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Higher-order effects on the precision of clocks of neutral atoms in optical lattices
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The recent progress in designing optical lattice clocks with fractional uncertainties below 10−17 requires
unprecedented precision in estimating the role of higher-order effects of atom-lattice interactions. In this paper,
we present results of systematic theoretical evaluations of the multipole, nonlinear, and anharmonic effects on
the optical-lattice-based clocks of alkaline-earth-like atoms. Modifications of the model-potential approach are
introduced to minimize discrepancies of theoretical evaluations from the most reliable experimental data. Dipole
polarizabilities, hyperpolarizabilities, and multipolar polarizabilities for neutral Ca, Sr, Yb, Zn, Cd, and Hg atoms
are calculated in the modified approach.
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I. INTRODUCTION

The magic frequency ωm of the optical lattice, capable of
trapping deeply cooled alkaline-earth-like atoms to a Lamb-
Dicke regime, enables observation of Doppler-free and Stark-
free clock transitions between the ground (g) state ns2(1S0)
and excited (e) metastable state nsnp(3

P0). Recent experiments
have revealed magic wavelengths (MWLs) λm = 2πc/ωm for
neutral atoms of Sr (λm ≈ 813.43 nm), Yb (λm = 759.36 nm),
and Hg (λm = 362.57 nm) [1–4]. At these wavelengths the ac
Stark shifts of the clock states coincide with each other and
cancel out in the differences of the ground-state and excited-
state energies determining the frequencies of the clock tran-
sitions projected for the next-generation frequency standards.
However, equalization of the lowest-order in the lattice-laser
intensity I Stark shifts does not guarantee equalization of
higher-order shifts; first of all those quadratic in I , determined
by hyperpolarizabilities βe(ωm) and βg(ωm). In addition,
together with the electric-dipole polarizabilities αE1

e(g)(ωm), the
higher-order multipolar polarizabilities, the magnetic-dipole
αM1

e(g)(ωm) and electric-quadrupole αE2
e(g)(ωm) polarizabilities,

provide their contributions to the linear in I dynamic Stark
shift. The contribution of the multipolar interactions, although
six to seven orders smaller in magnitude, in the field of
the lattice wave has its specific spatial distribution, quite
different from that of the E1-contribution [5], and therefore
should be thoroughly measured and taken accurately into
account. In particular, the E2-M1 contribution may influence
the determination of the magic frequency, depending on the
definition [6]. In a traveling wave the spatial distribution of
all interactions along the laser beam is uniform, and the
linear-in-I shift is determined by the sum of electric-dipole
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and multipole polarizabilities α�
e(g)(ω) = αE1

e(g)(ω) + α
qm
e(g)(ω),

where the notation α
qm
e(g)(ω) = αE2

e(g)(ω) + αM1
e(g)(ω) is used for

the sum of the E2 and M1 polarizabilities. Meanwhile, in the
standing wave of the optical lattice the E2-M1 interactions are
a quarter-wavelength off phase relative to the E1 interaction;
therefore the multipolar polarizabilities are subtracted from
the electric-dipole one, α

dqm
e(g) (ω) = αE1

e(g)(ω) − α
qm
e(g)(ω). So the

natural choices for the magic frequencies are those measured
for the traveling and standing waves, which may differ from
one another as being determined from two different conditions:

α�
e

(
ωt

m

) = α�
g

(
ωt

m

)
(1)

for the traveling wave and

αdqm
e

(
ωs

m

) = αdqm
g

(
ωs

m

)
(2)

for the standing wave [5,7]. The difference between two
magic frequencies ωt

m [8] and ωs
m appears at the border of

currently achievable precision of the lattice-laser frequency.
Nevertheless, as is demonstrated below, this minimal retuning
may result in considerable advantages for highly accurate
control of the higher-order and multipolar lattice-induced
shifts, not yet taken into account in practice.

There exist two types of optical lattice, capable of trapping
deeply cooled atoms: (i) the attractive red-detuned lattice,
where the potential-energy minima, corresponding to the
maximal energy of the electric-dipole interaction, trap atoms
near the antinodes of the standing-wave electric field and
(ii) the repulsive blue-detuned lattice, where the potential-
energy minima correspond to the minimal energy of the E1
interaction, trapping atoms in the vicinity of nodes of the
standing-wave electric field [5,8]. Evidently, the higher-order
E1 effects in the repulsive lattice are suppressed essentially
in comparison with those of the attractive lattice. The blue-
detuned lattices require three-dimensional (3D) modifications,
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as the 1D lattice with a Gaussian beam does not provide
radial confinement for atoms, and may not be used in a 1D
mode due to the side repulsion of atoms from the lattice.
Nevertheless, both types (i) and (ii) of the 1D optical lattices
are considered below in order to elucidate the role and the
magnitude of the “nonmagic” effects indicated above and to
determine possible strategies for minimizing and/or taking into
account corresponding uncertainties.

The most studied example of Sr clocks was already
considered in [5] on the basis of the Fues’ model potential
(FMP) approach to calculating atomic polarizabilities and
hyperpolarizabilities [8]. Similar calculations were performed
also for Yb and Hg atoms and corresponding numerical data
were presented in [6]. In this paper, we reconsider earlier
calculated data with account of the current experimental
results and give also our preliminary theoretical evaluations of
relevant susceptibilities of Ca, Zn, and Cd atoms, as possible
prospective objects for metrology of neutral atoms in optical
lattices.

Three different strategies for defining the magic frequencies
are discussed for each atom: In addition to (1) and (2),
the intermediate case of equalization of only electric-dipole
polarizabilities

αE1
e

(
ωE1

m

) = αE1
g

(
ωE1

m

)
(3)

is also considered. The definition (3) is usually assumed in the
literature. The influence of multipolar and hyperpolarizability
effects was taken into account as an origin of possible
uncertainties, without accounting for differences between
the spatial distributions of electric-dipole and multipolar
interactions of an atom with a lattice field and, consequently,
between corresponding distributions of the Stark shifts [5–7].

The paper structure is as follows: In Sec. II, the difference
between spatial distributions of electric-dipole (E1) and
multipolar (M1 and E2) atom-lattice interactions is presented
explicitly, recapitulating the basic results of the papers [5]
and [6] for an attractive red-detuned lattice. Numerical data
of dipole polarizabilities, hyperpolarizabilities, and multipolar
polarizabilities for atoms of the group-II elements calculated

in the model-potential approach are presented in Table I.
In Sec. III, the numerical data are used for determining
strategies to minimize lattice-induced uncertainties in the clock
frequency. The case of a repulsive blue-detuned lattice for Sr
atoms is considered in Sec. IV. Details of the modified model-
potential calculations of dipole and multipole polarizabilities
and hyperpolarizabilities are discussed in Sec. V.

Atomic units e = m = � = 1 are used throughout the paper,
unless otherwise stated explicitly. The speed of light in these
units, c = 137.036 a.u., coincides numerically with the inverse
fine-structure constant α = 1/137.036.

II. AN ATTRACTIVE MAGIC LATTICE

A. Shifts of clock levels in the field of a lattice wave

The Stark effect on atomic energy levels enables trapping
of neutral atoms in the minima of potential-energy wells thus
created in a lattice standing wave. But the Stark energies of
the ground and excited clock states cause a clock-frequency
shift which should be taken into account in evaluating the
clock-frequency uncertainties.

The Stark energies are determined by the interaction
between a trapped atom and a lattice wave of an electric-field
vector

E(X,t) = 2E0 cos(kX) cos(ωt) (4)

and a magnetic field (a quarter-period off phase, in in space
and time)

B(X,t) = 2[eX × E0] sin(kX) sin(ωt), (5)

oscillating in time with frequency ω and in space with the
period λ = 2πc/ω along the incident laser beam of intensity
I = cE2

0/8π and wave vector k = kex, k = ω/c; X is the
displacement of an atom from the lattice standing-wave
antinode in the lattice-laser-beam direction determined by the
unit vector ex . The operator of the atom-lattice interaction
may be presented as V̂ (X,t) = Re{V̂ (X) exp(−iωt)}, where

TABLE I. Characteristics of atoms in optical lattices of magic frequencies. Bold-faced entries are experimentally determined data on
MWLs for Sr, Yb and Hg [1–4] and on the BBR-induced shift in Sr [9] and Yb [10] atoms. The numbers for multipole polarizabilities and
hyperpolarizabilities of Sr, Yb, and Hg, are updated in the modified model-potential approach in comparison with the numbers in preceding
papers [5,6]. The MWLs for Ca, Zn, and Cd are theoretical estimates in the model-potential approach (see Sec. V).

Atom Sr Yb Ca Zn Cd Hg

λm (nm) 813.43 389.89 759.36 747 406.5 414.4 362.57
νclock(THz) 429 518 455 969 903 1129

αE1
m ( kHz

kW/cm2 ) 45.2 −92.7 40.5 48.0 8.11 9.76 5.70

	αqm
m ( mHz

kW/cm2 ) −6.20 −15.1 −8.06 −2.0 15.3 5.86 8.25

	βl
m ( μHz

(kW/cm2)2 ) −200.0 1150+1.24 i −312 497 −4.3+1.64 i −5.47+2.02 i −2.67+0.82 i

	βc
m ( μHz

(kW/cm2)2 ) −311.0 1550+1.19 i 238 1024 42.6+2.45 i 19.5+3.01 i 0.94+1.21 i


m√
I

( kHz√
kW/cm2

) 25.05 74.8 18.0 41.4 24.1 19.9 13.1

∂(	αE1
m )

∂ω
( 10− 9

kW/cm2 ) 0.254 10.3 0.720 0.273 0.187 0.200 0.134

E rec (kHz) 3.47 15.1 2.00 8.94 17.9 10.14 7.57

νBBR
0 (Hz) −2.13 −1.25 −0.64 −0.23 −0.22 −0.188
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the spatial factor is

V̂ (X) = V̂E1 cos(kX) + (V̂E2 + V̂M1) sin(kX), (6)

and the operators of E1, E2, and M1 interactions are

V̂E1 = (r · E0); V̂E2 = αω√
6
r2[{E0 ⊗ n}2 · C2(θ,ϕ)];

V̂M1 = α

2
([n × E0] · (Ĵ + Ŝ)). (7)

Here r = rn is the valence-electron position vector relative to
the atomic nucleus, C2(θ,ϕ) is the modified spherical function
of the unit-vector n angular variables, and Ĵ and Ŝ are the total
and spin angular momenta of the atom. With account of the
second- and fourth-order terms in V̂ (X), linear and quadratic
in the lattice-laser intensity I , respectively (see Sec. V), the
interactions (7) produce lattice potential wells for an atom in
its ground or excited state,

Ulatt
g(e)(X,I ) = −I

[
αE1

g(e)(ω)cos2kX + α
qm
g(e)(ω)sin2kX

]
− I 2βg(e)(ω)cos4kX

≈ −Dg(e)(I ) + U harm
g(e) (I )X2 − U anh

g(e)(I )X4 + · · · ;

(8)

here the second line is the Taylor expansion approximating the
lattice potential in the region

|X| � λ/4, (9)

where a trapped atom locates, with λ = 2π/k the lattice-laser
wavelength. λ/4 is the separation between the top and bottom
of a lattice well, half the separation λ/2 between lattice sites.
X determines the displacement of an atom from its equilibrium
position in the lattice-wave (4) antinode X = 0, where the po-
tential energy (8) equals its lowest value U latt

g(e)(0,I ) = −D(I ).
Here and in what follows, we use common notations for
the lattice-frequency-dependent electric-dipole polarizability
αE1

g(e)(ω) and hyperpolarizability βg(e)(ω), assuming inclusion
of the factors E2

0/I = 8π/c and E4
0/I

2 = (8π/c)2 into the
susceptibilities so defined, which determine the depth of the
potential well (8)

Dg(e)(I ) = αE1
g(e)(ω)I + βg(e)(ω)I 2 (10)

(taken to be a positive value). At an operational intensity the
second term in the right-hand side of Eq. (10) is more than
seven orders of magnitude smaller than the first term.

The coefficient for the quadratic-in-X term of the second
line of Eq. (8),

U harm
g(e) (I ) = [

α
dqm
g(e) (ω)I + 2βg(e)(ω)I 2

]
k2 = M
2

g(e)(I )

2
,

(11)

determines the lattice-laser intensity-dependent eigenfre-
quency 
g(e)(I ) of oscillations of the ground-state (excited)
atom in the potential well (M is the mass of the atom). The
term of the fourth order in X determines the lowest-order
anharmonic correction to the Stark potential of the lattice
standing wave; its coefficient also depends on the combined
E1-E2-M1 polarizability (2) and on the hyperpolarizability,

as follows:

U anh
g(e)(I ) = [

α
dqm
g(e) (ω)I + 5βg(e)(ω)I 2

]k4

3

= k2M
2
g(e)(I )

6
+ k4βg(e)(ω)I 2. (12)

The energy of an atom in a stationary state of the oscillator
potential (8) is

Evib
g(e)(I,n) = −Dg(e)(I ) + 
g(e)(I )

(
n + 1

2

)
−Eanh

g(e)(I )
(
n2 + n + 1

2

)
, (13)

where the second term is the usual harmonic-oscillator energy
of a state with the vibrational quantum number n. Equation (13)
holds when D(I ) � 
(I ) � E rec. The second inequality here
follows from the first one and from the approximate relation
[see Eqs. (10) and (11)] 
(I ) ≈ 2

√
E recD(I ), where E rec =

k2/(2M) is the lattice-photon recoil energy. An estimate
|X| ≈ X0 for the displacement of the atom from equilibrium,
where X0 = 1/

√
M
(I ) is the linear scale (the spatial extent)

of the harmonic oscillator, and the inequality 
(I ) � E rec

ensure (9). The last term in (13) accounts for anharmonic
corrections, arising from the last term of the potential energy
(8) [the factor Eanh

g(e)(I ) is nearly half the recoil energy and
smoothly depends on the intensity I , as determined below
in Eq. (17)]. Evidently, with account of the above-mentioned
minuteness of the hyperpolarizability term of Eq. (10), the
relation 
(I ) ∝ I 1/2 holds, so the second term in (13) is also
proportional to I 1/2 [11].

B. Lattice-induced clock-frequency shift

The lattice-induced clock-frequency shift appears as the
difference between the oscillator energies (13) of the atom
in its ground and excited states. Assuming that the oscillator
quantum number n is unchanged during transitions between
clock states (the Lamb-Dicke regime), the clock shift is

	νlatt
cl (I,n) = Evib

e (I,n) − Evib
g (I,n) = −	D(I )

+	
(I )
(
n + 1

2

) − 	Eanh(I )
(
n2 + n + 1

2

)
,

(14)

where

	D(I ) = De(I ) − Dg(I ); 	
(I ) = 
e(I ) − 
g(I );

	Eanh(I ) = Eanh
e (I ) − Eanh

g (I ) (15)

are the differences between
(1) the lattice-potential depths (10);
(2) the frequencies of harmonic oscillations of the atom in

the potential well (8),


g(e)(I ) = 2
√
E rec

[
α

dqm
g(e) (ω)I + 2βg(e)(ω)I 2

]
, (16)

related to the photon recoil energy E rec = k2/(2M) and
determining the coefficient (11) of the harmonic part of the
potential energy (8);

(3) the anharmonic contributions to the energy of vibra-
tions (13),

Eanh
g(e)(I ) = E rec

2

[
1 + 3βg(e)(ω)I

α
dqm
g(e) (ω)

]
, (17)
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caused by the last term taken into account in the right-hand
side of (8).

As follows from Eqs. (10)–(17), the intensity-dependent
differences determining the clock shift (14) may be presented
as [5]

	D(I ) = [
αE1

e (ω) − αE1
g (ω)

]
I + [βe(ω) − βg(ω)]I 2;

(18a)

	
(I ) = 
e(I ) − 
g(I ) = 2
[√

α
dqm
e (ω) + 2βe(ω)I

−
√

α
dqm
g (ω) + 2βg(ω)I

]√
E recI ; (18b)

	Eanh(I ) = 3

2
E rec

[
βe(ω)

α
dqm
e (ω)

− βg(ω)

α
dqm
g (ω)

]
I. (18c)

The lattice-induced clock shift of the clock frequency (14)
depends on the lattice-laser intensity, up to quadratic-in-I
terms, as

	ν latt
cl (n,I ) = c1/2(n)I 1/2 + c1(n)I + c3/2(n)I 3/2 + c2I

2.

(19)

The half-integer powers of intensity in this equation arise
from the difference of the frequencies of oscillatory motion
(18b) of excited- and ground-state atom in a lattice trap: the
square-root-in-I term is determined by the difference of the
square roots of the combined E1-E2-M1 polarizabilities (2),

c1/2(n) =
√
E rec

(√
α

dqm
e (ω) −

√
α

dqm
g (ω)

)
(2n + 1),

while the term with the power 3/2 appears from the expansion
of the root expressions in (18b) in powers of small param-
eters |βg(e)(ω)I/αg(e)(ω)| < 10−6. Thus the coefficient c3/2

is determined by the difference of the hyperpolarizability to
square-root polarizability ratios, as follows:

c3/2(n) =
√
E rec

(
βe(ω)√
α

dqm
e (ω)

− βg(ω)√
α

dqm
g (ω)

)
(2n + 1).

The linear-in-I term of Eq. (19) is determined by the
difference of the dipole polarizabilities describing the depths
of the potential wells (18a) and by the difference of the anhar-
monic contributions to the oscillator energies determined by
the fractions of hyperpolarizability over polarizability (18c):

c1(n) = −[
αE1

e (ω) − αE1
g (ω)

] − 3E rec

4

(
βe(ω)

α
dqm
e (ω)

− βg(ω)

α
dqm
g (ω)

)

× (2n2 + 2n + 1).

The quadratic-in-I term is determined by the difference of
the hyperpolarizabilities of the clock states [the second term
of the difference (18a)],

c2 = −[βe(ω) − βg(ω)].

Tuning of the lattice laser to the magic frequency aims at
reducing the intensity-independent coefficients cj and finally
at the shift (19) to their minimal values. Evidently, the principal
contributions to the clock-state shifts come from the linear
Stark effect. Therefore, the magic frequency should equalize
the dipole polarizabilities, the difference of which appears in

coefficients c1/2 and c1. The contribution of polarizabilities to
c1 can be eliminated in the case of the E1 magic frequency (3)
which may be determined by averaging the magic frequencies
for a traveling and a standing wave with their in-phase and
off-phase distributions of electric and magnetic fields (see
Sec. III). Similarly to multipolar effects, the contribution of
hyperpolarizabilities may be eliminated by tuning to the “op-
erational magic frequency” [6]. The coefficients c3/2 and c2 are
both proportional to 	β(ξ,ω). In addition to the dependence
on the lattice-laser frequency, the hyperpolarizabilities depend
on the lattice-wave polarization [11], which may be used to
eliminate or to reduce the contribution of the I 3/2 and I 2 terms
to the shift (19). This dependence may be presented in terms
of the hyperpolarizability tensor components, as follows:

	β(ξ,ω) = 	βl(ω) + ξ 2[	βc(ω) − 	βl(ω)], (20)

where ξ is the degree of circular polarization (−1 � ξ � 1),
and 	βl(c)(ω) is the frequency-dependent difference of the
clock-state hyperpolarizabilities for linear (circular) polariza-
tion of the lattice laser.

C. Numerical data for polarizabilities and hyperpolarizabilities
of divalent atoms

For opposite signs of the hyperpolarizability components
	βl and 	βc the “magic ellipticity” exists [11], which
may be quantitatively determined by the “magic degree of
circular polarization,” ξm = ±1/

√
1 − 	βc/	βl , for which

the difference between clock-state hyperpolarizabilities (20)
may vanish. This effect may be observed in the magic-
frequency lattices of Yb, Zn, Cd, and Hg atoms at ξm = 0.75,
0.3, 0.46, and 0.86, respectively, as follows from the data of
Table I, where the susceptibilities are presented for Sr, Yb, Ca,
Zn, Cd, and Hg atoms. The data in the table are calculated in the
model-potential approximation [12], modified by taking into
account the individual structures of the energy-level spectra
for divalent atoms of the group- IIa and group-IIb elements
(see details of the calculations in Sec. V of this paper). In
particular, the results of the calculations indicate the possibility
of observing the magic ellipticity in Yb atoms, which appears
for lattice wavelengths in the region 758.7 < λlat < 759.7 nm
[11], close to the two-photon resonance on the 6s8p(3

P0)
state for linearly polarized lattice waves; this region hosts
the magic frequency, corresponding to λm = 759.36 nm [2,4],
where 	βl and 	βc have opposite signs (see Table I).

There is no such situation in the vicinity of the magic
frequency in Sr atoms, although a similar region of opposite
signs exists between the nodes of 	βc and 	βl at λ = 800
and λ = 803 nm, respectively, rather far away from λm =
813.43 nm, as is seen in Fig. 1. The two-photon resonances
on the 5s7p(3P 2) and 5s7p(3

P0) states are too close to each
other, so the region of opposite signs of the clock-transition
hyperpolarizabilities 	βc and 	βl between 796.2 and 797 nm
is also far away from λm and too narrow for observations.
For the magic frequency of the Sr red-detuned lattice, both
	βl

m and 	βc
m are negative. In the Ca magic lattice with

λm = 747 nm 	βl
m and 	βc

m are positive, similarly to those
of the Sr blue-detuned (repulsive) magic lattice with λm =
389.89 nm [8]. So for these cases the minimal magnitude
of hyperpolarizability corresponds to the linear polarization
ξ = 0, as follows from (20) and Table I.
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FIG. 1. The wavelength dependence of the hyperpolarizability of
the clock transition in Sr atoms for linear (solid curves) and circular
(dashed curves) polarization of the lattice-laser wave. The vertical
dash-dotted lines indicate positions of two-photon resonances on the
5s7p(3P 2) state at λ1 = 795.5 nm, on the 5s7p(3

P0) state at λ2 =
797 nm (this resonance does not appear for circular polarization),
and on the 5s4f (3F 2) state at λ3 = 818.6 nm. The solid vertical line
indicates the MWL at 813.43 nm, where the corresponding hyperpo-
larizabilities are 	βl = −200 and 	βc = −311 μHz/(kW/cm2)2.

In the group-IIb elements (Zn, Cd, and Hg) the magic
frequencies are located in the violet and ultraviolet regions
(see Table I). Therefore the frequencies of magic lattices for
these atoms are sufficiently high to enable the two-photon
ionization of excited clock levels. So the hyperpolarizabilities
β

l(c)
3
P0

(ωm) and the differences 	βl(c)(ωm) are complex values
with imaginary parts determining the rates of the two-photon
ionization, which results in broadening of the clock-transition
line by the lattice laser. In Figs. 2 and 3, the wavelength
dependence of the real and imaginary parts of the hyperpo-

FIG. 2. Real (thick curves) and imaginary (thin, almost horizontal
lines) parts of hyperpolarizabilities 	β in Cd atoms, as functions of
the wavelength λ of the circularly (dashed) and linearly (solid curves)
polarized lattice laser, in the region between two-photon resonances
on the 5s6s(1S0) single-electron excited state at 375.163 nm for the
ground-state hyperpolarizability and single-photon resonance on the
5s6s(3S1) state at 467.95 nm for the hyperpolarizability of the excited
clock state 5s5p(3

P0). Corresponding values at the magic wavelength
of λm = 414.4 nm (the dash-dotted vertical line) are 	βl = −5.47 +
2.02i and 	βc = 19.5 + 3.01iμHz/(kW/cm2)2. The imaginary parts
of the hyperpolarizabilities determine the rate of the two-photon
ionization of the upper clock state.

FIG. 3. Real (thick) and imaginary (thin, almost horizontal
lines) parts of differences of the clock-state hyperpolarizabilities
in Hg atoms, as functions of the wavelength of the lattice-laser
circularly (dashed) and linearly (solid lines) polarized radiation,
in the region between two-photon resonance on the singlet single-
electron excited state 6s7s(1S0) at 312.851 nm for the ground-state
hyperpolarizability and single-photon resonance on the triplet state
6s7s(3S1) at 404.770 nm for the hyperpolarizability of the excited
clock state 6s6p(3

P0). Corresponding values at the magic wavelength
of λm = 362.57 nm (marked by the dashed vertical line) are 	βl =
−2.67 + 0.82i and 	βc = 0.94 + 1.21i μHz/(kW/cm2)2.

larizabilities in Cd and Hg atoms is presented in the vicinity
of the MWLs λm = 414.4 nm (determined theoretically) and
λm = 362.57 nm (measured experimentally up to the ninth
decimal place in [3]), respectively. In Cd atoms. Re{	βc} is
positive for λ > 375 nm, whereas Re{	βl} remains negative
in the region between 375 and 430 nm, where the MWL is
located. A quite similar situation appears for Zn atoms in the
vicinity of their MWL, where Re{	βc} > 0 and Re{	βl} < 0.
In all cases, the imaginary parts of the hyperpolarizabilities
are small positive values, almost independent of the lattice
wavelength in the regions presented in Figs. 2 and 3.

It is interesting to note that the wavelength dependences
of the hyperpolarizabilities are nearly identical for all atoms
of the group-IIb elements. Zn atoms show similar trends to
Cd and Hg presented in Figs. 2 and 3. The estimated magic
frequency of the Zn lattice corresponds to λm = 406.5 nm,
which is located inside the region between 370 and 415 nm,
where the real parts of the hyperpolarizabilities for linear and
circular polarization have opposite signs, negative and positive,
respectively, as in Cd and Hg (see Table I).

Together with the hyperpolarizability-related shift, deter-
mined by the real part of 	βl(c), the excited clock states of Zn,
Cd, and Hg atoms in their attractive magic lattices experience a
two-photon-ionization broadening, described by the imaginary
part of the hyperpolarizability Im[	βl(c)], which is positive
for any lattice-wave polarization. This complexity transfers
to the coefficients cj (except for c1/2, which does not involve
the hyperpolarizability-dependent terms), imparting a negative
imaginary part Im[	ν latt

cl (n,ξ,I )] to the shift (19). Thus, the
lattice-wave-induced two-photon ionization of atoms from
excited clock levels contributes to I -, I 3/2-, and I 2-dependent
uncertainties of the clock-transition frequency.

The calculated coefficients νBBR
0 determining the

blackbody-radiation-induced shifts of the clock frequency,
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TABLE II. Coefficients for lattice-induced shifts (19) in n = 0 vibrational states.

Atom Sr Yb Ca Zn Cd Hg

ct
1/2 = 2cE1

1/2 [mHz/(kW/cm2)1/2] −0.382 0.38 0.863 −22.7 −5.97 −9.51
cs

1/2 = 0
(ct

1)∗ = −cs
1,(ξ = 0) [mHz/(kW/cm2)] 1.39 −1.70 −2.07 15.3 + 0.0027i 5.86 + 0.00157i 8.25 + 0.00082i

(ct
1)∗ = −cs

1, (ξ = ±1) [mHz/(kW/cm2)] 1.40 −1.72 −2.14 15.2 − 0.0041i 5.85 + 0.00235i 8.25 + 0.00121i

cE1
1 (ξ = 0) [μHz/(kW/cm2)] 11.5 11.4 −69.4 7.1 − 2.7i 4.26 − 1.57i 2.66 − 0.82i

cE1
1 (ξ = ±1) [μHz/(kW/cm2)] 17.9 −8.8 −143 −70.5 − 4.1i −15.2 − 2.35i −0.936 − 1.21i

c
t(s,E1)
3/2 (ξ = 0) [μHz/(kW/cm2)3/2] −55.4 −68.6 214 −6.4 + 2.4i −5.58 + 2.06i −3.08 + 0.95i

c
t(s,E1)
3/2 (ξ = ±1) [μHz/(kW/cm2)3/2] −86.2 52.9 442 63.3 + 3.6i 19.9 + 3.07i 1.08 + 1.39i

c
t(s,E1)
2 (ξ = 0) [μHz/(kW/cm2)2] 200 309 −497 4.3 − 1.6i 5.47 − 2.02i 2.67 − 0.82i

c
t(s,E1)
2 (ξ = ±1) [μHz/(kW/cm2)2] 311 −238 −1024 −42.6 − 2.45i −19.5 − 3.01i −0.94 − 1.21i

νBBR(T ) = νBBR
0 (T/300 K)4, where T is the absolute tem-

perature of the environment, together with those measured
precisely for Sr [9] and Yb [10], are presented in the last line
of Table I. All the data in the table are determined in the model-
potential approach to the single-electron approximation for the
interaction of atoms with the fields of the lattice standing wave
and the blackbody radiation. Relevant equations used in calcu-
lations and corresponding discussions are presented in Sec. V.

III. STRATEGIES FOR REDUCING THE
LATTICE-INDUCED UNCERTAINTIES

Evidently, the principal contribution to the Stark energy
(13) of an atom trapped in a MWL lattice is determined by the
E1 polarizability, which exceeds the E2-M1 polarizabilities
by more than six orders of magnitude. Therefore the difference
between the magic frequencies determined from Eqs. (1)–(3)
may appear only in the sixth decimal place. Nevertheless,
this difference may influence the coefficients cj of the laser-
intensity dependence and finally the clock-frequency shift (19)
at 10−17 uncertainty. Below, the three different conditions
for determining the MWLs (1)–(3) are considered and cor-
responding numerical values of coefficients are presented in
Table II. As an example, numerical data for Cd atoms are
presented in Figs. 4–6. The numerical data for Sr, Yb, and Hg
atoms from [5,6] were updated with the use of the modified
model-potential approach, as presented in Table I.

A. Traveling-wave magic frequency

The electric-dipole E1 and multipolar E2-M1 interactions
of atom with a traveling wave are synchronous. So the shift of
the ground (excited) clock energy level in the first order of the
laser intensity I is determined by the sum of polarizabilities
α�

g(e)(ω). Elimination of the first-order shift means tuning to a
magic frequency ω = ωt

m, for which equality (1) holds. At this
frequency the differences of depths, oscillation frequencies,
anharmonic shifts (15), and all coefficients in the right-hand
side of Eq. (19) are nonzero values:

ct
1/2(n) = −	α

qm
t

√
E rec

t

α�
t

(2n + 1);

ct
1(n,ξ ) = 	α

qm
t − 3E rec

t

4α�
t

	βt (ξ )(2n2 + 2n + 1);

ct
3/2(n,ξ ) = 	βt (ξ )

√
E rec

t

α�
t

(2n + 1);

ct
2(ξ ) = −	βt (ξ ), (21)

where the relations α
dqm
t = α�

t − 2α
qm
t and α�

t � α
qm
t were

used (the index “t” means the respective values at the magic
frequency ω t

m). The contribution of the hyperpolarizability-
dependent term to ct

1(n,ξ ) for the lowest oscillator states
(n = 0,1,2) is negligibly small in comparison with 	α

qm
t . The

contributions of the I 3/2 and I 2 terms to the lattice-induced
shift (19) may be neglected at intensities quite sufficient to trap
atoms. For example, with the data from Table I for Cd atoms,
the shift (19) may be presented (in mHz), as follows:

	νt
cl(n,ξ,I ) = −5.973(2n + 1)I 1/2 + {5.86 + 4.262

× 10−3[1 − 0.3693i − (4.565 + 0.181i)ξ 2)]

× (2n2 + 2n + 1)}I
− 5.575 × 10−3[(2n + 1)I 3/2 − 0.981I 2]

× [1 − 0.3693i − (4.565 + 0.181i)ξ 2)], (22)

where the laser intensity I is measured in kW/cm2. For
an atom confined to its vibrational ground state n = 0 in a
lattice wave of intensity I > 1.1 kW/cm2 the positive value
of the linear-in-I term completely compensates the negative
square-root term and provides the principal contribution to the
shift (22). With a three-digit precision, the ξ dependence of the
linear term may be neglected. The contribution to the shift from
the I 3/2 and I 2 terms completely vanishes at the magic circular
polarization degree ξm = 0.468. So for ξ = ξm the shift is
nearly linear, while the broadening (imaginary part of 	νt

cl)
is almost quadratic in the lattice-laser intensity I (see Fig. 4).
The contribution of the nonlinear terms is positive for linear
polarization (ξ = 0) and negative for circular polarization
(ξ = ±1) of the lattice wave and becomes considerable for I >

100 kW/cm2. In particular, at I = 150 kW/cm2 the negative
square-root term compensates about 8% of the positive real
part of the shift (22), the magnitude of the quadratic-in-I
term exceeds that of the term I 3/2 about 12 times, and the
contribution of the terms in the second line of Eq. (22)
varies from (–402–62.1i) for the circular polarization to
(113 − 41.7i) mHz for the linear polarization of the lattice
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FIG. 4. The dependence of the real (a) and imaginary (b) parts of the clock-frequency shift of Cd atoms 	νt
cl(n,ξ,I ), trapped in their

ground state of vibrations n = 0, on the intensity I (in kW/cm2) of the linear (red solid curves), “magic elliptical” (blue dotted), and circular
polarized (black dashed) lattice wave of a “traveling-wave magic frequency.” Imaginary parts of 	νcl(n,ξ,I ) determining the clock-transition
line broadening are negative values, identical for all strategies of determining the MWL and about one order smaller in magnitude than the real
parts [cf. the vertical scales of (a) and (b)].

wave. For ξ = ξm and the laser intensity I = 150 kW/cm2 the
shift (22) is 	ν t

cl = (806 − 46.4i) mHz.

B. Motion-insensitive magic frequency

In a standing wave of an optical lattice with the
magic frequency, determined from the equality α

dqm
g (ωs

m) =
α

dqm
e (ωs

m) ≡ α
dqm
s , the square-root term of the shift (19)

vanishes [7], cs
1/2 = 0, and

	νs
cl(n,ξ,I ) = cs

1(n,ξ )I + cs
3/2(n,ξ )I 3/2 + cs

2(ξ )I 2, (23)

where

сs1(n,ξ ) = −	αqm
s − 3E rec

s

4α
dqm
s

	βs(ξ )(2n2 + 2n + 1),

сs3/2(n,ξ ) = 	βs(ξ )

√
E rec

s

α
dqm
s

(2n + 1), сs2(ξ ) = −	βs(ξ ).

(24)

With a three-digit precision, the shift (23) for Cd atoms may
be written numerically as (22) without the square-root term
and with a negative sign of the first number in the coefficient
of the linear-in-I term. As for ct

1(n,ξ ), the contribution of
hyperpolarizability to the coefficient cs

1(n,ξ ) is negligible

FIG. 5. The dependence of the clock-frequency shift on the intensity I (in kW/cm2) of the linearly (ξ = 0, solid curves), “magic elliptically
(ξ = ξm, dotted), and circularly (ξ = ±1, dashed curves) polarized laser wave (a) at the “motion-insensitive magic frequency” 	νs

cl(n,ξ,I ) and
(b) at the “E1 magic frequency” 	νE1

cl (n,ξ,I ) (in mHz) in Cd atoms, trapped to their ground-state vibrations (n = 0). The imaginary parts of
	ν

s,E1
cl (n,ξ,I ) are given in Fig. 4(b).

043420-7



OVSIANNIKOV, MARMO, PALCHIKOV, AND KATORI PHYSICAL REVIEW A 93, 043420 (2016)

FIG. 6. The dependence of the clock-frequency shift 	νE1
cl (n,ξ,I ) (in mHz) in Cd atoms, trapped to their ground-state vibrations (n = 0),

on the intensity I (in kW/cm2) of the “magic elliptical” polarized laser wave of operational MWL, red-shifted from the frequency ωE1
m by

(a) δ = −900 (lowest solid curve), δ = −905 (middle dotted curve), and δ = −910 kHz (top dash-dotted curve); (b) δ = −790 (lowest solid
curve), δ = −800 (middle dotted curve), and δ = −810 kHz (top dash-dotted curve).

in comparison with −	α
qm
s . As in the case of a traveling

wave, for ξ < 0.5 the shift is almost linear in I , and mainly
determined by the difference of the multipolar polarizabilities.
The lattice polarization dependence appears explicitly only
for I > 100 kW/cm2, as is seen from the plot of Fig. 5(a)
for the shift (23) of the lowest-energy oscillator state (n = 0).
Evidently, as follows from the ratio of α

qm
g(e)(ωm) and αE1

g(e)(ωm),
the difference between numerical values of ωs

m and ωt
m appears

only in the sixth or seventh decimal place.

C. E1 magic frequency

In the case of αE1
g (ωd

m) = αE1
e (ωd

m) ≡ αE1
m the first-order

terms in the depths (9) of the potential wells are equalized.
Since αE1

g(e)(ωm) is the mean value of α�
g(e)(ωm) and α

dqm
g(e) (ωm),

the magic frequency for Eq. (3) is close to the mean value of ωs
m

and ωt
m. The most important property of the magic frequency

ωE1
m ≈ (ωt

m + ωs
m)/2 is elimination of the dependences on

the multipolar polarizabilities of the coefficient cE1
1 . The

remaining hyperpolarizability-dependent term is at least two
orders smaller in magnitude, as follows from the data of Table I.
However, the coefficient of the square-root term cE1

1/2 is not
zero, being equal to one-half of the coefficient ct

1/2 of Eqs. (21).
Then the list of coefficients in the right-hand side of Eq. (19)
may be presented as follows:

cE1
1/2(n) = −	α

qm
m

2

√
E rec

E1

αE1
m

(2n + 1),

cE1
1 (n,ξ ) = −3E rec

E1

4αE1
m

	βE1(ξ )(2n2 + 2n + 1),

cE1
3/2(n,ξ ) = 	βE1(ξ )

√
E rec

E1

αE1
m

(2n + 1),

cE1
2 (ξ ) = −	βE1(ξ ). (25)

So in the case of equal dipole polarizabilities the coefficients
cE1

1 (n,ξ ), cE1
3/2(n,ξ ), and cE1

2 (n,ξ ) are proportional to the

difference of the hyperpolarizabilities 	βE1(ξ ), which appears
in higher-order light shifts of the clock states in the lattice field.

As follows from Eqs. (21), (24), and (25), for all strategies
for defining the magic frequencies, the coefficients c3/2 and c2

are identical up to six digits, being proportional to 	β(ξ ). The
coefficient of the square-root term for the motion-insensitive
magic frequency cs

1/2 = 0, whereas those of the magic fre-
quencies determined from Eqs. (1) and (3) are proportional
to the difference of the multipolar polarizabilities 	α

qm
m and

may be related to one another as cE1
1/2 ≈ 0.5ct

1/2. As follows
from the data of Table I, the coefficients of the linear term in
(19) obey the relations |cE1

1 | � |cs
1| ≈ |ct

1|. The contributions
of multipolar interactions to ct

1(n,ξ ) and cs
1(n,ξ ) are opposite

in sign, while the contributions of anharmonic interactions to
c
t(s)
1 (n,ξ ), proportional to 	β(ξ ), are identical and significantly

smaller in magnitude than 	αqm. So it becomes evident that
among the three definitions (1)–(3) the choice of the magic
frequency ωd

m ensures the smallest nonlinear and multipolar
shifts of the clock frequency and therefore seems the most
profitable for minimizing the lattice-induced uncertainties.

In particular, for Cd atoms the clock-frequency shift
dependence (19) on intensity with coefficients (25) may be
presented numerically (in mHz) as

	νE1
cl (n,ξ,I ) = −2.986(2n+1)I 1/2+[4.262(2n2 + 2n + 1)I

− 5.575(2n + 1)I 3/2 + 5.47I 2]

× [1 − 0.3693i − (4.565 + 0.181i)ξ 2]10−3,

(26)

where the intensity I is measured in kW/cm2. For the magic
circular polarization degree ξ = ±0.468 all the ξ -dependent
hyperpolarizability terms in the right-hand sides of (25) and
(26) vanish, and only the square-root term remains. In this case
the real part of the magic-lattice-induced shift is 	νE1

cl (n =
0,ξ = ξm,I ) mHz−1 = −2.986

√
I (kW/cm2)

−1
(for the low-

est oscillatory state n = 0). So, for I = 100 kW/cm2, to
achieve clock-frequency precision at the 18th decimal place,
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this shift should be controlled with a 3% uncertainty, which
corresponds to 6% intensity deviations over lattice sites. For
linear polarization, ξ = 0, the shift is (the imaginary part,
identical for all the strategies indicated above, is omitted)

	νE1
cl (0,0,I ) = −2.986I 1/2 + 4.262 × 10−3I

− 5.575 × 10−3I 3/2 + 5.47 × 10−3I 2,

where the positive linear and quadratic terms compensate
completely the negative square-root and I 3/2 terms at I =
72.15 kW/cm2, as is seen in Fig. 5(b).

The dependences of the lattice-induced shifts on the
lattice-laser intensity are presented in Figs. 4 and 5 for the
clock transition in Cd atoms in their lowest-energy state of
oscillations n = 0 in the lattices of three different magic
frequencies given by (1)–(3), as determined in a traveling
wave (Fig. 4), in a standing wave [Fig. 5(a)], and for an
intermediate case of equal dipole polarizabilities [Fig. 5(b)].
As is evident from the figures, for the traveling-wave or
motion-insensitivemagic frequencies [Figs. 4 and 5(a)], the
lattice-induced shift is nearly polarization independent, due to
a negligibly small contribution of the hyperpolarizability as
compared to the contribution of multipole polarizabilities in
the range of intensity I < 200 kW/cm2. On the contrary, in
the case of the E1 magic frequency [Fig. 5(b)], where the
contributions of the multipole polarizabilities to the linear
term are canceled out, only hyperpolarizability effects on
the coefficients cj (j = 1, 3/2, 2) provide contributions and
the dependence on the lattice-wave polarization becomes
significant. Therefore, this case seems the most interesting for
clock-transition spectroscopy among the three definitions. The
contribution of the hyperpolarizability is strongly dependent
on the polarization of the laser wave. For the linear polarization
ξ = 0, at the intensity I ≈ 72 kW/cm2, the positive contribu-
tions of terms linear and quadratic in I to the real part of the
shift (19) may compensate the negative contributions of the
square-root and power-3/2 terms. In contrast, for the circular
or elliptical polarization with ξ > ξm ≈ 0.47 the contributions
from the hyperpolarizability and the total shift are negative
and increase in magnitude with increase of intensity I [see
Figs. 5(a) and 5(b)].

Thus, the principal feature of Cd atoms in a lattice of
an E1 magic frequency is the possibility of high-efficiency
control of the lattice-induced shift (26) by means of the
lattice-laser intensity and polarization. An appropriate choice
of I and ξ (ξ < ξm) enables complete elimination of the shift.
However, it is necessary to take into account the imaginary part
of 	νE1

cl (n,ξ,I ) = Re{	νE1
cl (n,ξ,I )} − i�/2. So, in addition

to the clock-frequency shift determined by the real part of
	νE1

cl (n,ξ,I ), the width �(n,ξ,I ) = −2Im[	ν(n,ξ,I )] of the
clock transition in Cd atoms appears in the lattice, determined
by the rate of the two-photon ionization from the excited clock
state, which is directly proportional to the imaginary part of
the hyperpolarizability:

�(n,ξ,I ) = −2{Im[c1(n,ξ )]I + Im[c3/2(n,ξ )]I 3/2

+ Im[c2(n,ξ )]I 2}

= 2Im[	β(ξ )]

{
3E rec

m

2αE1
m

(n2 + n + 1/2)I

−
√
E rec

m

αE1
m

(2n + 1)I 3/2 + I 2

}
. (27)

As was already noted above, this value determines the
ionization-induced uncertainty, which should be included
intthe budget of uncertainties of the lattice-based atomic
frequency standard. In Fig. 4, plots of the functions (27) for
n = 0 and ξ = 0, 1 are presented together with curves for the
real parts of the shift (19). Evidently, as the fractions E rec

m /αE1
m

in the right-hand side of Eq. (27) differ only in the sixth or
seventh digit for the three types of magic frequency defined
in different strategies, the data of Fig. 4(b) for the imaginary
parts of 	νcl(n,ξ,I ) hold for the clock-transition broadening
independent of the magic frequency choice (see also the
data for the imaginary parts of coefficients c1, c3/2, c2 in
Table II).

In Table II, numerical values of the coefficients cj (j =
1/2, 1, 3/2, 2) are presented for neutral atoms of the group-
II elements. A remarkable case may appear for the shift
	νE1

cl (n = 0,ξ = ξm,I ) in the lattice of a magic elliptical
polarization, where cE1

1 (ξm) = cE1
3/2(ξm) = cE1

2 (ξm) = 0 and
the shift 	νE1

cl = c1/2I
1/2 is very smoothly dependent on the

intensity of the lattice laser. This fact ensures the possibility of
high-precision control of uncertainties caused by the nonmagic
lattice-induced clock shift.

An additional possibility exists for reducing the shift (19)
together with its uncertainties by tuning the lattice-laser
frequency to the “operational magic frequency” where the
laser-frequency dependence of the dipole polarizability is
taken into account [6]. To this end the deviation δ = ω − ωE1

m

of the lattice-laser frequency ω from the E1 magic frequency
ωE1

m , for which the equality (3) holds exactly, should be
taken into account in Eq. (19). In this case the coefficients
cE1

1/2(n) and cE1
1 (n,ξ ) of Eqs. (25) should be modified as

follows:

cE1
1/2(n) =

(
∂	αE1

m

∂ω
δ − 	αqm

m

)√
E rec

E1

αE1
m

(
n + 1

2

)
,

cE1
1 (n,ξ ) = −∂	αE1

m

∂ω
δ − 3E rec

E1

2αE1
m

	βE1(ξ )

(
n2 + n + 1

2

)
,

(28)

where 	αE1(ω) = αE1
e (ω) − αE1

g (ω) is the difference of the
clock-state dipole polarizabilities at arbitrary frequency ω,
and ∂	αE1

m /∂ω = ∂	αE1(ω)/∂ω|ω=ωE1
m

is the derivative of
this difference at the E1 magic frequency ω = ωE1

m . Thus
the detuning δ appears as an additional parameter for tuning
the lattice-laser frequency, which may be used, in addition to
the oscillator quantum number n and the degree of circular
polarization ξ , to reduce or optimize the lattice-induced shift
(19) to the value ensuring the lowest possible uncertainty of the
clock frequency. Expressing this another way, the parameter δ

should be chosen so as to allow the smallest possible deviations
of the shift 	νE1

cl (n,ξ,δ,I ) in the widest possible range of
operational intensities over the lattice traps [6]. As follows
from numerical calculations with the use of the Table I data, the
detuning δ = − 910 kHz from ωE1

m for the magic elliptically
polarized lattice wave restricts variations of the real part of
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the clock-frequency shift between –12.5 and –13.0 mHz in
the range of intensities between 45 and 105 kW/cm2 [see
Fig 6(a)]. So the uncertainty of the shift 	νE1

cl (n = 0,ξm,δ,I )
in these intensity ranges supported over the lattice sites is
reduced to 0.5 mHz, which is below 0.6 × 10−18 of the Cd
clock frequency νclock= 903 THz.

Evidently, the bounds for variations of the shift
	νE1

cl (n,ξ,δ,I ) are strongly dependent on the detuning δ and
on the ranges of the lattice-laser intensities I . For comparison,
the variations of 	νcl(n = 0,ξm,δ,I ) in the region of intensities
between 50 and 140 kW/cm2 for the detuning δ = − 810 kHz
are presented in Fig. 6(b). These examples of the operational
magic frequencies for the Cd optical lattice demonstrate
the possibilities of taking into account the multipole and
hyperpolarizability effects of the atom-lattice interaction to re-
duce fractional uncertainties of the clock-transition frequency
to the level below 10−18.

IV. A REPULSIVE MAGIC LATTICE

Although repulsive Stark-effect forces on atoms in a blue-
detuned lattice require 3D optical lattices to trap atoms, these
forces provide a definite advantage against the red-detuned
lattice, since they push and confine atoms to the regions of
smaller lattice field, where the shifts of the clock levels are
reduced to their minimal values. Therefore the details of the
atom-field interaction in a repulsive lattice, presented below in
this section, may also become of a practical interest.

A lattice of a blue MWL for Sr atoms is an example
of a repulsive lattice. Relevant data on the corresponding
characteristics are presented in Table I. In a lattice of a
blue-detuned magic frequency, corresponding to a negative
dipole polarizability αE1(ω) < 0, the Stark energy is positive,
so the equilibrium position of an atom is located near a
standing-wave node of the electric field vector

E(X,t) = 2E0 sin(kX) sin(ωt), (29)

where X is the displacement of an atom relative to the
equilibrium position. The spatial part of the interaction of an
atom with the lattice wave (29) may be written as

V̂ (X) = V̂E1 sin(kX) + (V̂E2 + V̂M1) cos(kX), (30)

where the E1, E2, and M1 interactions are presented in
Eqs. (7). The trapping potential of the blue-detuned-MWL
lattice with account of the hyperpolarizability-dependent and
anharmonic terms may be presented, as in the case of a
red-detuned lattice potential, in the form of Eq. (8). Since the
repulsive-lattice potential islocated at equilibrium positions
for atoms at the standing-wave nodes, where the lattice field
vanishes, neither dipole-polarizability nor hyperpolarizability
terms can appear in the lattice-potential bottom energy.
Moreover, the hyperpolarizability does not appear in the
eigenfrequency of vibrations:

U
(0)
g(e)(I ) ≡ U latt

g(e)(X = 0,I ) = −α
qm
g(e)(ω)I ;


g(e)(I ) = 2
√

−E recα
dqm
g(e) (ω)I . (31)

The vibration energy of an atom in its ground (excited)
clock state, trapped into oscillatory motion in the vicinity of

the standing-wave node,

Evib
g(e)(n,ξ,I ) = U

(0)
g(e)(I ) + 
g(e)(I )

(
n + 1

2

)

− Eanh
g(e)(ξ,I )

(
n2 + n + 1

2

)
, (32)

may involve hyperpolarizability effects only in the anharmonic
term

Eanh
g(e)(ξ,I ) = 1

2
E rec

[
1 − 3βg(e)(ξ,ω)I

α
dqm
g(e) (ω)

]
, (33)

providing, in addition to the bottom energy U
(0)
g(e)(I ), the

contribution linear in the laser intensity I to the lattice-induced
clock-frequency shift, which thus may include only square-
root and linear terms,

	ν latt
cl (n,ξ,I ) = Evib

e − Evib
g = c1/2(n)I 1/2 + c1(n,ξ )I,

(34)
where

c1/2(n) =
√
E rec

(√−α
dqm
e (ωm) −

√
−α

dqm
g (ωm)

)
(2n + 1);

c1(n,ξ ) = −	αqm(ωm) + 3E rec

4

[
βe(ξ,ωm)

α
dqm
e (ωm)

− βg(ξ,ωm)

α
dqm
g (ωm)

]

× (2n2 + 2n + 1). (35)

The principal contribution to the lattice-induced shifts of
the clock levels comes from the oscillation energy of the atom
in the lattice, described by the second term in the right-hand
side of Eq. (32). So the choice of magic frequency should
aim at equalization of the oscillation eigenfrequencies (31)
of trapped atoms in their ground and excited states, 
g(I ) =

e(I ) ∝ I 1/2, which are proportional to the laser intensity
square root [7,13]. It means that at this magic frequency
the coefficient c1/2(n) will vanish, leaving behind only the
linear term in the shift (34). Actually, the magic frequency
determined on the basis of Eq. (2), which ensures elimination
of the square-root term, is equivalent to the determination
of the motion-insensitive magic frequency, as was originally
defined in [7]. Let us assume that the magic frequency ωE1

m ,
which holds Eq.(3), is known. Then tuning the lattice laser to
the frequency ω = ωE1

m + δ will introduce the dependence of
the coefficients (35) and consequently of the shift (34) on the
frequency shift δ. However, in this case the linear term remains
nonzero, achieving 136 mHz at I = 10 kW/cm2 for the Sr
blue-detuned MWL (see Table I) and requires an accurate
control in high-precision measurements of the clock frequency.

V. THE USE OF A MODEL POTENTIAL FOR
CALCULATING ELECTROMAGNETIC

SUSCEPTIBILITIES

The calculations of MWLs in the single-electron Fues-
model-potential approach [12] with appropriate empirical
parameters, determined from the data on the energy levels
[14], give MWL values in Sr, Yb, and Hg atoms rather
close to those determined experimentally and widely presented
in the literature (the bold-faced numbers of Table I for
λmag). The values of the MWL are determined from the
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intersection of curves for the wavelength dependence of
the clock-state polarizabilities αnl(ω) or equivalently, for the
dynamic Stark shifts, linear in the lattice-laser intensity I , of
the clock-state energies 	Enl = −αnl(ω)I in an antinode of the
lattice standing wave. This shift is determined from standard
equations of second-order perturbation theory for atom-lattice
interaction.

After integration over angular variables, the electric-dipole
polarizability in a single-electron approximation may be
presented (in atomic units) in terms of the second-order radial
matrix elements, as follows:

αE1
g (ω) = 2

3 〈g|r[gEg+ω
1
P1

(r; r ′) + g
Eg−ω
1
P1

(r; r ′)
]
r ′|g〉 (36)

for the clock ground state |ns2(1S0)〉 ≡ |g〉. The spectral
resolution for the radial Green′s functions

gE
1
P1

(r,r ′) =
∑
n′

〈rn′1
P1〉〈n′1

P1r
′〉

En′1P1
− E

+
∫ ∞

0

〈rε1
P1〉〈ε1

P1r
′〉

ε − E − i0
dε (37)

accounts for the sum over all singlet P-states |ns n′p(1
P1)〉 ≡

|n′1
P1〉, including the integral over the positive-energy (ε > 0)

continuum states |ns εp (1
P1)〉 ≡ |ε1

P1〉. The equation for the
E1 polarizability of the clock excited state |nsnp(3

P0)〉 ≡ |e〉

αE1
e (ω) = 1

9

{〈e|r{gEg+ω
3S1

(r; r ′) + g
Eg−ω
3S1

(r; r ′)

+ 2
[
g

Eg+ω
3
D1

(r; r ′) + g
Eg−ω
3
D1

(r; r ′)
]}

r ′|e〉} (38)

includes the radial Green′s functions g
Ee±ω
3S1

(r; r ′) and

g
Ee±ω
3
D1

(r; r ′) in the space of triplet S and D states. The use
of the FMP for describing the motion of the valence electrons
allows analytical presentations for the radial wave functions

〈r | nl〉 = 2

ν2
nl

√
(2l̃ + 2)nr

nr !�(2l̃ + 2)
unr l̃

(
2r

νnl

)
, (39)

where νnl = 1/
√−2Enl is an effective principal quantum

number, nr = 0,1,... is an integer radial quantum number, and
l̃ = νnl − nr − 1 is an effective angular momentum.

ukl̃(x) = xl̃ exp

(
−x

2

)
1F1(−k,2l̃ + 2; x)

= k!

(2l̃ + 2)k
xl̃ exp

(
−x

2

)
L2l̃+1

k (x) (40)

is the eigenfunction of the Sturm-Liouville problem to the
Schrödinger equation with the FMP [15]

V̂F (r) = −1

r
+

∞∑
l=0

Bl

r2
P̂l, (41)

where each term with the operator of projection to
the space of states of a fixed angular momentum P̂l =∑l

m=−l |Ylm(r/r)〉〈Y ∗
lm(r/r)| introduces modification into the

l dependence of the centrifugal potential so as to match the
eigenvalues of the l-series with really existing spectra of an
atom. This matching implies the replacement of the orbital
quantum number l in the radial Schrödinger equation by an

effective number l̃ =
√

(l + 1/2)2 + 2Bl − 1/2, which turns
into l in the case of a pure Coulomb potential (Bl = 0). For
low-l states (S, P , D, F ) in many-electron atoms (alkali metal,
alkaline earth, rare earth) the difference between l̃ and l may
achieve considerable values, changing essentially the behavior
of corresponding wave functions in the vicinity of the origin.
However, the principal contribution to the matrix elements
of the polarizabilities (36) and (38) comes from the regions
of large distance r of the optical electron from the atomic
nucleus, where the wave function (39) has a correct asymptotic
behavior determined by the highest-order term of a polynomial
of Eq. (40) 〈r |nl〉 ∝ rνnl−1 exp(−r/νnl). The polynomial type
of the confluent hypergeometric function 1F1(−k,2l̃ + 2; x)
related with the associated Laguerre polynomial L2l̃+1

k (x)
ensures the orthogonality and normalization conditions of the
wave functions (39) of a given l subspace of states∫ ∞

0
〈n′l|r〉〈r|nl〉r2dr = δnn′ . (42)

The use of the spectral resolution (37) for the Green
functions in calculating matrix elements of Eqs. (36) and (38)
is reasonable only in the case where the principal contribution
to the matrix elements comes from a small number of terms
of the sum over n′ and the infinite summation together with
the integral over the continuum may be neglected. However,
this condition is strongly dependent on the difference of
energies in the denominators of the fractions of Eq. (37),
so it does not hold in general. Therefore the contribution
of a considerable number of terms in the sum over bound
states and the integral over the continuum should be taken
into account in order to ensure precision of the calculated
results. Moreover, the presentation (37) may not be used for
evaluating dipole-interaction matrix elements of the fourth
and higher orders with three or more Green functions, for
example in calculating hyperpolarizabilities. This restriction
is caused by divergence of every separate term of eight
possible combinations of sums and integrals, such as the
triple summation over bound states, triple integration over
the continuum, and various combinations of summations and
integrations [16].

More efficient and applicable to higher-order calculations
is the use of a complete set of eigensolutions to the Sturm-
Liouville problem on the Coulomb-potential strength of the
Schrödinger equation with a fixed energy E = −1/(2ν2).
The solutions to the problem constitute only discrete sets of
eigenvalues and corresponding eigenfunctions (40) of a fixed
argument ukl̃(2r/ν) enumerated by the positive integer number
k running from zero to infinity. Therefore, the Sturm-function
resolution for the Green function involves only discrete series

gE
l̃

(r; r ′) = 4

ν �(2l̃ + 2)

∞∑
k=0

(2l̃ + 2)kukl̃(2r/ν)ukl̃(2r ′/ν)

k! (1 + k + l̃ − ν)
.

(43)

The exponents of the Sturm functions in (43) are identical,
independently of the number k, in contrast to the functions
of the series over discrete states in the spectral resolution
(37) with exponents gradually increasing with the summation
number n′. As a consequence, the rate of convergence of
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FIG. 7. Model-potential data for the wavelength (in nanometers) dependence of the lattice-potential depths (in kilohertz at the lattice-laser
intensity I = 10 kW/cm2): (a) for Ca atoms in their upper 5s5p3P0 (dashed) and lower 5s2 1S0 (bold curve) clock states; the curves intersect at
the MWL λCa

m = 747 nm in a satisfactory agreement with λCa
m = 735.5 ± 20 nm of Ref. [17]; (b) for Cd atoms the curves intersect at the MWL

λCd
m = 414.4 nm.

the Sturm series (43) exceeds essentially that of the spectral
series (37) and the first 5–6 terms of the series (43) are
sufficient to ensure precision of the numerical evaluations
of the corresponding matrix elements up to the fifth decimal
place.

The data for the polarizabilities of clock states, calculated
in the FMP approach, are presented in Fig. 7 for Ca and Cd
and in Fig. 8 for Zn and Hg atoms. The magic wavelengths
are determined at the point of equal values (at the intersection
of the curves) of the polarizabilities (36) and (38). The plot
of Fig. 8(b) for Hg demonstrates satisfactory agreement of the
model-potential result 364 nm for the magic wavelength with

experimental data 362.6 nm [3,4]. So the estimated magic
wavelengths presented in Table I for Ca, Zn, and Cd atoms
seem rather accurate and indicate the regions for experimental
investigations.

The equation for electric-quadrupole polarizability of the
ground state,

αE2
g (ω) = ω2

30c2
〈g|r2

[
g

Enl+ω
1
D2

(r; r ′) + g
Enl−ω
1
D2

(r; r ′)
]
(r ′)2|g〉,

(44)
involves squared radial variables and Green functions in the
subspace of singlet D states. The corresponding equation for

FIG. 8. Calculated data for the wavelength (in nanometers) dependence of the lattice-potential depths (in kiloHertz at the lattice-laser
intensity I = 50 kW/cm2): (a) for Zn atoms in their upper 5s5p3P0 (dashed) and lower 5s2 1S0 (bold curve) clock states; the curves intersect
at the MWL λZn

m = 406.5 nm; (b) for Hg atoms the curves intersect at λ
Hg
theor = 364 nm, rather close to the MWL λ

Hg
m = 362.57 nm, determined

experimentally in [3,4].
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E2 polarizability of the excited clock state |e〉 = |ns np(3
P0)〉,

αE2
e (ω) = ω2

300c2
〈e|r2

{
2
[
g

Enl+ω
3
P2

(r; r ′) + g
Enl−ω
3
P2

(r; r ′)
]

+ 3
[
g

Enl+ω
3
F2

(r; r ′) + g
Enl−ω
3
F2

(r; r ′)
]}

(r ′)2|e〉, (45)

involves Green functions in the subspaces of triplet 3
P2 and 3

F2

states. The magnetic-dipole polarizability of the clock state |e〉
depends on the overlap and splitting 	 = Ens np(3

P1) − Ee of
metastable triplet states of total momenta J = 0 and 1:

αM1
e (ω) = |〈nsnp(3

P1)|nsnp(3
P0)〉|2	

3c2(	2 − ω2)
(46)

The overlap integral here may be approximated by unity.
Calculations of matrix elements in (44) and (45) may be
performed with the use of the Sturm-function resolution (43).

There is a principal difference in the structure of energy
levels in the group-IIa and -IIb atoms. The excitation potential
of the lowest-energy singlet 1

D-states of the group-IIa atoms
is below the excitation potential of 1

P states. Therefore, the
formal value of the 1

D-state effective orbital momentum turns
below that of the 1

P -states, l̃1
D < l̃1

P ≈ 1. In this case the values
of the effective centrifugal potential in the radial equation for
1
D states is strongly underestimated and the behavior of the

radial wave functions does not account for the really existing
potential barrier at the origin. Moreover, the lowest triplet 3S
state locates above the lowest 3

P and 3
D states and has too

high an effective orbital momentum, and the corresponding
centrifugal potential exceeds those of 3

P and 3
D states. As

a result, the evaluated amplitudes of radiation transitions
between low-momenta states and the polarizabilities of the
metastable nsnp(3

P0) state in the usual FMP approach [12] are
not in agreement with the most reliable data from the literature,
and specifically the estimated hyperpolarizabilities may be
wrong. Significant improvement of precision in calculations
with the use of the FMP wave functions (39), verified by the
agreement with the data in the literature, is achieved if the
contribution of the lowest state in the D series (both singlet
and triplet) is separated from the remaining series of states in
which unity is subtracted from the radial quantum numbers
nr . So the parameter l̃D of the Green function (43) obtains an
additional unit, thus approaching the D-state orbital quantum
number l̃D ≈ lD = 2. In this scheme, the lowest-energy D state
is considered separately as a D-state Hilbert subspace vector of
radial quantum number nr = 0 and angular momentum l̃D − 1.
Similar transformations are applicable to D states of Yb atoms.

An opposite transformation–addition of a unit to radial
quantum numbers of triplet 3S states should be performed
in order to reduce by a unit the effective orbital quantum
number, thus reducing the effective centrifugal potential for the
3S states. In particular, this operation with the wave functions
of the 3S series of states in helium atoms provided an excellent
agreement with data from high-precision calculations for
oscillator strengths and polarizabilities of 1s3p(3

P ) states in
He I atoms [18].

In contrast, the lowest-energy 1
D state in atoms of group

IIb is located above the lowest 1
P state. Also the triplet 3

D1

states occupy their usual position above 3
P and 3S states, so

the values of their effective orbital momenta l̃D approximates

to the D-state orbital quantum number l̃D ≈ lD = 2 without
any additional transformation. But the 3S-series momenta
still require modifications similar to those of the group-IIa
elements. The applicability of the modified approaches to
determination of FMP parameters for S-state wave functions
in the group-IIb atoms is confirmed by good agreement of the
calculated data with the most reliable data in the literature for
amplitudes of radiation transitions and polarizabilities of the
low-momenta (S, P , D) states.

To account for nonlinear effects on the lattice-induced
shifts, the fourth-order terms of perturbation theory for the
atom-lattice dipole interaction should be taken into account.
Then the quadratic in intensity term appears in the equation
for the shift of energy in standing-wave antinodes (the depth
of the potential well – for the red-detuned wave, the height
of the potential barrier – for the blue-detuned wave, the
optical lattice) 	Enl = −αnl(ω)I − βnl(ω)I 2, determined by
the dynamic hyperpolarizability βnl(ω) at the frequency of
the lattice wave ω. After integrations over angular variables
in a single-electron approximation, the hyperpolarizability
may be presented in terms of the fourth-order radial matrix
elements

〈nl|r1g
Enl+ω1
l1

(r1; r2) r2g
Enl+ω2
l2

(r2; r3) r3g
Enl+ω3
l3

(r3; r4) r4|nl〉,
(47)

where six different combinations of the Green-function
energies appear corresponding to virtual absorption or
emission of the lattice-laser photons. So ω1 and ω3 may be
equal to ±ω and ω2 may be equal to ±2ω, 0. The orbital
momenta take values corresponding to dipole selection rules.
For |nl〉 = |g〉 we have l1 = l3 = 1 and the corresponding
Green functions are resolved in the subspace of singlet nsn′p
(1
P1) states l2 = 0, 2 corresponding to the subspaces of states

nsn′s (1S0) and nsn′d (1
D2). Thus the hyperpolarizability of the

ground state ns2 (1S0) is the linear combination of 12 (for the
linear polarization of the lattice wave) or 10 (for the circular
polarization) fourth-order radial matrix elements (47) and four
products of second-order matrix elements with one and two
Green functions in the subspace of states nsn′p (1

P1). For the
excited clock level nsnp (3

P0) the Green’s functions g
Enl+ω1
l1

and

g
Enl+ω3
l3

are resolved in the subspaces of triplet states nsn′s (3S1)
and nsn′d (3

D1), whereas the resolution of the Green’s function
g

Enl+ω2
l2

involves three triplet-state subspaces: nsn′p (3
P0,2) and

nsn′f (3
F2). In the case of circular polarization an additional

triplet-state subspace nsn′p (3
P1) is also involved. Therefore

the hyperpolarizability of the excited clock state is determined
by the combination of 54 (for the linear polarization of the
light wave) or 62 (for the circular polarization) different
fourth-order radial matrix elements (47) and the products
of linear combination of four second-order matrix elements
with one Green function and linear combination of four
matrix elements with two Green functions. Evaluations of the
fourth-order matrix elements (47) are possible only with the
use of the Sturm-function resolution (43).

After integration over radial variables, the matrix elements
of Eqs. (36), (38), (44), and (45) for dipole and quadrupole
polarizabilities are presented in terms of rapidly convergent
hypergeometric-type series. The sum of the first five to seven
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terms evaluates the matrix element up to the fifth decimal
point. Similar precision also holds for the fourth-order matrix
elements (43) presented as triple series of hypergeometric-type
terms. Appropriate codes for computations were presented in
[12] and were used in calculating various characteristics of
interactions between external fields and atoms of alkali metal
and inert-gas elements.

Calculations of matrix elements with positive-energy
Green’s function g

Enl+2ω
l2

of the lattice-laser two-photon energy
above the ionization threshold, 2ω > |Enl|, require separate
considerations, since the resolution (43) in this case is
divergent and its use requires some additional transformations,
presented in [16]. It is necessary to note that the Green’s
function of a positive energy is a complex value, the imaginary
part of which determines the probability of the two-photon
ionization – the valence-electron going out into the continuum.
As is seen from Tables I and II, this situation is characteristic of
the group-IIb atoms (Zn, Cd, and Hg) with rather high magic
frequencies and of the blue-detuned magic frequency of Sr,
for which the energies of two photons exceed the ionization
potentials of excited clock states. However, the real parts of
the hyperpolarizabilities for linear and circular polarization
have opposite signs and allow suppression of quadratic shifts
at the magic ellipticity. Evaluation of the positive-energy
Green’s function is based on a formal expansion of the
function ukl̃(2r/ν) over a complete system of Sturm functions
uml̃(2r/η) with an arbitrary (free) parameter η [16]:

ukl̃(2r/ν) = exp

{(
1

ν
− 1

η

)
r

}
(−1)kνk+l̃+2

(2l̃ + 2)k

∞∑
m=0

× (−m)k(η − ν)m−k(2l̃ + 2)m
m! ηm+l̃+2

uml̃(2r/η) (48)

Substituting this expansion for ukl̃(2r/ν) in (43), inter-
changing the sequence of summations, and transforming the
internal sum over k as follows:

m∑
k=0

(−m)k
k!(k + l̃ + 1 − ν)

(
ν

ν − η

)k

ukl̃(2r ′/ν)

= exp

[(
1

η
− 1

ν

)
r ′

](
η

ν

)l̃
m!

(l̃ + 1 − ν)m+1

×
m∑

k=0

(l̃ + 1 − ν)k
k!

(
η

η − ν

)k

ukl̃(2r ′/η), (49)

we arrive at the Green function presentation with a free
parameter,

gE
l̃

(r; r ′) = 4ν

η2�(2l̃ + 2)
exp

(
r

ν
− r

η
− r ′

ν
+ r ′

η

)

×
∞∑

m=0

m∑
k=0

(2l̃ + 2)m(l̃ + 1 − ν)k
(l̃ + 1 − ν)m+1 k!

(
η − ν

η

)m−k

× uml̃

(
2r

η

)
ukl̃

(
2r ′

η

)
. (50)

An analysis based on asymptotic expressions for remote
terms of the k-series presentation of the matrix elements (47)
demonstrates that an appropriate choice of the parameter η in

the Green function g
Ee+2ω
l2

(r2; r3) ensures convergence of the
series for Ee + 2ω > 0.

Rigorously speaking, the application of a single-electron
method to many-electron atoms with a spectrum, where two-
electron excitations are observed inside the single-electron
spectrum, requires corresponding modifications in order to
improve and to make reliable the calculated results. This
was also the case of the Fues model potential, presented
in 1971 [15], and then used in calculations of interactions
between atoms and external fields, including polarizabilities,
hyperpolarizabilities, and higher-order static and dynamic
susceptibilities [12]. A number of identical methods of
the noninteger angular momentum were used for different
spectroscopic applications (see, e.g., [19–21]).

The choice of parameters for the model potential (41) is
somewhat ambiguous since the regularity in the choice of the
radial quantum number may be altered in order to approximate
the effective orbital quantum number l̃ to the angular momen-
tum l, while the relation with the effective principal quantum
number l̃ = νnl − nr − 1 remains invariable. However, the
alteration is possible only assigning unity to the value of the
radial quantum number of the atomic lowest-energy state in
the l series. In this way we used parameters providing the best
agreement with experimentally measured data for the magic
wavelengths.

First of all, the modifications of the FMP concern the
noninteger effective orbital momentums of triplet S states
l̃3S , which should be close to the real S-state momentum,
l̃3S ≈ lS = 0, and the effective momenta of singlet and triplet
D states, which should be close to the D-state momenta
l̃3

D ≈ l̃1
D ≈ lD = 2. This choice requires redefinition of the

integer radial quantum numbers nr in order to retain the
relation l̃3S + nr + 1 = νnl for the effective principal quantum
number νnl = 1/

√−2Enl determined from the energy of the
atomic state |nl〉.

The indicated definition of the radial quantum number
effectively adjusts the terms of the FMP with the real
centrifugal potential of the Schrödinger equation for the radial
wave function of the valence electron. Numerical calculations
demonstrate significant improvement of the agreement with
experimentally determined results for the MWL λmag. How-
ever, due to the approximate nature of any theoretical evalu-
ations of the frequency-dependent atomic polarizabilities, in
particular those performed in the model-potential approach,
the agreement between the calculated and experimentally
measured MWLs may be considered satisfactory, as is seen,
for example in Figs. 7(a) and 8(b), where the shifts of the
ground-state ns2(1S0) (g) and excited-state nsnp(3

P0) (e) clock
levels, calculated in the single-electron FMP approximation,
are presented for Ca and Hg atoms, respectively. It is important
to note that the magic wavelengths, corresponding to equal
shifts of the upper and lower clock levels, satisfactorily
coincide with the data in the literature [1–4]. The shifts are
linearly proportional to the intensities of the lattice lasers,
so I = 10 for Ca and Cd and I = 50 kW/cm2 for Zn and Hg
atoms are chosen in the figures at random and do not determine
any mandatory values.

It is worthy of notice that the FMP approach correctly
accounts for contributions of valence electrons in the
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calculated susceptibilities. The influence of core electrons
appears in the values of the energies of the single-electron
spectrum transformed into empirical parameters of the
model wave functions. The contributions of each valence
electron in the susceptibilities of the ground state ns2(1S0) are
assumed equivalent. For evaluating the contributions of np

and ns electrons in the susceptibilities of the metastable state
nsnp(3

P0), the spectra of single- and two-electron excitations
are used, respectively. The contributions of the core-electron
closed shells to the susceptibilities are very small because the
locations of corresponding wave functions are close to the nu-
cleus. Moreover, these small core contributions in the ground
and excited clock states are nearly equal to each other and
cancel out in the differences of the clock-state susceptibilities.

VI. CONCLUSIONS

The results of numerical evaluations presented in this article
determine fundamental restrictions to various strategies of
reducing uncertainties on optical lattice clocks of the group-II
atoms. Detailed considerations of the use of the strongly
forbidden transition 3

P0 −1S0 for the time-frequency standard
indicate possible methods of eliminating or accounting for the
multipolar and higher-order dipole shifts of the clock levels.
The calculated data demonstrate really existing possibilities
to overcoming restrictions imposed by different effects of
interactions between trapped atoms and the field of a lattice
standing wave on the way to extending the precision of atomic
standards beyond the 18th decimal place.

In summary, we have presented theoretical considerations
of the most important effects on atoms in a lattice, which
could constrain the precision of atomic clocks. Corresponding
polarizabilities and hyperpolarizabilities evaluated in a single-
electron model-potential approach for the group-II atoms are
presented in Tables I and II. Some data for susceptibilities of Sr,
Yb, and Hg, were completed and improved in comparison with
the corresponding data of [5,6]. The applicability to divalent
atoms and corresponding modifications of the model-potential
parameters were confirmed by the agreement of the calculated
magic wavelengths with the most reliable data in the literature:
the data of the latest experimental MWL measurements
for Sr, Yb, and Hg [1–4] (see Table I), the MWL of Ca
(λCa

m = 735.5 ± 20 nm) evaluated on the basis of numerical
values for the Einstein coefficients [22], and the MWLs for
Zn (413 nm) and Cd (420 nm) calculated in the method of
the B-spline configuration interaction with a semiempirical
core-polarization model potential [17]. In all cases the FMP
approach, described in Sec. V, gives numerical results well
consistent with those of the literature.

Important properties of the group-IIb atoms Zn, Cd, and
Hg are their higher clock-transition frequencies and smaller
sensitivity to blackbody-radiation, due to their about one-
order-smaller static polarizabilitiy in comparison with those
of Ca, Sr, and Yb atoms (see Table I). The magic frequencies
are also higher for atoms of the group-IIb elements, so the
hyperpolarizabilities of upper clock states of these atoms
obtain imaginary parts corresponding to two-photon ionization
by the magic lattice wave. However, this effect is not a very
important source of uncertainties: according to the numerical

data in Table I, the lattice radiation of the laser intensity
I = 100 kW/cm2 does not cause ionization of more than 1% of
all trapped atoms during 1 s. More significant is the uncertainty
related to the inhomogeneous distribution of the lattice-laser
intensity over the lattice sites. However, this uncertainty may
be compensated by the use of the “operational MWL” proposed
in [6] and presented in Figs. 4–6 (see the corresponding
discussions in Sec. III). In addition, the MWLs of the group-IIb
atoms are located in the region of frequencies where the
real parts of the hyperpolarizabilities for linear and circular
polarizations have opposite signs and may be eliminated
in the lattice wave of magic elliptical polarization (see
Table I, Figs. 1–6, and corresponding discussions in Secs. II
and III).

Evidently, the lightest atoms of the group-IIa elements
– magnesium (Mg) and beryllium (Be) – may also be
considered as possible candidates for the atomic lattice clocks.
However, preliminary estimates of recoil energies of the
magic-frequency photons (on the basis of λ

Mg
m = 468.5 nm

recently measured for Mg [23] and λBe
m ≈ 261 nm evaluated

for Be in the FMP approach) give E rec
Mg ≈ 37.9 and E rec

Be ≈
325 kHz. Estimates for the polarizabilities of Mg, αE1

m = 17.5,
and of Be, αE1

m = 34.3 kHz/(kW/cm2), indicate considerable
operational intensities I > 1 MW/cm2 needed to hold the
conditions Dg(e)(I ) � 
g(e)(I ) � E rec and (9) for efficient
trapping. Nevertheless, investigations of higher-order effects
for Mg and Be couldalso be worthwhile for determining
possibilities of developing lattice clocks of these atoms.

The results of numerical calculations for Sr, Yb, and
Hg obtained in this paper are updated using modifications
introduced into the model potential on the basis of the current
accessible experimental data. Therefore, the data deviate from
those of [5,6] and do not claim the highest precision (such as
the bold-faced numbers of Table I). Noticeable deviations are
observed for the multipole polarizability 	αqm of Sr and Yb,
in both sign and magnitude, related to the different approach
used to account for the contribution of intermediate D states
for the ground clock levels. The hyperpolarizabilities of Sr
and Yb did not change due to strong two-photon resonances
on the intermediate 3

P0,2 and 3
F2-levels for the excited clock

states, insensitive to the 3
D1-state contributions. The real parts

of the hyperpolarizabilities 	βl and 	βc of the Hg atoms
changed their absolute values in comparison with [6], without
changing their signs and imaginary parts. However, the data
aim at a numerical support of the considerations presented
on the influence of the atom-lattice interaction on the clock
precision. Hopefully these data will be useful to increase
the precision of currently developed lattice-based clocks and
will stimulate more precise determination of susceptibilities in
future experiments.
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