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Rotating-frame perspective on high-order-harmonic generation of circularly polarized light
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We employ a rotating frame of reference to elucidate high-order-harmonic generation of circularly polarized
light by bicircular driving fields. In particular, we show how the experimentally observed circular components of
the high-order-harmonic spectrum can be directly related to the corresponding quantities in the rotating frame.
Supported by numerical simulations of the time-dependent Schrödinger equation, we deduce an optimal strategy
for maximizing the cutoff in the high-order-harmonic plateau while keeping the two circular components of
the emitted light spectrally distinct. Moreover, we show how the rotating-frame picture can be more generally
employed for elliptical drivers. Finally, we point out how circular and elliptical driving fields show a near-duality
to static electric and magnetic fields in a rotating-frame description. This demonstrates how high-order-harmonic
generation of circularly polarized light under static electromagnetic fields can be emulated in practice even at
static field strengths beyond current experimental capabilities.
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I. INTRODUCTION

High-order-harmonic generation (HHG) of circularly polar-
ized light was studied theoretically already in the 1990s [1–5]
but experimental demonstrations were not successful until
very recently [6,7]. The experimentally obtained high-order-
harmonic spectra for such fields, including extensions towards
elliptical drivers [6], inspired theoretical efforts to provide
simple explanations for the observed features, in particular
with respect to conservation of photon angular momenta
and corresponding selection rules [8,9]. Generating isolated
circularly polarized high harmonics has been the subject
of further theoretical [10] and experimental [11] studies.
Furthermore, it was shown recently that high-order-harmonic
spectra with circular polarization can be made to reach even
into the soft x-ray regime [12].

At the base of most schemes for generation of high-order-
harmonic circular light lies the use of a driving field that
is a superposition of two copropagating but counter-rotating
circular drivers with different frequencies. It has recently
also been shown that counter-rotating drivers with the same
frequency can be used when employing a noncollinear driving
scheme [11]. In a somewhat different context, namely, in
the presence of additional static electromagnetic fields, HHG
with such counter-rotating fields was also studied in the
2000s [13,14]. However, these studies neither considered the
generated high-order-harmonic light in terms of its circularly
polarized components nor reported significant effects on the
spectrum for readily available static magnetic- and electric-
field strengths.

In this paper we show how in an axially symmetric setup
a great deal of understanding of HHG with nonlinearly
polarized driving fields can be obtained by going to a rotating
frame. Focusing on the paradigmatic case of counter-rotating
bicircular drivers we illustrate how this allows us to obtain
a surprisingly simple characterization that even enables the
formulation of optimal strategies for obtaining high-order
harmonics with well-characterized circular polarization.

We begin by describing in Sec. II how a rotating frame
of reference can be employed to obtain a single linearly
polarized driving field from a bicircular driver in the laboratory

frame. In Sec. III we show that there is a direct connection
between the high-order-harmonic spectra in rotating frames
and the laboratory frame when considering the circular
components of the emitted light. This allows us to illustrate in
Sec. IV that the most striking properties of the generation of
circularly polarized high-order harmonics can be very easily
explained utilizing the linearizing rotating frame introduced
in Sec. II. To emphasize this point even further we show
in Sec. V how the rotating-frame description allows us to
formulate an optimal experimental strategy towards obtaining
a high-order-harmonic plateau in the emission spectrum that
is as far extended as possible while still separating the
left- and right-circularly polarized components energetically.
We support these findings with numerical simulations of
HHG on the single-atom level by solving the time-dependent
Schrödinger equation (TDSE) for a two-dimensional model
atom using the single-active-electron approximation. We finish
our discussion by presenting two particular perspectives on
the rotating-frame description: In Sec. VI we consider a more
general setup involving elliptical driving fields, and in Sec. VII
we show how the study of HHG in rotating frames is strongly
connected to questions concerning HHG in the presence of
static electromagnetic fields. Finally, Sec. VIII concludes.

Atomic units are used throughout unless otherwise noted.

II. THE LINEARIZING ROTATING FRAME FOR
BICIRCULAR DRIVERS

We consider the Hamiltonian of an axially symmetric field-
free Hamiltonian H0 under the influence of the electric field
of two counter-rotating circularly polarized laser pulses with
envelope F0(t) and frequencies ω1,ω2:

H (t) = H0 + F0(t)[x cos(ω1t) + y sin(ω1t)

+ x cos(ω2t) − y sin(ω2t)]. (1)

The Hamiltonian (1) models, e.g., an atom or a linear molecule
aligned along the z axis. Throughout this paper we will use
the convention where the ω1 field in Eq. (1) is termed right-
circularly polarized and the ω2 field is termed left-circularly
polarized.
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We now perform a unitary transformation on this Hamil-
tonian, first applied to HHG processes in Ref. [14] and first
mentioned in the explicit context of generation of circularly
polarized high harmonics in Ref. [15], given by the following
expression:

U (t) = e−iαtLz , (2)

with Lz being the operator of angular momentum correspond-
ing to rotation around the z axis. Hence, Eq. (2) represents a
rotation in the (x,y) plane with angular frequency −α. The
rotating Hamiltonian reads

H ′(t) = U (t)HU †(t) − iU (t)
∂

∂t
U †(t).

Clearly U (t)H0U
†(t) = H0 due to the axial symmetry assumed

for H0. Furthermore

U (t)xU †(t) = x cos(αt) + y sin(αt),

U (t)yU †(t) = y cos(αt) − x sin(αt),

which allows us to transform the interaction term Hint(t) =
H (t) − H0 in Eq. (1) as follows:

U (t)Hint(t)U
†(t) = F0(t)[x cos(ω1t) cos(αt)

+ y cos(ω1t) sin(αt)

+ y sin(ω1t) cos(αt) − x sin(ω1t) sin(αt)

+ x cos(ω2t) cos(αt) + y cos(ω2t) sin(αt)

− y sin(ω2t) cos(αt) + x sin(ω2t) sin(αt)].

Using the addition theorems of sine and cosine one arrives at
the expression

U (t)Hint(t)U
†(t) = F0(t)[x cos([ω1 + α]t) + y sin([ω1 + α]t)

+ x cos([ω2 − α]t) − y sin([ω2 − α]t)].

(3)

By choosing

α = ω2 − ω1

2
(4)

and defining the average frequency

ω̃ ≡ ω1 + ω2

2
= ω1 + α = ω2 − α (5)

we observe that the sine terms in Eq. (3) cancel and only a
linearly polarized field with frequency ω̃ remains. Hence we
obtain for the total Hamiltonian in the rotating frame

H ′(t) = H0 + αLz + 2F0(t)x cos (ω̃t). (6)

We will mostly focus on the case ω2 > ω1 whence by Eq. (4)
α > 0 follows.

We conclude that the dynamics of two counter-rotating
circularly polarized driving fields can be interpreted as a single
linearly polarized driver with double the field strength at the
mean frequency. In the rotating frame an additional angular
momentum term appears, which we will call the Coriolis term
in accordance with Ref. [15], proportional to half the difference
frequency. For two corotating circularly polarized drivers the
result is almost identical and can be obtained by substituting
ω2 → −ω2. The linearly polarized field in this case has a

frequency equal to half the difference in frequency between
the circular drivers while the Coriolis term will now be equal
to α′Lz with α′ = ω1+ω2

2 corresponding to the mean frequency.
Although we started with a Hamiltonian written in length

gauge and employed the dipole approximation in Eq. (1) we
want to point out that the appearance of the Coriolis term
in the rotating frame is a general feature of the rotating-
frame transformation (see, e.g., Ref. [16]). Furthermore we
restricted ourselves to a purely nonrelativistic description. This
is adequate up to laser intensities of about 1017 W/cm2 for a
standard 800-nm laser beyond which the dipole approximation
will also break down [17]. The rotating-frame transformation
in Eq. (2) is consistent in the framework of the nonrelativistic
Schrödinger equation since, by virtue of being unitary, it
preserves the expectation values of all observables between
the frames. A proper relativistic description of such a transfor-
mation to a noninertial frame of reference would require using,
e.g., an extension of the Dirac equation [18] as a starting point
and is beyond the scope of this work.

III. TRANSLATING HARMONIC SPECTRA BETWEEN
THE LABORATORY AND ROTATING FRAMES

How does one translate the harmonic signal of an atom
or molecule from the rotating frame back to the laboratory
frame? The high-order-harmonic signal in the laboratory frame
has regularly been associated with the square of the Fourier
transform of the dipole expectation value [19–21]; e.g., for the
harmonic signal in the x direction one obtains

S lab
x (ω) =

∣∣∣∣
∫

Dlab
x (t)e−iωt dt

∣∣∣∣
2

=
∣∣∣∣
∫

〈x〉labe
−iωt dt

∣∣∣∣
2

,

where the expectation value 〈·〉lab is taken with respect to the
time-dependent wave function in the laboratory frame, |ψ(t)〉.
Note that we already absorbed the minus sign from the dipole
expectation value due to the electronic charge into the modulus.
The wave function in the rotating frame is given by U (t)|ψ(t)〉
with U (t) given by Eq. (2). Using U (t)U †(t) = U †(t)U (t) = 1

we obtain the expression

Dlab
x (t) = 〈x〉lab = 〈ψ(t)|x|ψ(t)〉

= 〈ψ(t)|U †(t)U (t)xU †(t)U (t)|ψ(t)〉
= 〈x〉rot cos(αt) + 〈y〉rot sin(αt),

where 〈·〉rot denotes expectation values with respect to the
time-dependent wave function in the rotating frame. The
analogous expressions for the y direction, Dlab

y (t), as well
as the right-circular component, Dlab

+ (t), and left-circular
component, Dlab

− (t), are given by

Dlab
y (t) = −〈x〉rot sin(αt) + 〈y〉rot cos(αt),

Dlab
+ (t) = 1√

2

(
Dlab

x (t) + iDlab
y (t)

)

= 1√
2

[〈x〉rot cos(αt) + 〈y〉rot sin(αt)

+ i〈y〉rot cos(αt) − i〈x〉rot sin(αt)],

Dlab
− (t) = 1√

2

[
Dlab

x (t) − iDlab
y (t)

]
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= 1√
2

[〈x〉rot cos(αt) + 〈y〉rot sin(αt)

− i〈y〉rot cos(αt) + i〈x〉rot sin(αt)].

For the circular components the expressions can be signifi-
cantly simplified by using cylindrical coordinates, which leads
to the expressions

Dlab
+ (t) = 1√

2
〈ρei(ϕ−αt)〉rot,

Dlab
− (t) = 1√

2
〈ρei(ϕ+αt)〉rot,

where x = ρ cos ϕ and y = ρ sin ϕ. This equation alludes to
a direct connection between the harmonic spectra obtained in
the rotating frame and the high-order-harmonic spectra in the
laboratory frame. In fact, a short calculation shows that

S lab
+ (ω) =

∣∣∣∣
∫

Dlab
+ (t)e−iωt dt

∣∣∣∣
2

=
∣∣∣∣
∫ 〈

1√
2
ρeiϕ

〉
rot

e−i(ω+αt) dt

∣∣∣∣
2

= Srot
+ (ω + α),

S lab
+ (ω − α) = Srot

+ (ω) (7)

and analogously

S lab
− (ω) = Srot

− (ω − α),
(8)

S lab
− (ω + α) = Srot

− (ω).

We conclude that the right-circular (left-circular) signal in
the laboratory frame is obtained via the right-circular (left-
circular) signal in the rotating frame shifted in frequency by α

to the left (to the right). We emphasize that this statement is
general and no assumptions on α, ω, or the particular structure
of H0 (with the exception of its axial symmetry) have been
made. This simple relationship between the circular spectral
components in the laboratory frame and rotating frame allows
us to directly apply any insights obtained about the high-order-
harmonic spectra in the rotating frame when discussing the
experimentally observed spectra in the laboratory frame.

Finally, it should be pointed out that often the high-order-
harmonic signal is associated with the Fourier transform
of the dipole acceleration rather than that of the dipole
moment [22–24]. In the Appendix we show that computing
the corresponding expectation values via Ehrenfest’s theorem
with a slight modification allows us to preserve the validity
of Eqs. (7) and (8). The result from a formulation in terms of
the dipole velocity can be derived by using the expressions
from the dipole or the dipole acceleration with an appropriate
scaling of the signal in terms of frequency [25]. Throughout
the remainder of this work we compute high-order-harmonic
spectra via the dipole acceleration using Ehrenfest’s theorem.

IV. UNDERSTANDING HHG SPECTRA FROM ANALYSES
IN ROTATING FRAMES

Using the linearizing rotating frame, we see that in an
axially symmetric setting the high-order-harmonic signal
of right-circular (left-circular) polarization under bicircular

counter-rotating driving is very similar to that of the system
under a linearly polarized driver at the mean frequency, shifted
with half the difference in frequency down (up) [see Eqs.
(4)–(8)]. The only difference to the well-studied HHG under
a linearly polarized driver lies in the additional Coriolis term
αLz in Eq. (6) that influences the system dynamics.

To illustrate how a great deal of insight regarding HHG of
circularly polarized light can be obtained by thinking in terms
of rotating frames, we perform numerical simulations of the
TDSE for a two-dimensional model atom in both laboratory
frame and rotating frame. We will continue to call the prefactor
of the Coriolis term, corresponding to the negative rotation fre-
quency of the rotating frame, α. We look at the most prevalent
example which has been studied by recent experiments—a
counter-rotating bicircular driving scheme using a first and
second harmonic [6,7], i.e., ω1 = ω0 and ω2 = 2ω0 [see Eq.
(1)]. Transforming to a rotating frame with α = 0.5ω0 [Eq.
(4)] we obtain ω̃ = 1.5ω0 [Eq. (5)]. Because our arguments
do not depend on a particular atomic or molecular species
we were able to use identical simulation parameters as in a
recent theoretical study that involved numerical simulations
with a TDSE in two dimensions for such a set of bicircular
counter-rotating drivers (see Table I in Ref. [10]). The only
numerical difference in our simulation consists in a slightly
different complex absorber and us employing a Chebyshev
propagator [26] with a Fourier method for the kinetic energy.
Matching the parameters to the axially symmetric s-type
ground-state calculation performed in Ref. [10] we employ
the screened potential V (x,y) = V (ρ) = 1√

ρ2+0.1195
leading

to an ionization potential of Ip = 0.7935. This allowed us to
confirm the adequacy of our numerics by using our code to
reproduce Fig. 1(a) of Ref. [10] in very good agreement [27].

With this set of parameters we now turn to analyze
a high-order-harmonic spectrum in a rotating frame with
α = 0.025. The driving field in this frame is given by a
trapezoidally shaped laser pulse with frequency ω̃ = 0.075.
The laser pulse is linearly polarized along the x direction
and its maximal electric-field strength is given by 2F0 = 0.1.
The linear ramp-up and ramp-down time is given by Tramp =
251.33 and the plateau width is given by Tramp = 628.32. In
the laboratory frame this corresponds to a right-circularly
polarized driver superimposed with a counter-rotating left-
circularly polarized driver with frequencies ω̃ − α = 0.05 =
ω1 = ω0 (corresponding to a wavelength of ∼911nm), respec-
tively ω̃ + α = 0.1 = ω2 = 2ω0, both with peak amplitude
F0 = 0.05.

In the rotating frame we can formulate the well-known
selection rules of HHG driven by a linearly polarized pulse;
i.e., we obtain a signal only at odd multiples of ω̃. Note that
these selection rules are not altered by the Coriolis term since it
neither breaks the inversion symmetry nor the conservation of
L2 and Lz. In the laboratory frame we obtain accordingly
by Eqs. (7) and (8) a signal from a right, respectively
left, circularly polarized field at frequencies [(2n + 1)ω̃ − α]
and [(2n + 1)ω̃ + α] (n ∈ N0) corresponding to (3n + 1)ω0

and (3n + 2)ω0, which is consistent with the selection rules
obtained in experiments [6,11] and previous theoretical studies
[28–30]. This behavior is confirmed by our numerical results
(see Figs. 1 and 2). If we ignore the Coriolis term in the
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FIG. 1. High-order-harmonic spectrum for two counter-rotating
circular drivers with ω1 = ω0 = 0.05, ω2 = 2ω1 = 0.1, and ampli-
tude F0 = 0.05 in the laboratory frame. The drivers are trapezoidally
shaped with a ramp time of two cycles, Tramp = 4π

ω0
, and a plateau

time of five cycles, Tplateau = 10π

ω0
. The solid green (dark gray) curve

is the right-circularly polarized signal in the laboratory frame, and the
solid orange curve (light gray) is the left-circularly polarized signal in
the laboratory frame. The dashed blue (dark gray) curve is the signal
in the x direction in the rotating frame (with α = 0.025) while the
dashed red (light gray) curve is the signal in the y direction in the
rotating frame. See Fig. 2 for a zoom-in.

rotating frame we have emission purely in the x direction and
as such the height of the two opposite circularly polarized
peaks originating from a given (linearly polarized) harmonic
in the rotating frame would be equal. However, the Coriolis
term does have a nonvanishing effect on the direction of the
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FIG. 2. (a) Zoomed-in high-order-harmonic spectra from Fig. 1
illustrating the spectral shifts between rotating frame and laboratory
frame. (b) Same as (a) but with rotating frame spectra also shown
in terms of right- and left-circular components. The equations above
the curves show the relations discussed in Sec. III between (a) dipole
amplitudes and (b) spectral intensities in the laboratory and rotating
frame.

emission in the rotating frame and there is a visible contribution
in the y direction which can be directly associated with the
difference in peak heights. For most peaks the contribution
from the y direction in the rotating frame for this particular
set of parameters is about one order of magnitude smaller than
the contribution from the x direction. This explains the mostly
close peak heights of neighboring left- and right-circular
harmonics in the laboratory frame (see Figs. 1 and 2).

We can even go a step further and understand the temporal
generation process of the circularly polarized light from the
perspective of the rotating frame. The highest ionization prob-
ability, which according to the three-step model [19,31,32]
forms the starting point of HHG, occurs around the peaks of the
electric field. In the rotating frame this means we can associate
bursts of linearly polarized light to extrema of the electric
field with frequency ω̃ = 1.5ω0. In terms of the period of the
first harmonic driver T = 2π

ω0
we consequently obtain bursts

of linearly polarized high-order-harmonic radiation at t =
0, 2π

3ω0
, 4π

3ω0
, 2π

ω0
, . . . = 0, T

3 , 2T
3 ,T , . . .. As discussed above, at

least for moderately small Coriolis terms, we can approximate
all emission in the rotating frame to take place along the x

direction. At t = 0 both frames are identical, hence t = 0
corresponds to a polar angle of ϕ = 0. If we associate the
times of high-order-harmonic emission with corresponding
angles with the laboratory-frame x axis we arrive at pairs
(t,ϕ) = (0,0), ( T

3 , 5π
3 ), ( 2T

3 , 4π
3 ), (T ,π ), . . .. However, we note

that the emission of high-order-harmonic bursts can occur at
both maxima and minima of the driving field. Since the driving
field is linearly polarized in the x direction in the rotating frame
we can relate these maxima and minima by considering a
mirroring at the rotating-frame y axis. Such a mirroring leads
to a shift of the emission angle in the laboratory frame by
π . Consequently, by properly taking into account emission
around both a maximum and a minimum of the electric
field, we obtain the following time-angle pairs: (t,ϕ) = (0,0),
( T

3 , 2π
3 ), ( 2T

3 , 4π
3 ), (T ,0),( 4T

3 , 2π
3 ), ( 5T

3 , 4π
3 ), (2T ,0), . . .. This

corresponds precisely to the emission pattern predicted by
previous works [4,5] in which in each cycle of the fundamental
driver three linearly polarized emission bursts are predicted,
each rotated by an angle of 120◦ with respect to each other.

V. OPTIMIZING THE HHG SPECTRUM FOR
BICIRCULAR DRIVING

For a fixed frequency ω̃ [Eq. (5)] and field strength F0

of the linearly polarized field in the linearizing rotating
frame, any bicircular driving scheme in the laboratory frame
is characterized by a single parameter: α. For α = 0, we
expect due to the linear driving in the rotating frame a high-
order-harmonic cutoff according to the semiclassical limit at

Ip + 3.17Up, with Ip the ionization potential and Up = F 2
0

4ω̃2

the ponderomotive potential. Even including the effect of the
Coriolis term, it seems natural to expect that a decrease in
ω̃ or an increase in F0 will still lead to an extension of the
high-order-harmonic plateau by increasing the ponderomotive
potential. This leaves the question regarding the role of α on
the spectral cutoff.

We show in Fig. 3 the high-order-harmonic spectrum in
the laboratory frame for ω̃ = 0.05 and F0 = 0.1 for otherwise
identical parameters as in Sec. IV. Note that ω̃ refers to the
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FIG. 3. (a-d) High-order-harmonic spectrum in the laboratory
frame for fixed ω̃ and F0 and different values of α as specified in
the panels. The green (dark gray) curve represents the right-circular
spectrum, while the orange (light gray) curve represents the left-
circular spectrum [in panel (a) both are on top since the signal in the
y direction vanishes for α = 0].

mean frequency of the counter-rotating drivers. For α = 0
[see Fig. 3(a)], laboratory frame and rotating frame are
identical, and the driving field is linearly polarized in both. The
high-order-harmonic signal in the y direction is consequently
zero. Hence, the right-circular and left-circular signals are
identical and one clearly observes the expected behavior of
spectral peaks at odd multiples of the laser frequency in the
high-order-harmonic plateau. The plateau cutoff at around
Ecutoff � 80ω̃ = 4.00 matches perfectly with the semiclassical
prediction at Ip + 3.17Up = 3.97.

Increasing the value of α gradually depresses the high-
order-harmonic plateau [see Figs. 3(b)–3(d)]. This effect can
be rationalized by a simple semiclassical argument. For higher
harmonics the excursion of the electron will be further and
further away from the nucleus, corresponding to a higher
energy gain in the electric field in the framework of the
three-step model. However, the longer the excursion from
the nucleus the stronger the effect of the Lz term will be,
which leads to acceleration of the electron in the y direction.
This deflection will reduce the x elongation in favor of the
y elongation. As a consequence the energy acquired by the
electron in the electric field is reduced as it is proportional to
only the x component of its elongation since the laser pulse
is linearly polarized in the x direction in the rotating frame.
Incidentally, this also allows for a simple explanation on why
counter-rotating drivers are significantly more suitable than
corotating drivers if one aims to obtain circularly polarized

high-order harmonics. In a corotating scheme α is not given
by half of the difference of the frequencies of the two drivers
in the laboratory frame but by the average of their frequencies.
This immediately implies a much larger value of α leading to a
much stronger depression of the high-order-harmonic plateau
compared to an equivalent counter-rotating scheme.

Looking at the high-order-harmonic spectra from Fig. 3,
shifted according to Eqs. (7) and (8) to obtain the circular
components of the harmonic signal in the laboratory frame,
one can observe an interesting dichotomy. On the one hand
our results clearly show that using two drivers that are as close
in frequency as possible leads to the least reduction in the
high-order-harmonic plateau; on the other hand one requires
a sufficiently large α to obtain spectrally separated signals for
the two circular polarization directions in the laboratory frame.
The width of the harmonic peaks is primarily determined
by the temporal width of the drivers. Hence, the optimal
strategy to obtain spectral selectivity for the two polarization
directions while having a harmonic plateau that is as far
extended as possible consists in choosing α just above the
spectral width of the harmonic peaks. Specifically, for the
typically chosen “fundamental plus second harmonic” driving
scheme, shown in Fig. 3(c), we observe that our particular
chosen set of parameters would still allow closer frequencies
for the bicircular drivers while maintaining a sufficient spectral
separation of the right-circular and left-circular harmonic
peaks [see Fig. 3(b)].

From an experimental point of view this means that for
driving pulses with several optical cycles the best results will
be obtained by choosing driving fields originating from a laser
with frequency ω0 where the left-circularly polarized driver
is tuned lower by a small amount while the right-circularly
polarized driver is tuned higher by the same amount (or vice
versa). Conversely, if the driving fields consist of only very few
cycles then the spectral width of the peaks will increase and it
is likely that choosing low-order harmonics of a fundamental
frequency is a more suitable approach. In particular, employing
a left-circularly polarized driver at some fundamental ω0 and a
right-circularly polarized driver at the third harmonic 3ω0 leads
to ω̃ = 2ω0 and a maximal spectral separation of the peaks in
the high-order-harmonic spectrum given by ω̃. However, this
comes with a cost, namely, a Coriolis term in the rotating frame
with strength α = ω0. This represents already a moderately
strong depression of the high-order-harmonic plateau [see
Fig. 3(d)].

VI. PERSPECTIVES FOR ROTATING-FRAME ANALYSES
I: ELLIPTICAL DRIVERS

We can generalize Eq. (1) to the case of one of the
two drivers having elliptical polarization instead of circular
polarization, a situation that has recently been explored
experimentally [6] and also discussed from a theoretical point
of view [8,9]. The Hamiltonian in this case can be written as

H (t) = H0 + F0(t)[A(ε)x cos(ω1t) + B(ε)y sin(ω1t)

+ x cos(ω2t) − y sin(ω2t)], (9)

where A(ε) =
√

2√
1+ε2 and B(ε) =

√
2ε√

1+ε2 , with ε being the
ellipticity of the field with frequency ω1. The case ε = 1 leads
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back to the case of bicircular driving with equal strengths
whereas ε = 0 corresponds to the superposition of a linearly
polarized field with a left-circularly polarized one. Following
the steps from Sec. II, by going into a rotating frame with
frequency −α we arrive at the intermediate expression

H ′ = H0 + αLz + F0(t)
{

1
2 (A + B)[x cos([α + ω1]t)

+y sin([α + ω1]t)] + 1
2 (A − B)[x cos([ω1 − α]t)

− y sin([ω1 − α]t)] + x cos([ω2 − α]t)

− y sin([ω2 − α]t)}.
For brevity we suppress the ε dependence of A and B. An “on-
frequency” corotating frame is obtained by choosing α = ω1

leading to the rotating-frame Hamiltonian

H ′ = H0 + ω1Lz + 1
2 (A − B)F0(t)x

+F0(t)
{

1
2 (A + B)[x cos(2ω1t) + y sin(2ω1t)]

+ x cos([ω2 − ω1]t) − y sin([ω2 − ω1]t)
}
, (10)

which can be interpreted as the system being subject to two
counter-rotating circular drivers with different amplitudes in
the presence of a Coriolis term and a static electric field. While
this field is not truly static since it is modified by the pulse
envelope the time scale of this modulation is slow enough such
that the electric field can be regarded as static for the purposes
of HHG except for extremely short drivers. For A = B (ε = 1)
we reobtain the case from Sec. II which manifests through a
vanishing static electric-field term in the rotating frame.

The shift property for the HHG spectra between the rotating
frame and laboratory frame of circular emission components
(see Sec. III) allows us once again to use symmetry arguments
in the rotating frame to obtain information about the actual
HHG spectrum in the laboratory frame. For A = B it can easily
be seen from Eq. (10) that in the time-independent Hamiltonian
Lz is conserved, which means that emission can only take
place with (n + 1) photons from the right-circular driver and n

from the left-circular driver, respectively (n − 1) photons from
the right-circular driver and n photons from the left circular
driver [7–9]. This leads in the first case to right-circularly
polarized emission at frequencies n(ω1 + ω2) + (ω2 − ω1),
corresponding to a right-circularly polarized field in the
laboratory frame at n(ω1 + ω2) + ω2 − 2ω1, respectively left-
circularly polarized emission at frequencies n(ω1 + ω2) −
(ω2 − ω1), corresponding to a left-circularly polarized field
in the laboratory frame at n(ω1 + ω2) − (ω2 − 2ω1).

Once A and B start to deviate from each other both a
breaking of inversion symmetry and a breaking of conservation
of the angular momentum occur in the “static” Hamiltonian.
This opens up arbitrary combinations of the driving fields
at frequencies (2n − m)ω1 + mω2 where n > m corresponds
to right-circular signals, which appear in the laboratory
frame at (2n − m − 1)ω1 + mω2, and n < m corresponds to
left-circular signals, which appear in the laboratory frame
at (2n − m + 1)ω1 + mω2. The case n = m corresponds to
linear emission channels at frequencies n(ω1 + ω2) with equal
contributions from the counter-rotating circular drivers in
the rotating frame. This channel will split in the laboratory
frame into two signals: a right-circularly polarized signal
at n(ω1 + ω2) − ω1 and a left-circularly polarized signal at

n(ω1 + ω2) + ω1. Note that the larger the discrepancy between
A and B the more dominant contributions with greater
difference between n and m will become. This is because the
intensity ratio between the n-right-circular driver and m-left-
circular driver in the rotating frame goes as In

Im
= (A+B)2

4 =
1
2 + ε

1+ε2 , which is a monotonously increasing function for
ε ∈ [−1,1]. Additionally, the more A and B differ the stronger
the static field term becomes, which leads to larger and larger
symmetry breaking, washing out the HHG among more and
more channels.

In light of the importance of the difference between n and
m it is useful to define n̄ ≡ n − m. Then, we can state the
following: One observes left circularly polarized signals in the
laboratory frame at frequencies (2n̄ + m − 1)ω1 + mω2 for
n̄ � 0 and right-circularly polarized signals in the laboratory
frame at frequencies (2n̄ + m + 1)ω1 + mω2 for n̄ � 0. The
principal order of the signal is given by m whereas |n̄| reflects
the required symmetry breaking where the breaking strength
is proportional to the deviation of |n̄| from 1, with only |n̄| =
1 corresponding to symmetry conservation. These findings
match perfectly with those in Ref. [9].

VII. PERSPECTIVES FOR ROTATING-FRAME ANALYSES
II: STATIC ELECTRIC AND MAGNETIC FIELDS

In addition to the appearance of a static electric-field term
by entering a rotating frame as in Sec. VI there is also an
interesting connection to static magnetic fields for both the
rotating-frame descriptions obtained in Secs. II and VI. This
becomes clear when considering an axially symmetric system
under the influence of a static magnetic field along the z

direction, �B = B0�ez. The full Hamiltonian in Coulomb gauge
reads in this case

Hmag = H0 + B0

2
Lz + B2

0

8
(x2 + y2). (11)

The angular momentum term appearing in this context has an
identical form to the Coriolis term obtained for rotating-frame
Hamiltonians, but there is an additional contribution that leads
to harmonic trapping along the z axis proportional in strength
to the square of the magnetic field. It should be pointed out,
however, that this term does preserve the axial symmetry of
H0 and thus will not alter the harmonic spectrum in terms of
symmetry-forbidden harmonics. Still, similarly to the Coriolis
term, the signal strength of the emitted higher harmonics will
be reduced by this term since long excursions from the nucleus
are suppressed. Furthermore a “true” static magnetic field
in the laboratory frame readily allows to tune the harmonic
term and the Coriolis term independently since the strength of
the harmonic term is invariant under a transformation to the
rotating frame while the total Coriolis term will have strength
B0
2 + α where α is the rotation frequency of the rotating

frame. This allows to independently study the effects of both
contributions in a practical setup.

We want to briefly address the fact that the initial state for
HHG can be different in the magnetic-field case compared
to the case of merely considering a rotating frame. This can,
for example, occur when the presence of the magnetic field
breaks the symmetry in a degenerate ground-state manifold.
In this case the ground state of Hmag might not follow
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the axial symmetry of H0. This may significantly alter the
HHG spectrum as high-order-harmonic spectra show a clear
dependence on the initial state of the system (see, e.g., Ref.
[10] for an analysis with respect to bicircular drivers). For high
magnetic fields it is also conceivable that even in the absence of
degeneracies an excited state with, e.g., p character becomes
energetically lowered below the energy of the ground state with
s character (which is unaffected by Zeeman splitting). Apart
from that, if in this nondegenerate case the magnetic field
is established sufficiently slowly the initial state will likely
remain invariant due to adiabatic following. For the case of
static electric fields very similar arguments hold.

Previous theoretical studies in terms of static electric and
magnetic fields concluded that an appreciable impact on
the HHG spectra can only be observed for field strengths
at the very edge of experimental feasibility [13,14]. In a
rotating-frame picture these field strengths are achieved rather
naturally since they originate from ac field strengths (for
electric fields), respectively, from the frequency of the rotating-
frame description (for magnetic fields). For example, using
an 800-nm right-circularly polarized driver and its second
harmonic at 400 nm as a left-circularly polarized driver, the
linearizing rotating frame as discussed in Sec. II leads to a
Coriolis term which would correspond by Eq. (11) to a static
magnetic field of around 13 500 T.

Circular high-order-harmonic emission in the laboratory
frame and the rotating frame are directly related to each other
by only a shift in frequency (see Sec. III). This allows us on the
one hand to directly apply knowledge about static field effects
to understand high-order-harmonic spectra of circular light
while on the other hand enabling the possibility to engineer
Hamiltonians in the rotating frame that realize the effects
of such static fields even at field strengths beyond current
technical feasibility.

VIII. CONCLUSIONS

HHG of circularly polarized light with bicircular drivers can
be understood in many ways, ranging from a purely photonic
picture to a strictly classical four-wave mixing interpretation
[8]. A particularly simple way to approach this process is by
moving to a rotating frame of reference where the bicircular
driving reduces to a linearly polarized field and a Coriolis
term [14,15]. We showed in this paper that the circularly
polarized components of the high-order-harmonic signal in
the laboratory frame follow directly from their counterparts
in the rotating frame under a simple shift in frequency. This
allows us to directly deduce properties of those spectra and
even the generation process itself from the well-studied HHG
with linearly polarized driving fields. The influence of the
Coriolis term for axially symmetric systems on the high-
order-harmonic plateau consists in a reduction of the cutoff
frequency proportional to the strength of this term. Otherwise
it does not alter the peak structure in the spectrum due to the
preservation of axial symmetry. As a consequence it is possible
to determine the optimal bicircular drivers when the goal is to
preserve a high-order-harmonic plateau that is extended as
far as possible—the drivers need to be counter-rotating and
their frequencies should be chosen as similarly as possible.
Only the need for a spectral separation of the two circularly

polarized components requires to choose a nonzero difference
in frequency to compensate for the finite width of the peaks in
frequency domain due to the finite width of the driving fields in
time. Conversely, if such a spectral separation is not necessary
because the right- and left-circularly polarized signal can be
otherwise filtered out, choosing identical frequencies is clearly
the best approach. This is an observation that very recently
has been made in an experimental study where circularly
polarized high-order harmonics have been generated in a
noncollinear scheme allowing for a spatial separation of the
two circularization directions [11].

Beyond the case of bicircular drivers, a rotating-frame
picture also offers a valuable perspective on elliptical drivers.
The occurrence of additional peaks in the high-order-harmonic
spectrum when moving away from the bicircular case origi-
nates in a properly chosen rotating frame from the presence
of an additional static electric field. This static electric field
breaks the symmetries present for bicircular drivers and opens
up additional channels for HHG in the rotating frame that can
then be directly observed in the laboratory frame taking into
account the corresponding shift in frequency. Furthermore,
the rotating-frame description of these schemes shows a
near-duality to HHG under static electric and magnetic fields.
While the effects of such fields have been examined in the
past, the regime in which a visible impact on the spectra
could be experimentally observed is mostly inaccessible due to
the infeasibility of generating the corresponding strong fields.
However, the rotating-frame picture clearly illustrates that the
effects of such strong fields appear naturally in a suitably
chosen frame of reference and the resulting modifications
of the high-order-harmonic spectra of these “virtual” fields
have clearly observable consequences in experiments that can
readily be performed today.

The rotating-frame picture proves to be a powerful tool in
understanding HHG of circularly polarized light. Depending
on the particular choice of driving fields it enables a close
correspondence to linearly polarized drivers and even HHG in
the presence of static electric and magnetic fields. It can thus
serve as a pivotal link between seemingly disjoint setups for
HHG and allows for a remarkably simple explanation of many
properties of the experimentally observed spectra.
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APPENDIX: HHG SPECTRA VIA DIPOLE
ACCELERATION IN ROTATING FRAMES

The expectation value of the electronic dipole acceleration
can be computed via Ehrenfest’s theorem:

〈�a〉 = d2

dt2
〈�x〉 = d

dt
〈 �p〉 = −〈 �∇V 〉.
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We can then perform the following calculation [33]:

〈�a〉lab = d

dt
〈 �p〉lab

= d

dt
〈U †(t)U (t) �pU †(t)U (t)〉lab

= d

dt
〈ψrot(t) | e−iαtLz �peiαtLz | ψrot(t)〉

= i〈ψrot(t) | [Hrot,e
−iαtLz �peiαtLz ] | ψrot(t)〉

+〈ψrot(t) | e−iαtLz [−iαLz, �p]eiαtLz | ψrot(t)〉
= i〈ψrot(t) | [H0 + αLz,e

−iαtLz �peiαtLz ] | ψrot(t)〉
−iα〈ψrot(t) | e−iαtLz [Lz, �p]eiαtLz | ψrot(t)〉

= i〈ψrot(t) | [H0,e
−iαtLz �peiαtLz ] | ψrot(t)〉.

For the right-circular component of the acceleration this means
that

〈a+〉lab = i
1√
2
〈ψrot(t) | [H0,e

−iαtLz (px + ipy)eiαtLz ] | ψrot(t)〉

= i
e−iαt

√
2

〈ψrot(t) | [H0,px + ipy] | ψrot(t)〉

= − 1√
2
e−iαt [〈∇xV 〉rot + i〈∇yV 〉rot]

= −e−iαt 〈∇+V 〉rot,

where V is the potential term in the Hamiltonian H0 and ∇± ≡
1√
2
(∇x ± i∇y).
As a consequence one obtains the high-order-harmonic

signal for the right-circular component via

S lab
+ (ω) =

∣∣∣∣
∫

〈a+〉labe
−iωt dt

∣∣∣∣
2

=
∣∣∣∣
∫

〈∇+V 〉rote
−i(ω+α)t dt

∣∣∣∣
= Srot

+ (ω + α),

which represents a shift of the high-order-harmonic signal in
the right-circular direction obtained in the rotating frame in
direct analogy to the case for the expectation value of the dipole
[see Eq. (7)]. The derivation for the left-circular direction can
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FIG. 4. High-order-harmonic spectrum for (a) the right-circularly
polarized field component and (b) the left-circularly polarized field
component for two counter-rotating fields with frequency ω1 = ω0 =
0.05 and ω2 = 2ω0 = 0.1, respectively, with equal field amplitudes
of F0 = 0.05. The driving laser pulse is trapezoidally shaped with
the same parameters as in Fig. 1. The dashed turquoise (light gray)
curves are the results in the laboratory frame, and the dashed purple
(dark gray) curves are the results in a rotating frame with α = 0.025,
shifted to the left by α for right-circular polarization and to the right
by α for left-circular polarization.

be performed analogously, leading to the respective result as
in Eq. (8). An important point to emphasize is that when
using Ehrenfest’s theorem in the rotating frame one needs
to compute the derivative of the potential term corresponding
to the nonrotating Hamiltonian; i.e., the Coriolis term does not
enter.

A comparison of the high-order-harmonic spectra obtained
via Ehrenfest’s theorem in the rotating frame versus the
laboratory frame is shown in Fig. 4. Evidently, both results
match extraordinarily well. The remaining discrepancies stem
from the fact that the spectral grid points of the shifted
spectrum from the rotating frame and those of the unshifted
spectrum from the laboratory frame do not quite match since
the time grid we employed leads to a distance between two
grid points in the frequency domain that is no integer multiple
of α.
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