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Recently introduced time-dependent renormalized-natural-orbital theory (TDRNOT) is extended towards
a multicomponent approach in order to describe H2

+ beyond the Born-Oppenheimer approximation. Two
kinds of natural orbitals, describing the electronic and the nuclear degrees of freedom are introduced, and
the exact equations of motion for them are derived. The theory is benchmarked by comparing numerically exact
results of the time-dependent Schrödinger equation for an H2

+ model system with the corresponding TDRNOT
predictions. Ground-state properties, linear-response spectra, fragmentation, and high-order harmonic generation
are investigated.
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I. INTRODUCTION

Simulating laser-driven N -particle systems truly ab initio,
i.e., by solving the time-dependent Schrödinger equation
(TDSE), is only possible for very small N . As more and more
experiments are performed in the intense-laser, ultrashort-
pulse regime [1,2], efficient time-dependent many-body meth-
ods, applicable beyond linear response, are needed. A widely
used approach is time-dependent density functional theory
(TDDFT) [3–5], in which the single-particle density n(�r,t)
is used as the basic variable. This quantity is, in principle,
sufficient to calculate every observable of a time-dependent
quantum system [3,6]. However, while the scaling of the
computational effort is favorable for TDDFT, a generally
unknown exchange-correlation (XC) functional is involved
that needs to be approximated. Especially, the often-used
adiabatic XC functionals often miss correlation effects [7–9].
Additionally, not all observables are known as functionals
of n(�r,t) (an example being correlated photoelectron spec-
tra [10]), meaning that even if the exact single-particle density
n(�r,t) was reproduced by TDDFT, the interesting observables
measured in nowadays intense-laser matter experiments could
not be reproduced. Other approaches, e.g., multiconfigura-
tional time-dependent Hartree-Fock (MCTDHF) [11,12] or
time-dependent configuration interaction (TDCI) [13–17] do
not suffer from these difficulties, however, at a price of much
higher computational cost.

When applying many-body methods to molecular sys-
tems, the Born-Oppenheimer (BO) approximation is often
employed, or the nuclei are even treated classically. However,
for an accurate description of molecules in, e.g., strong laser
fields, the nuclei should be treated fully quantum mechanically
beyond BO. Especially in the case of fragmentation of
molecules in intense laser fields the adiabatic BO approx-
imation may break down as electronic and nuclear energy
scales are not well separated at avoided crossings or conical
intersections. Several approaches aiming at the description
of correlated electron-nuclear dynamics beyond the BO ap-
proximation were presented in the last few years, e.g., the
exact factorization of the molecular wave function [18–20], a
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multiconfigurational time-dependent Hartree (Fock) approach
[MCTDH(F)] [21–23], or a multicomponent extension of
(TD)DFT [MC(TD)DFT] [24–26], which, besides the single-
particle electron density, also takes the diagonal of the nuclear
density matrix into account.

In this paper, we extend the recently introduced
time-dependent renormalized-natural-orbital theory
(TDRNOT) [27–30] towards the simplest molecular system,
H2

+, taking both the electronic and nuclear degrees of freedom
fully quantum mechanically into account. We restrict ourselves
to a low-dimensional H2

+ model system [20,23,26,31–34]
in order to have the TDSE benchmark results readily
available. However, the TDRNOT equations derived in this
work are easily generalized to the real, three-dimensional
(3D) H2

+.
The basic quantities of our theory are the so-called natural

orbitals (NOs), introduced by Löwdin as the eigenfunctions
of the one-body reduced density matrix (1-RDM) [35].
Equations of motion (EOM) for the NOs can be derived.
However, as each NO is defined up to a phase factor
only, the EOM are not unique. This phase freedom can be
employed to the computational benefit and to remove seeming
singularities. Renormalizing NOs amounts to normalizing
them to their eigenvalues, which simplifies an exactly unitary
propagation [28]. TDRNOT has been applied to a model
two-electron atom and performed well in treating phenomena
where TDDFT with known and practicable XC functionals
fails [28–30]. As the NOs are proven to form the best possible
basis for two-electron systems [36], the hope is that TDRNOT
provides a means to treat bigger systems in a computationally
economic way as well.

The paper is structured as follows. The H2
+ model system

and the basic properties of the reduced density matrices
and NOs of a two-component system are introduced in
Sec. II. The EOM for the NOs are presented in Sec. III.
In Sec. IV we benchmark TDRNOT by first calculating
ground-state properties and linear-response spectra. Second,
the interaction with intense laser pulses is simulated, with
the focus on the fragmentation dynamics and high-order
harmonic generation (HHG). Finally, in Sec. V we give a
conclusion.

Atomic units (a.u.) are used throughout unless noted
otherwise.
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II. NATURAL-ORBITAL THEORY FOR
A TWO-COMPONENT SYSTEM

A. Model system

We apply TDRNOT to the widely used one-dimensional
H2

+ model system [20,23,26,31–34]. This collinear model
utilizes the fact that the ionization and dissociation dynamics of
H2

+ is predominantly constrained to the polarization direction
when interacting with a strong, linearly polarized laser field.
The reduced dimensionality permits the exact numerical
solution of the TDSE at relatively low computational cost,
and thus efficient benchmarking of TDRNOT.

The Hamiltonian of the H2
+ model system (in dipole

approximation and length gauge) reads

Ĥ (x,R,t) = ĥe + ĥn + Ven(x,R), (1)
where

ĥe(x,t) = − 1

2 μe
∂2
x + qe x E(t) (2)

ĥn(R) = − 1

2 μn
∂2
R + Vnn(R). (3)

x and R denote the electron coordinate and the internuclear
distance, respectively. We introduce ĥe and ĥn as the single-
particle Hamiltonians for the electronic and nuclear degree
of freedom, respectively. Furthermore, μe = 2 M/(2 M + 1)
(with the proton mass M � 1836) and μn = M/2 denote the
reduced masses of the electron and the nuclei, respectively,
and qe = (2 M + 2)/(2 M + 1) is the reduced charge.

The interaction potentials are modeled by soft-core poten-
tials in order to eliminate the singularities:

Ven(x,R) = − 1√(
x − R

2

)2 + ε2
en

− 1√(
x + R

2

)2 + ε2
en

, (4)

Vnn(R) = 1√
R2 + ε2

nn

. (5)

The softening parameters are set to ε2
en = 1 and ε2

nn = 0.03.
To describe the model system in terms of NOs it is useful

to expand the wave function in orthonormal single-particle
wave functions describing the electronic and nuclear degree of
freedom. The Schmidt decomposition [37] ensures that only a
single summation is necessary for this expansion,

�(x,R,t) =
∑

k

ck(t) ϕk(x,t) ηk(R,t). (6)

B. Density matrices and natural orbitals

Let us start from the pure density matrix

γ̂1,1(t) = |�(t)〉 〈�(t)| . (7)

Unlike in the two-electron case [28] the pure two-body density
matrix (2-DM) is a multicomponent object in the case of H2

+.
Due to the two distinguishable degrees of freedom, different
1-RDMs are obtained, depending on which degree of freedom
is traced out,

γ̂1,0(t) = Trn γ̂1,1(t), (8)

γ̂0,1(t) = Tre γ̂1,1(t). (9)

As the NOs and occupation numbers (ONs) are defined as the
eigenstates and eigenvalues of the 1-RDM, respectively, two
different kinds of orbitals are expected:

γ̂1,0(t) |k(t)〉 = nk(t) |k(t)〉 (10)

γ̂0,1(t) |K(t)〉 = NK (t) |K(t)〉. (11)

Throughout this paper, we will use lowercase letters for
electronic NOs and uppercase for nuclear NOs.

Inserting Eq. (6) into Eqs. (7)–(11) leads to the conclusion
that the single-particle wave functions in Eq. (6) are the
electronic and nuclear NOs,

ϕk(x,t) = 〈x|k(t)〉 , ηk(R,t) = 〈R|K(t)〉 , (12)

respectively. The expansion coefficients in Eq. (6) can be
expressed in terms of the ONs,

ck(t) =
√

nk(t) eiφk (t), (13)

i.e., they are defined up to a phase factor. Additionally, one
finds the constraint

nk(t) = NK (t). (14)

Hence, ONs of each pair of electronic and nuclear NOs have
to be equal at any time, despite their distinguishability.

For a numerical propagation it is beneficial to introduce
renormalized natural orbitals (RNOs)

|k̃(t)〉 =
√

nk(t) |k(t)〉 , |K̃(t)〉 =
√

NK (t) |K(t)〉 (15)

in order to unify the coupled equations of motion for the ONs
and NOs and thus propagate only one combined quantity. In
terms of RNOs

γ̂1,0(t) =
∑

k

|k̃(t)〉 〈k̃(t)| . (16)

In the same way γ̂0,1(t) can be expanded in nuclear RNOs. The
multicomponent 2-DM γ̂1,1 expanded in RNOs reads

γ̂1,1(t) =
∑
iJ kL

γ̃iJ kL(t) |ĩ(t),J̃ (t)〉 〈k̃(t),L̃(t)|. (17)

The expansion coefficients γ̃iJ kL(t) are exactly known in
the case of a two-particle system like helium [28]. But also for
any other systems with two degrees of freedom

γ̃iJ kL(t) = 1√
ni(t) nk(t)

δi,J δk,L (18)

holds.
By definitions (10), (11) the NOs are determined only

up to an orbital-dependent factor. Assuming the NOs to be
normalized (e.g., to unity) there remains still the freedom
to choose an orbital-dependent phase factor. Such a choice,
however, will affect the phase factors eiφk (t) in the expansion (6)
of �(x,R,t). The phase freedom of the NOs thus allows for a
phase transformation leading to tunable, constant phases (for
more details see Ref. [28]), and all time dependencies are then
incorporated in the so-called phase-including natural orbitals
(PINOs) [38–40]. Moreover, as already noted in Ref. [28], even
after shifting all time dependencies from the phase factor to the
NOs there is still the freedom to distribute this phase arbitrarily
between each pair of orbitals in the product ϕk(x,t) ηk(R,t).
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The time evolution of the electronic NOs can be formally
expanded as

i∂t |k(t)〉 =
∑
m

αkm(t) |m(t)〉 (19)

(analogously for the nuclear NOs). Different phase choices
translate to different diagonal elements αkk(t) and αKK (t).

III. EQUATIONS OF MOTION

Starting from the EOM of the 2-DM and with the knowledge
of the expansions of the 1-RDM and 2-DM in RNOs, exact
equations of motion for the two types of RNOs can be
derived. The electronic RNOs evolve (all time arguments are
suppressed for the sake of brevity) according to

i∂t |ñ〉 = ĥe |ñ〉 + An |ñ〉 +
∑
k �=n

Bnk |k̃〉 +
∑

k

Ĉnk |k̃〉 (20)

with the coefficients

An = βn − 1

nn

Re
∑
pJL

γ̃nJpL 〈p̃L̃|V̂en|ñJ̃ 〉 , (21a)

Bnk = 1

nn − nk

∑
pJL

[γ̃pLnJ 〈k̃J̃ |V̂en|p̃L̃〉

− γ̃kJpL 〈p̃L̃|V̂en|ñJ̃ 〉], (21b)

Ĉnk =
∑
JL

γ̃kJnL 〈L̃|V̂en|J̃ 〉 , (21c)

while the EOM for the nuclear RNOs is of a similar form:

i∂t |Ñ〉 = ĥn |Ñ〉 + AN |Ñ〉 +
∑
K �=N

BNK |K̃〉 +
∑
K

ĈNK |K̃〉

(22)

with

AN = − βn

NN

Re
∑
ijL

γ̃iNjL 〈j̃ L̃|V̂en|ĩÑ〉 , (23a)

BNK = 1

NN − NK

∑
ijL

[γ̃jLiN 〈ĩK̃|V̂en|j̃ L̃〉

− γ̃iKjL 〈j̃ L̃|V̂en|ĩÑ〉], (23b)

ĈNK =
∑
ij

γ̃iKjN 〈j̃ |V̂en|ĩ〉 . (23c)

In order to fulfill the constraint given in Eq. (14) at any time also
ṅi(t) = ṄI (t) has to hold. While this condition is automatically
fulfilled during real-time propagation, the distribution of the
phase between each pair of orbitals has to be chosen in a
particular way during imaginary-time propagation in order
to find the true ground state of the system. To that end the
parameters

βn = 1

2
Re

[
〈Ñ |ĥn|Ñ〉 − 〈ñ|ĥe|ñ〉∑

k,K
1√

nn nk
〈ñÑ |V̂en|k̃K̃〉 δk,K

+ 1

]
(24)

during imaginary-time propagation are introduced (arbitrary
real βn can be chosen during real-time propagation; we simply
took βn = 1/2).

The EOM are exact for an infinite number of RNOs.
However, in a numerical implementation it is necessary to
restrict the number of orbitals to a finite value No. This
truncation introduces errors in the propagation. We will
therefore analyze the effect of the truncation by comparing
to the corresponding exact results obtained by propagating
the full many-body wave function according to the TDSE. In
particular, we may extract the correct, truncation-free NOs by
diagonalizing the exact 1-RDMs.

IV. RESULTS

In this section, we first benchmark ground-state results for
the H2

+ model obtained with TDRNOT in imaginary time
against the TDSE result. Second, as the simplest real-time
propagation application, linear-response spectra are calculated
for different No and compared to the reference TDSE result.
Finally, we consider the interaction with a short, intense laser
pulse.

A. Ground state

The ground-state energies obtained from a TDRNOT
imaginary-time propagation of No orbitals per degree of
freedom are presented in Table I, together with the exact value
from the TDSE.

Clearly, the TDRNOT ground-state energy converges to
the exact value for increasing No, and only a few RNOs
are needed to obtain excellent agreement. The ONs show a
behavior expected for the ground state: The first orbital is
highly occupied with an ON close to one while the ONs for
higher orbitals decrease rapidly with increasing orbital index.

Using only one orbital per degree of freedom (No = 1)
TDRNOT corresponds to an uncorrelated time-dependent
Hartree (TDH) approach [41]. The ground-state energy is
already reasonably accurate. However, it is known that the
TDH approach fails to describe dissociation, as the nuclear
potential is only well approximated around the equilibrium
internuclear distance [23,26,41].

Not only the ground-state energy but also the correlated
ground-state probability density is in excellent agreement if
enough RNOs are taken into account, as shown in Fig. 1.

TABLE I. Energies and ONs of the ground state obtained from
imaginary-time propagation using different No. The exact TDSE
results are presented for comparison. With increasing No the values
converge to the exact results.

Total energy Dominant occupation numbers

No E0 [a.u.] n1 n2 /10−3 n3 /10−6 n4 /10−8

1 −0.774 84 1.000 00
2 −0.776 36 0.997 75 2.255
4 −0.776 38 0.997 70 2.291 8.330 4.685
8 −0.776 38 0.997 70 2.291 8.332 4.746
TDSE −0.776 38 0.997 70 2.291 8.332 4.746
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FIG. 1. Plot of the correlated ground-state probability density
|�(x,R)|2 for (a) No = 1, (b) No = 2, (c) No = 4, and (d) No = 8 for
negative values of x. For x > 0 the absolute difference to the exact
probability density is plotted.

A gridlike structure is apparent in the differences between
the TDRNOT ground-state probability densities and the exact
TDSE density. This structure is related to the location of the
nodal lines of the most significant RNO not included in the
TDRNOT calculation.

B. Linear-response spectrum

In order to obtain linear-response spectra, the initial ground-
state RNOs are propagated in real time for tmax = 2000
after a kick with a small electric field (E = 0.0001). An
imaginary potential is enabled to prevent reflection of the
density at the boundaries of the grid. Fourier transforming
the time-dependent dipole expectation value d(t),

d(t) = −〈�(t)|qex̂|�(t)〉 = −
∑

n

qe 〈ñ(t)|x̂|ñ(t)〉, (25)

leads to a spectrum which exhibits peaks at energy differences
E − E0 of dipole-allowed transitions. The resulting spectra
calculated from TDRNOT propagations with different No as
well as the reference spectrum from a TDSE calculation are
depicted in Fig. 2.

A severe difference between the exact and the TDRNOT
result is apparent. As the electronic first excited state (in
the BO picture) is dissociative, a broad continuous feature
is visible in the exact spectrum. This is also the case for other
electronic transitions. In contrast to HD+ [26], vibrational
excitations have vanishing dipole oscillator strengths. Hence,
no excitations at low energies are visible. The results from
the TDRNOT calculations show a different behavior: Discrete
peaks are observed instead of a continuum. The number of
peaks increases with the number of RNOs used in the calcula-
tion. In contrast to the helium model atom—where including
more RNOs leads to the appearance of peaks describing
series of doubly excited states [28]—in the molecular case
several of the emerging discrete peaks can be assigned to the
same electronic transition. The increasing number of discrete
transitions should finally result in a continuous spectrum if
enough orbitals are taken into account. For the TDH case No =
1 this behavior has already been observed [23,26,41]. Using the
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FIG. 2. Linear-response spectra obtained from TDRNOT calcula-
tions with different numbers of RNOs No compared to the exact TDSE
result. Each spectrum is normalized to one, and the spectra are shifted
vertically by factors of 10−5 in order to make them distinguishable.

Hartree approximation, only one sharp peak—corresponding
to a transition to a bound state—appears in the spectrum for
the first electronic transition. The reason for this erroneous
behavior is the wrong shape of the nuclear potential in this
case (see, e.g., Refs. [26,41]).

As stated before, the restriction to a finite number of RNOs
introduces a truncation error. Truncation-error-free reference
results for a given No can be obtained by diagonalization of
the exact 1-RDM (from the TDSE). The resulting spectrum
from only one truncation-error-free NO (labeled with TDSE
No = 1) is also shown in Fig. 2. It almost completely coincides
with the full exact result. One thus can conclude that almost all
important information is already included in the first dominant
RNO. However, due to the coupling between RNOs in the
TDRNOT EOM all other RNOs are important during the
propagation.

C. H2
+ in intense laser fields

Many different processes influence the fragmentation dy-
namics of molecules subjected to intense laser fields, e.g., bond
softening [42], above-threshold dissociation (ATD) [43], bond
hardening or vibrational trapping [44], charge-resonance-
enhanced ionization [45], and the retroaction due to the long-
range Coulomb potential [46]. We want to further benchmark
TDRNOT by investigating its ability to describe nonperturba-
tive phenomena far from equilibrium. As the theory is aiming
to describe strong-field laser-matter interaction, we study the
fragmentation of H2

+ upon the interaction with a short, intense
laser pulse. Furthermore, HHG spectra are calculated.

1. Dissociation and ionization

An infrared 800-nm four-cycle pulse with a sin2 envelope
and a peak intensity of I0 = 1014 W/cm2 was applied to the
H2

+ model system. Upon the interaction with an intense
laser pulse, fragmentation can occur due to dissociation or
dissociative ionization (DI). In the latter case the removal of
the electron leads to Coulomb explosion as the nuclei fly apart
due to their Coulomb repulsion. In order to judge whether
the different fragmentation processes can be reproduced with
TDRNOT, we analyze the time-dependent nuclear probability

043414-4



TIME-DEPENDENT RENORMALIZED-NATURAL-ORBITAL . . . PHYSICAL REVIEW A 93, 043414 (2016)

0

10

20

30
(a) (b) (c)

R
 [a

.u
.]

0

10

20

30

 0 1000 2000 3000

(d)

t [a.u.]

 0 1000 2000 3000

(e)

 0 1000 2000 3000 10-12

10-10

10-8

10-6

10-4

10-2

100

P n
uc

(R
,t)

 [a
.u

.]

(f)

FIG. 3. Time-dependent nuclear probability density upon the interaction with an 800-nm four-cycle pulse with I0 = 1014 W/cm2. Again
different numbers of orbitals were used: (a) No = 1, (b) No = 2, (c) No = 4, (d) No = 8, and (e) No = 10. With more RNOs included, the
agreement with the exact result of the TDSE, given in (f), is considerably improved.

density,

Pnuc(R,t) =
∫

dx |�(x,R,t)|2 =
∑

k

|η̃k(R,t)|2. (26)

Figure 3 shows the logarithmically scaled, time-dependent
nuclear probability density Pnuc(R,t) resulting from TDRNOT
calculations. The TDSE reference result is included for
comparison in Fig. 3(f). In the latter figure a many-fold
jetlike structure becomes apparent, which can be attributed to
dissociation. Due to ATD—the absorption of more photons
than needed—dissociation channels with different kinetic
energies of the fragments appear. In the TDH case No =
1, however, the time-dependent nuclear probability density
shows no indication of dissociation at all [Fig. 3(a)]. This
erroneous behavior is due to the wrong shape of the effective
nuclear potential again (see Fig. 1 in Ref. [41]). Vibrations
around the equilibrium internuclear distance are already
reproduced though. A TDRNOT calculation with No = 2
does not lead to a much improved result. However, four
RNOs are sufficient for reproducing dissociation, as the most
prominent jet is clearly visible, although the broadening is
not yet in good agreement with Pnuc(R,t) obtained from the
TDSE. As expected, including more orbitals leads to a better
agreement with the exact result. A second jet corresponding
to dissociation upon the absorption of a different number of
photons is already clearly visible in the No = 8 density, and
with two more orbitals the broadening improves. However,
an erroneous structure emerges at intermediate internuclear
distances 10 < R < 20, which vanishes with even more RNOs
(not shown).

The kinetic energy release (KER) in the nuclear fragments
for dissociation and DI can be calculated from the RNOs by
means of the virtual-detector method [33,47]. To that end we
reconstruct the wave function from the RNOs and then follow
Ref. [33]. The resulting KER spectra obtained with ten RNOs
per degree of freedom are compared with the corresponding
TDSE benchmark results in Fig. 4(a).

Regarding dissociation, multiple peaks at energies Ekin <

0.2 are observed. The most distinct peaks are separated by
roughly the photon energy and can be assigned to three-
and four-photon ATD, respectively. These processes were
found to be dominant also for longer pulses of the same
wavelength and intensity [48]. The expected positions of
the peaks (using the BO-approximation and assuming the
vibrational ground state) in the spectrum can be calculated
using a simple energy conservation formula [32]. These
positions are depicted as vertical gray lines in Fig. 4(a).
The spectrum obtained from the TDRNOT calculation has
a structure similar to the exact one—heights and positions
of the peaks coincide approximately with the exact results.
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FIG. 4. Energy spectra for nuclei and photoelectrons, calculated
using the (extended) virtual-detector method. The laser parameters
are the same as in Fig. 3. (a) Kinetic-energy spectra of the nuclei for
dissociation (blue) and DI (red). The vertical gray lines denote 2ω, 3ω,
and 4ω absorption from the vibrational ground state. (b) TDRNOT
photoelectron spectrum for 10 RNOs per degree of freedom (red,
dashed) compared to the exact result from the TDSE (orange, solid).
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However, in the TDRNOT spectrum several discrete peaks
are visible for the three-photon dissociation instead of the
broad, continuous energy distribution in the exact spectrum.
Moreover, there are discrepancies for lower energies, and the
two-photon dissociation is missing completely.

The KER spectrum in the case of DI is, as the Coulomb
energy is released, centered around higher energies Ekin > 0.2.
Note the different scaling of the ordinate as the ionization
yield is several orders of magnitude below the dissociation
yield. There are slight deviations of TDRNOT from the
exact result—the spectrum obtained from TDRNOT is shifted
towards lower energies—but the general structure of the
spectrum is reproduced.

Furthermore, in the case of DI, we calculate electronic
kinetic-energy spectra using the extended virtual-detector
method [49]. Starting from the virtual detectors, classical
trajectories are calculated in order to obtain the final momen-
tum of the electron at the end of the laser pulse. The results
are presented in Fig. 4(b). For both the TDRNOT and the
TDSE results, a modulation in the yield, depending on Eel

kin, is
visible. This can be attributed to the interference of quantum
trajectories starting at different ionization times, which lead to
the same final momentum [50,51]. In the case of the electronic
kinetic-energy spectrum, the agreement between the results
from a TDRNOT calculation with No = 10 and the exact result
is clearly better than for the KER spectra. This shows that
different minimum numbers of RNOs are required, depending
on the observable to calculate.

2. HHG spectra

Harmonic spectra are obtained by Fourier transforming the
time-dependent dipole acceleration d̈(t) [52], which is given
by

μe

qe
d̈(t) =

∫
dx

∫
dR |�(x,R,t)|2 ∂Ven

∂x
+ qe E(t). (27)

An 800-nm 10-cycle pulse with sin2-shaped on and off ramping
over two cycles was employed. The peak intensity of the laser

pulse was I0 = 3.0 × 1014 W/cm2. In Fig. 5, TDRNOT HHG
spectra, calculated using 1–8 RNOs per degree of freedom, are
compared to the exact TDSE spectrum. In the inset, a part of
the spectrum is plotted on a linear scale.

With only one RNO the position of the cutoff is already in
good agreement with the exact result. However, the shape
of individual peaks, especially at high harmonic order, is
completely wrong. The TDRNOT calculation with No = 2
exhibits erroneous peaks in addition to the peaks at the odd
harmonics, especially pronounced in the region beyond the
cutoff. When adding more RNOs the quantitative agreement
improves, and the wrong peaks vanish. A similar improvement
with increasing number of single-particle functions has been
reported for calculations using an MCTDH approach [23].
For No = 8 the height and the shape of the peaks are well
reproduced up to the 60th harmonic order. At very high
harmonic orders some deviations in the spectra are still visible,
and the noise level of the TDRNOT results is two orders of
magnitude higher than for the TDSE. A similar behavior was
observed for HHG in a model He atom [30]. On a linear scale,
as often used in experiments, the agreement is excellent and
clearly improves with increasing No (see insets in Fig. 5).

V. CONCLUSION

We have investigated the performance of time-dependent
renormalized-natural-orbital theory (TDRNOT) when applied
to the simplest multicomponent system exhibiting electron-
nuclear correlation, i.e., H2

+. Different types of renormalized
natural orbitals (RNOs), describing the electronic and the
nuclear component, were introduced, and their coupled equa-
tions of motion derived. As in the case of helium investigated
earlier no approximations concerning the expansion of the
time-dependent two-body density matrix need to be made.

In order to benchmark the theory the ground state of a one-
dimensional H2

+ model system and linear-response spectra
were calculated using TDRNOT. While an excellent agreement
with the exact ground-state energy was achieved with very few
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FIG. 5. HHG spectra for an 800-nm 10-cycle flat-top pulse with I0 = 3.0 × 1014 W/cm2 calculated with TDRNOT using 1, 2, 4, and 8
RNOs per degree of freedom compared to the exact spectrum obtained from the TDSE. The insets show a section of each spectrum plotted on
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orbitals, the linear-response spectra were plagued by multiple
sharp peaks that only for very many orbitals would reproduce
the correct, broad structure caused by bound-continuum
transitions. This unpleasant feature is caused by the restriction
to a finite number of orbitals, which introduces a truncation
error. Future work will be devoted to improve on that aspect of
TDRNOT.

Finally, TDRNOT was applied to H2
+ interacting with

a short, intense laser pulse. The time evolution of the
nuclear probability density was studied, and features indicating
different fragmentation processes were identified. It was

found that TDRNOT is able to reproduce dissociation and
Coulomb explosion and the corresponding kinetic-energy-
release spectra if enough RNOs are taken into account. The
same applies to high-harmonics spectra where eight RNOs
were found to yield very good agreement with the benchmark
result from the time-dependent Schrödinger equation.
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[35] P.-O. Löwdin, Quantum theory of many-particle systems. I.
Physical interpretations by means of density matrices, natural
spin-orbitals, and convergence problems in the method of
configurational interaction, Phys. Rev. 97, 1474 (1955).

[36] K. J. H. Giesbertz, Are natural orbitals useful for generating
an efficient expansion of the wave function?, Chem. Phys. Lett.
591, 220 (2014).

[37] A. Pathak, Elements of Quantum Computation and Quantum
Communication (CRC Press/Taylor and Francis, Boca Raton,
FL, 2013), p. 92.

[38] K. J. H. Giesbertz, Ph.D. thesis, Free University Amsterdam,
2010; http://dare.ubvu.vu.nl/handle/1871/16289.

[39] K. J. H. Giesbertz, O. V. Gritsenko, and E. J. Baerends, Response
calculations based on an independent particle system with the
exact one-particle density matrix: Excitation energies, J. Chem.
Phys. 136, 094104 (2012).

[40] R. van Meer, O. V. Gritsenko, K. J. H. Giesbertz, and E. J.
Baerends, Oscillator strengths of electronic excitations with re-
sponse theory using phase including natural orbital functionals,
J. Chem. Phys. 138, 094114 (2013).

[41] T. Kreibich, R. van Leeuwen, and E. K. U. Gross, Time-
dependent variational approach to molecules in strong laser
fields, Chem. Phys. 304, 183 (2004).

[42] P. H. Bucksbaum, A. Zavriyev, H. G. Muller, and D. W.
Schumacher, Softening of the H+

2 Molecular Bond in Intense
Laser Fields, Phys. Rev. Lett. 64, 1883 (1990).

[43] A. Giusti-Suzor, X. He, O. Atabek, and F. H. Mies, Above-
Threshold Dissociation of H+

2 in Intense Laser Fields, Phys.
Rev. Lett. 64, 515 (1990).

[44] A. Giusti-Suzor and F. H. Mies, Vibrational trapping and
suppression of dissociation in intense laser fields, Phys. Rev.
Lett. 68, 3869 (1992).

[45] T. Zuo and A. D. Bandrauk, Charge-resonance-enhanced ion-
ization of diatomic molecular ions by intense lasers, Phys. Rev.
A 52, R2511 (1995).

[46] M. Waitz, D. Aslitürk, N. Wechselberger, H. K. Gill, J. Rist, F.
Wiegandt, C. Goihl, G. Kastirke, M. Weller, T. Bauer, D. Metz,
F. P. Sturm, J. Voigtsberger, S. Zeller, F. Trinter, G. Schiwietz,
T. Weber, J. B. Williams, M. S. Schöffler, L. P. H. Schmidt, T.
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[50] D. B. Milošević, G. G. Paulus, D. Bauer, and W. Becker, Above-
threshold ionization by few-cycle pulses, J. Phys. B.: At., Mol.
Opt. Phys. 39, R203 (2006).
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