄m on (γ − γc) (plot symbols). The
length of the horizontal error bars in Fig. 3 equals �γc. The
vertical error bars in Fig. 3, of length α, are smaller than
the plot symbols. If (3) holds, the data in Fig. 3 should fall on
straight lines. According to Fig. 3, this is indeed the case.

Following [40], we extracted the exponents β of the power
law (3) from the data presented in Fig. 3 according to the
following procedure. We define

χ2(d,β) =
ν∑

i=1

(ηi − d − βξi)2

σ 2
ηi + β2σ 2

ξi

, (4)

where, for given N,a,q, i counts the ν data points available
in each data set, ηi = ln(τ̄mi), ξi = ln(γi − γc), σηi = �ηi =
αi/τ̄mi , and σξi = �ξi = �γc/(γi − γc). The intercept d and
the exponent β are then obtained by minimizing (4) with
respect to d and β. We report the β values and associated
χ2 values obtained at the χ2 minima in Table I. The χ2

values are all of the order or smaller than 1, indicating that the
straight-line fits in Fig. 3 are meaningful. The uncertainties in
β were computed according to formula 15.3.5 of [40] as the
extrema of the error ellipse defined by the second derivatives
of χ2 with respect to d and β. The values of the uncertainties
in β, obtained this way, are also stated in Table I.

IV. DISCUSSION

Figure 3 and the results summarized in Table I, support
the validity of the power law (3) with an exponent β that
depends only on q, but not on a or N . According to the quoted
uncertainties in β (see Table I), we see that the individual
exponents are more accurately defined for smaller values of

q. The reason for this is straightforward. According to (1),
q determines the strength of the ac drive of the trap, which,
in turn, determines the degree of chaos in the trap. Therefore,
smaller q means less chaos, which implies smaller �γc, which,
in turn, results in a better defined β.

According to Fig. 3, for γ − γc � 3 × 10−4, the duration
τ̄m of the metastable state is smaller than 1000 (i.e., smaller
than ≈300 rf cycles), which, on the scale of Fig. 1, is a
very small time interval. In fact, as corroborated by Fig. 1,
it is no longer possible in this case to clearly separate the
metastable state from the initial thermalization stage. This
is expected since, for a relatively large γ > γc, the cloud is
cooled so fast that the metastability does not have enough
time to clearly manifest itself. This provides us with a natural
cutoff damping parameter, i.e., γcutoff(N,a,q) = γc(N,a,q) +
3 × 10−4, above which metastability can no longer be defined.
It also provides us with an estimate for the onset of the
power-law behavior, i.e., we expect the power law to hold
for γ − γc � 3 × 10−4. Although, according to (2), γcutoff

depends, via γc, on N and both trap control parameters, the
dependence on N is weak, especially for large N .

Our results are directly applicable to currently conducted
Paul-trap experiments. Our work may, for instance, be used
to determine the cooling power and its duration that need
to be applied to the charged particles stored in a Paul trap
in order to ensure crystallization. Using our results shown
in Fig. 3(b), for instance, one can predict that, for a typical
rf-frequency of f = 1 MHz, a damping constant 5% above
the critical damping γc results in a metastable-state lifetime of
τ̄m ∼ 104, or ≈3 ms.

In this paper we focused on the cloud → crystal transition.
But what about crystal → cloud transitions? Indeed, these
were reported in the experimental [4] as well as in the
theoretical [12,13,15] AMO literature. They are, however, of
a completely different nature than the phenomena studied in
this paper. Corroborating earlier results [3,21], we found that
in an ideal Paul trap described by (1), even in the absence
of damping (i.e., γ = 0), crystal → cloud transitions do not
occur. We checked this fact explicitly for many different a,q

combinations, and N ranging from 25 to 200. The explanation
is straightforward. There is no chaos in the crystal state.
Therefore, crystals do not heat, and are therefore stable even
in the absence of damping. In experiments that do observe
crystal → cloud transitions, the crystals are heated by an
outside source, for instance, by coupling to the hot, ambient
air in the experiments reported in [4]. Thus, while crystal →
cloud transitions certainly occur in experiments in which the
crystals are coupled to a heat bath, their underlying mechanism
is completely different from the self-contained, dynamical
transitions studied in this paper.

In addition to radio-frequency traps, widely used in AMO
physics, our results and methods are also applicable to a host
of many-particle systems in various other areas of physics,
which also show Wigner crystallization [33–39]. Of particular
importance in our context are crystalline beams [33,34]. This
is so, since in their rest frame the dynamics of the beam
particles are described by equations very similar to (1), and
a phase transition, very similar to the one described in this
paper, induced by laser or electron cooling, precedes the
transition into the Wigner crystal [42]. We mention that beam
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crystallization has already been observed in a mini-storage
ring [43], an excellent system for testing the universality of
our predictions.

V. SUMMARY AND CONCLUSIONS

Summarizing, we showed that for ions stored in a Paul trap,
a critical value, γc(N,a,q), of the damping constant γ exists

at which the cloud → crystal transition occurs. We showed
that γc scales approximately like ln[ln(N )] in the number N

of stored particles in the trap. In addition, we showed that
close to the cloud → crystal transition the mean lifetime τ̄m

of the metastable cloud follows a power law. Many AMO
laboratories, nationally and internationally, are equipped to
test our predictions. We are confident that our predictions will
hold up to experimental tests.
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[15] R. Blümel, Phys. Rev. A 51, 620 (1995).
[16] E. Wigner, Phys. Rev. 46, 1002 (1934).
[17] M. A. N. Razvi, X. Z. Chu, R. Alheit, G. Werth, and R. Blümel,
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A. Narducci, and W. W. Smith, Phys. Rev. A 91, 012709
(2015).

[33] J. P. Schiffer and P. Kienle, Z. Phys. A 321, 181 (1985).
[34] Y. Yuri and H. Okamoto, Phys. Rev. ST Accel. Beams 8, 114201

(2005).
[35] H. Thomas, G. E. Morfill, V. Demmel, J. Goree, B. Feuerbacher,
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