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The cutoff regime of high-order harmonic generation (HHG) by atoms in an intense laser field is studied
numerically and analytically. We find that the cutoff regime is characterized by equal dephasing between the
successive harmonics. The change of the harmonic phase locking when HHG evolves from the cutoff to the
plateau regime determines the optimal bandwidth of the spectral region which should be used for attosecond
pulse generation via the amplitude gating technique. The minimal pulse duration which can be obtained with this
technique in argon without using dispersion elements is approximately 0.08–0.1 of the laser cycle for different
intensities and frequencies of the fundamental. The cutoff regime is also characterized by a linear dependence
of the harmonic phase on the fundamental intensity. The proportionality coefficient grows as the cube of the
fundamental wavelength, thus this dependence becomes very important for the HHG by midinfrared fields.
Moreover, for every high harmonic there is a range of laser intensities providing the generation in the cutoff
regime and the atomic response magnitude in this regime can be greater than that in the plateau regime. Thus,
the cutoff regime substantially contributes to the harmonic energy emitted under typical experimental conditions
where the laser intensity varies in time and space.
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I. INTRODUCTION

One of the most characteristic features of the high-order
harmonic generation (HHG) by atoms, molecules, and ions in
intense laser field is the plateau in the spectrum; namely, the
region where the harmonic intensity almost does not depend
on the harmonic order. The high-frequency part of the plateau
ends up with a sharp decrease known as the cutoff of the
harmonic spectrum [1–3]. The number of harmonics in the
plateau increases with the fundamental intensity [3,4]. When
the fundamental intensity increases the given harmonic first
is generated at the cutoff and then within the plateau. At first
glance, the former stage can be understood just as a sudden
“turning on” of the generation, thus providing negligible
contribution to the total signal. Using quantum-mechanical
calculations we show that this is not the case. The cutoff regime
can be attributed to a range of fundamental intensities and pro-
vides an important impact on the generation under typical ex-
perimental conditions. The dependence of the harmonic phase
on the laser intensity substantially defines the phase-matching
of the generation [5,6], spectral shift, and the harmonic line
broadening [7–9], coherence [10], and the spatial properties
of the harmonic beam [5,9,11,12]. Thus, the behavior of the
harmonic phase in the cutoff regime has a pronounced effect
on these properties. Moreover, the cutoff extreme ultraviolet
(XUV) is used to generate an isolated attosecond pulse
via the amplitude gating technique [13–17]. Studying the
phase properties of these harmonics allows us to suggest
the spectral range which should be used in this method to
provide the shortest attosecond pulse for given pump intensity
and frequency.
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II. DEPENDENCE OF HARMONIC PHASE
ON LASER INTENSITY

To analyze the HHG cutoff region theoretically we use a
fully analytical result for the dipole moment [18] describing
HHG emission by one electron bound to a zero-range potential
in a monochromatic laser field. The dipole moment of the
qth harmonic (q = 2k + 1) generated in the linearly polarized
laser field E(t) = E0 sin ωt is presented in Ref. [18] as
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The dependence of the harmonic phase on the fundamental
intensity was investigated in numerous studies: experimen-
tally [19], numerically using the time-dependent Schrödinger
equation (TDSE) solution [12,20], theoretically within the
strong-field approximation [5,20,21,22], by using Feynman’s
path-integral approach [23] and the generalized semiclassical
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model [24]. As was discussed in these works, the harmonic
phase dependence can be described with the phase coefficient
α2k+1 = − ∂ϕ2k+1

∂I
where ϕ2k+1 is the phase of the spectral

component d2k+1. Considering the derivative of the dipole
moment with respect to the laser intensity the phase coefficient
α2k+1 can be found as

α2k+1 = −Im

(
1

d2k+1

∂d2k+1

∂I

)
. (5)

Substituting Eq. (1) into Eq. (5), we derive the analytical equation for the phase coefficient α2k+1 in the form
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In Fig. 1 we present the phase coefficient α17 calculated
for H17 generated in Xe atoms by the laser field with the
wavelength of 800 nm (below, the frequency of this field is
denoted as ωTi:sapphire). One can see that there are two different
regimes for the behavior of the phase coefficient α with respect
to intensity. The first regime (at lower intensities) corresponds
to the cutoff region where the phase coefficient α is smooth,
and the second regime (at higher intensities) corresponds to the
plateau region where α behaves nonregularly. For the plateau
region this can be explained by the quantum paths interference
[25]. However, contributions of the long and short trajectories
in the cutoff region cannot be well separated (and cannot even
be accurately defined since the two saddle points in the action
overlap). Therefore, the pronounced linear dependence of the
harmonic phase in the cutoff region obtained without using
the saddle-point approximation is a nontrivial result. Thus, we
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FIG. 1. The phase coefficient α for H17 generated in Xe as a
function of laser intensity. The result obtained via Eq. (6) (blue line)
and the approximation for the cutoff region (7) (thick red line) are
presented. Lines with symbols show the results of two methods based
on the numerical three-dimensional TDSE solution (the methods are
described in the Appendix).

define the cutoff region as the one where α almost does not
depend on the laser intensity (the criterion is that the value of
α lays within ±20% of that for lowest intensity). The intensity
corresponding to the change between these two regimes is
denoted below as the cutoff-plateau transition intensity. Note,
that as far as α oscillates with a large amplitude starting
from the certain intensity (see Fig. 1), a different choice
of the criterion would not change significantly the value of
the cutoff-plateau transition intensity. Equation (6) for the
phase coefficients can be simplified using the approximation
for the end of the plateau and cutoff harmonics [see Eq.
(5.23) in Ref. [18]]. These approximations allow to derive the
following formula for the cutoff region:

α ≈ 3.309

4ω3
. (7)

Note, that α ∝ 1/ω3 behavior can be illustrated by using
following estimations: The harmonic phase ϕ is largely
determined by the action S, which is the integral of the kinetic
energy with respect to time (assuming that the potential energy
is negligible for free electrons). Thus, S ∝ v2τ , where v ∝
E0/ω is an electronic velocity, and τ ∝ 1/ω is an electronic
excursion time. Therefore, S ∝ E2

0/ω
3, where E2

0 ∝ I . Taking
into account that α = −∂ϕ/∂I and ϕ ∝ S we find that the
phase coefficient α is proportional to 1/ω3. However, this
estimation is obtained in terms of the quasiclassical trajectory
(along which S is calculated) which is hardly accurate for the
harmonics close to the cutoff as was discussed above. In spite
of this, the estimation agrees with the strict analytical result
given by Eq. (7).

Figure 1 shows that the approximation (7) agrees with
the result of Eq. (6) in the cutoff region. Moreover, in the
same figure we present results of α calculation by using two
numerical methods discussed in detail in the Appendix. The
methods are based on the numerical TDSE solution for a model
one-electron atom with the technique described in Ref. [26].
The α values corresponding to the short trajectory only are
presented in the plateau region (see lines with symbols in
Fig. 1). We can see that the method 1 reasonably agrees with
the analytical results but for the method 2 the agreement is

043416-2



PHASE PROPERTIES OF THE CUTOFF HIGH-ORDER . . . PHYSICAL REVIEW A 93, 043416 (2016)

(a)

(b)

0.6 0.8 1.0 1.2 1.4 1.6 1.8
0

2

4

6

8

10

12
method 1
method 2

(1
0-1

4  c
m

2 /W
)

0

5

10

15

Xe, H17, = Ti:Sapp

 X
U

V
 in

te
ns

ity
 (a

rb
. u

ni
ts

) 

1.0 1.5 2.0 2.5 3.0
0

10

20

30

40

method 1
method 2

(1
)

(1
0-1

4  c
m

2 /W
)

intensity (1014 W/cm2)

0.00

0.04

0.08

0.12

 X
U

V
 in

te
ns

ity
 (a

rb
. u

ni
ts

) 

Ar, H57,  =3/4 Ti:Sapp

(c)

1.0 1.5 2.0 2.5 3.0
0

2

4

6

8

10

12

14

 method 1
 method 2

(1
)

(1
0-1

4  c
m

2 /W
)

0.0

0.5

1.0

1.5

 X
U

V
 in

te
ns

ity
 (a

rb
. u

ni
ts

) 

Ar, H27, = Ti:Sapp

FIG. 2. α(1) for the shortest trajectory contribution (solid blue)
and the intensity (dotted black) of this contribution. The thick red
line shows α for the cutoff harmonics given by Eq. (7). The results
of method 1 (open circles) and method 2 (solid circles) calculated for
H17 generated in Xe for (a) the laser wavelength 800 nm, (b) for H27
generated in Ar by the 800 nm laser field, and (c) for H57 generated
in Ar by the 1067 nm laser field.

worse. When the field parameters are closer to the tunneling
regime both numerical methods agree with the analytical result
[see Figs. 2(b) and 2(c)].

The numerically found values for α are lower than those for
the long trajectory in the plateau regime but much higher than
those for the short one. Thus, there is a significant difference
between the cutoff and the plateau regime: in the latter there
is at least the short trajectory contribution for which the phase
dependence on the fundamental intensity can be neglected in
many cases; for the cutoff regime this dependence is always
considerable.

The cutoff-plateau transition intensity obtained by the crite-
rion discussed above for the different fundamental frequencies
is presented by the red curve in Fig. 3.

FIG. 3. The intensities corresponding to the cutoff-plateau tran-
sition obtained theoretically (red line) and approximately (blue
dashed curve) for different fundamental frequencies. The three-step
(“simple-man”) and exact cutoff intensities (see text) are shown with
light- and dark-green lines, respectively. The results are presented for
(a) H17 generated by Xe atom and (b) H91 generated by He atom.
The blue-filled area shows the region where the ionization is more
than 10%.

The areas below and above the red curve correspond to the
cutoff and the plateau region, respectively. The green curves
show the fundamental intensities at which the generation of the
given harmonic starts: the light green curve shows this intensity
found via the three-step-model (also called “simple-man”)
approach [27,28] and the dark-green one shows the result
found by using the exact cutoff law [29]. Below we denote the
exact cutoff intensity as Iappear. One can see that the cutoff-
plateau transition can be approximated as 1.3Iappear (blue
dashed curve) for the case of both H17 in Xe and H91 in He.

The generation takes place in the cutoff regime for the range
of fundamental intensities shown by the hatched area between
the red and dark-green curves in Fig. 3. With the numerical
method described in the Appendix we calculate the intensity of
the shortest trajectory contribution (equal to the full response in
the cutoff regime and to the contribution of the short trajectory
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in the plateau regime). In the cutoff regime this intensity
achieves its maximum [see Fig. 2(b)] or it is close to the max-
imum [Figs. 2(a) and 2(c) and Fig. 8 in the Appendix]. Thus,
in the experiments where the laser intensity generally varies
in time and space, the contribution of the cutoff regime to the
harmonic response is significant for many harmonics. More-
over, the laser intensity providing efficient HHG is practically
limited by the medium ionization. Typically, several percent
of the ionization provide an essential detuning from the phase
matching [30]. This limitation practically cancels the HHG
in the plateau regime for certain harmonics. To illustrate this
we find by using the numerical TDSE solution the intensities
leading to more than 10% ionization of Xe atoms by 15 fs laser
pulse. As presented in Fig. 3(a), H17 is generated in Xe in the
cutoff regime only for laser frequencies higher than approxi-
mately 0.95ωTi:sapphire. The intensities providing similar ioniza-
tion for helium are higher than those shown in Fig. 3(b), so in
this case the generation of H91 can take place in both regimes.

Note, that the sensitivity of the harmonic phase on the
laser intensity influences many HHG features such as phase
matching, divergence, etc. The rapid increase of α with laser
wavelength makes this sensitivity even more important for
HHG in few-micron laser fields, which recently have been
actively used to generate very high harmonic orders; see
Refs. [31,32] and others.

III. DEPHASING OF CUTOFF HARMONICS

The second part of our study deals with the dephasing
between successive harmonics. The phase locking of the
harmonics makes it possible to generate attosecond pulses.
The cutoff region is especially important for the so-called
amplitude gating method of an isolated attosecond pulse
generation: the cutoff XUV is generated by a few-cycle laser
pulse during one half cycle only in the maximum of the laser
pulse for the certain carrier envelope phase [13–17].

Using the numerical three-dimensional (3D) TDSE solution
for a model argon atom [33] we investigate the duration of the
attosecond pulse from cutoff harmonics as a function of its
spectral width and the fundamental frequency. In Fig. 4 we
present the attosecond pulses generated by using different
numbers of harmonics. We start from the case when the
attosecond pulse is obtained by using all the harmonics above
the cutoff one including it, and then we add the adjacent
lower harmonics one by one. In Fig. 4 one can see that,
initially, the increasing number of harmonics leads to the
decrease of the attosecond pulse duration. This is explained
by the equal dephasing between successive harmonics which
results in the same emission time te (te = ∂ϕ

∂ω
= 	ϕ

2ω
where 	ϕ

is the dephasing, or the spectral phase difference, between
two consecutive harmonics [34,35]), thus the decrease of
the attopulse duration is a manifestation of the uncertainty
principle. However, adding lower harmonics with emission
time differing from that of the cutoff harmonics leads to the
increase of the attopulse duration (see red dotted curves in
Fig. 4) and generation of two or more attosecond pulses.
These pulses can be attributed to the short- and long-trajectory
contributions in the plateau region [35]. Below we denote qlow

corresponding to the shortest attosecond pulse duration as q
opt
low

FIG. 4. Calculated attosecond pulses obtained by using all har-
monics higher than qlow shown in the legends. (a) Laser frequency
is 1.5ωTi:sapphire and intensity 4.6 × 1014 W/cm2, corresponding to
cutoff at the 21st harmonic. (b) Laser frequency is ωTi:sapphire and
intensity 2.4 × 1014 W/cm2, corresponding to the cutoff at the 39th
harmonic.

and introduce the parameter β = qcutoff−q
opt
low+1

qcutoff
characterizing

the ratio of the number of harmonics minimizing the attopulse
duration to the total number of generated harmonics. For the
conditions of Fig. 4(a) we find β = 0.43 and for those of
Fig. 4(b), β = 0.23.

In Fig. 5, the values for β are shown for different intensities
and frequencies of the laser field. These are chosen as
follows: first we calculate the spectrum for the laser field
with wavelength of 800 nm and intensities corresponding to
the three-step cutoff frequency at 27H, 33H, and 39H. The
energies of the cutoff harmonics are 41.9, 51.2, and 60.5 eV,
respectively. Besides, we consider other laser frequencies and
intensities such that the cutoff takes place at these energies.

One can see that the parameter β (solid lines in Fig. 5)
increases with increasing fundamental frequency while the
corresponding attosecond pulse shortens. The shortest at-
topulse duration obtained in our calculations is less than
150 as. Moreover, as the generation conditions get closer to the
tunneling regime the β parameter decreases. At the same time,
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FIG. 5. Parameter β (solid lines) and the single-attosecond-pulse
duration (dashed lines) for certain values of β for different laser
intensities corresponding to 41.9 eV (red), 51.2 eV (green), and
60.5 eV (blue) cutoff harmonic energies.

the minimal attosecond pulse duration for the given frequency
almost does not depend on the fundamental intensity. The
shortest attosecond pulse duration is 0.08–0.1 of the laser cycle
for different intensities and frequencies of the fundamental.
For the frequency of the Ti:sapphire laser this agrees very well
with the experimentally found duration of 250 as [17].

IV. CONCLUSION

We find that the cutoff regime can be defined as the regime
having regular linear dependence of the harmonic phase on
the fundamental intensity. The phase coefficient in the cutoff
regime is well approximated by Eq. (7). The phase coefficient
grows as the cube of the fundamental wavelength; therefore,
this dependence becomes very important for the HHG by
midinfrared fields. The value of the phase coefficient is much
higher than that for the short trajectory in the plateau regime.
We show that HHG takes place in the cutoff regime for a range
of intensities and that the XUV intensity within this range is
comparable or even higher than in the plateau regime. This
makes the studies of the cutoff regime rather important from
the practical viewpoint. Moreover, for rather high harmonics
the generation occurs mainly within this range because the
medium ionization practically limits the fundamental intensity
for which the HHG takes place.

The change of the harmonic phase locking when HHG
evolves from the cutoff to the plateau regime determines
the optimal bandwidth of the spectral region that should be
used for the attosecond pulse production via the amplitude
gating technique. We find that the minimal pulse duration
that can be obtained with this technique using argon as
generating medium without utilizing dispersion elements is
approximately 0.08–0.1 of the laser cycle; this result is
found for different laser intensities and for frequencies of the
fundamental from 0.5ωTi:sapphire to 2ωTi:sapphire. Using filters
with the proper dispersion [36] or chirped multilayer mirrors
[37] is necessary to obtain shorter attosecond pulses.
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APPENDIX

We solve numerically the one-electron 3D TDSE for a
model Xe atom in the laser field. The numerical method is
described in Ref. [26]. The soft Coulomb potential providing
the ionization energy equal to the Xe ionization energy is
used. We reconstruct the α values from the TDSE solution as
discussed below.

Method 1 is a development of the method suggested in
Refs. [20,38] where α was reconstructed from the spectra
emitted under different peak intensities of the Gaussian laser
pulse. However, we use very a specific temporal envelope (see
Fig. 6) of the laser intensity: the intensity rapidly increases at
the leading edge of the pulse during time τf , then it slowly and
linearly grows during time τ , and finally it decreases during
time τf . The intensity is given as

I (t) = I0f (t)

(
1 + γ

ωt

2π

)
, (A1)

where

f (t) =

⎧⎪⎨
⎪⎩

−τ/2 − τf < t < −τ/2, sin2
( t+τ/2+τf

τf

π
2

)
−τ/2 < t < τ/2, 1

τ/2 < t < τ/2 + τf , sin2
( t−[τ/2+τf ]

τf

π
2

)
.

(A2)

The harmonics are emitted mainly in the region of the
linear growth of the intensity. The linear dependence of
the harmonic phase on the laser intensity is transmitted in the
linear dependence of the phase on time, thus in the harmonic
frequency shift. The presence of several contributions to HHG
leads to the line splitting, as shown in Fig. 7. The value of α
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FIG. 6. Laser pulse intensity (solid blue line) given by Eq. (A1).
After τf = 3 cycles turning on, the intensity increases linearly during
τ = 8 cycles, and then turns off during 3 cycles. Dotted red line
presents the square of the field.

043416-5



M. A. KHOKHLOVA AND V. V. STRELKOV PHYSICAL REVIEW A 93, 043416 (2016)

14 15 16 17 18 19 20
0

2

4

6

8

10

(2)

X
U

V
 in

te
ns

ity
 (a

rb
. u

ni
ts

)

harmonic order

(1)

FIG. 7. Harmonic spectrum found via numerical three-
dimensional TDSE solution for the model Xe atom. The laser
wavelength is 800 nm and the laser intensity envelope is shown in
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for every contribution can be reconstructed from the frequency
shift of every peak (as well as the weight of the contribution
can be reconstructed from the weight of the peak). Namely, the
spectral component with the frequency shift δω corresponds to

α = 2π
δω

ω

1

γ I0
. (A3)

The accuracy of the method is limited by the following:
using too short τ leads to the wide spectral peaks (due to
the uncertainty principle), and using too long τ provides
full ionization and high variation of the intensity within the
pulse 	I , so it is unclear which laser intensity corresponds
to the found α. In general, this method is effective for the

contributions with high α: even slow intensity growth leads to
the pronounced shift of the spectral peak.

In Fig. 8 we compare α maps found for different τ and γ .
One can see that the features of the maps are rather sensitive
to these parameters. Certainly, this is not a drawback of the
method but a manifestation of the uncertainty principle. The
main properties are similar for all the maps presented: when
the harmonic is generated in the cutoff regime it is rather in-
tense and α is about ten. For higher intensities there are several
contributions with different values of α. In particular, in the
lower right panel (having the best resolution in terms of α and,
thus, the worst resolution in terms of intensity) we can clearly
see the two contributions corresponding to the short (α ≈ 3)
and long (α ≈ 20) trajectories for the electronic excursion time
less then one cycle and (surprisingly intense) contribution from
the trajectory with longer excursion time (α ≈ 45).

Method 2 is based on the TDSE numerical solution in which
contributions of all trajectories except the shortest one are
artificially suppressed. The technique of this suppression was
described in Ref. [39]. In this method specific shape of the the
laser pulse is not important. We use the intensity given by

I (t) = I0f (t), (A4)

where f (t) is given by Eq. (A2), τf is three laser cycles, and
τ is four cycles.

From the harmonic phase ϕ(1)(I0) [the index (1) shows
that only the shortest trajectory contribution is taken into
account in this method] calculated for different I0 we then
find α(1) = −∂ϕ(1)/∂I0, see Fig. 2. The harmonic intensity
found in these calculations gives the intensity of the “shortest”
trajectory contribution as the function of the laser intensity.
This contribution corresponds to the full response in the cutoff
regime and the contribution of the short trajectory in the plateau
regime.

Comparison of the methods is presented in Fig. 2. To
find α(1) with method 1 we choose the peak corresponding
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FIG. 8. α maps calculated for different τ and γ for H17 in Xe. The laser wavelength is 800 nm.
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to the lowest value of α for every intensity. The results of
both methods are very close to each other in the tunneling
regime [Figs. 2(b) and 2(c)] and are less close for conditions
intermediate between tunneling and multiphoton regimes
[Fig. 2(a)]. Method 2 is less reliable in these conditions

because the quantum trajectory separation used in this method
is hardly applicable. However, in all three cases for the
harmonic generated in the cutoff regime, method 1 gives a
value of α that is close to the theoretical estimation given by
Eq. (7).
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