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Capture into resonance and phase-space dynamics in an optical centrifuge

Tsafrir Armon and Lazar Friedland*

Racah Institute of Physics, Hebrew University of Jerusalem, Jerusalem 91904, Israel
(Received 8 February 2016; published 7 April 2016)

The process of capture of a molecular ensemble into rotational resonance in the optical centrifuge is investigated.
The adiabaticity and phase-space incompressibility are used to find the resonant capture probability in terms of
two dimensionless parameters P1,2 characterizing the driving strength and the nonlinearity, and related to three
characteristic time scales in the problem. The analysis is based on the transformation to action-angle variables
and the single resonance approximation, yielding reduction of the three-dimensional rotation problem to one
degree of freedom. The analytic results for capture probability are in good agreement with simulations. The
existing experiments satisfy the validity conditions of the theory.
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I. INTRODUCTION

The field of optical control and manipulation of molecular
rotation has seen major advances over the years, and today
various techniques allow one to control the rotation alignment
[1,2], orientation [3,4], and directionality [5–7] of molecular
ensembles. One of the most innovative tools in this field is the
optical centrifuge (OC), originally proposed and implemented
by Corkum and collaborators [8,9], who introduced the
possibility of controlled excitation of the molecular rotational
degree of freedom by chirped laser pulses. The controlled
nature of this process is twofold: the molecules reach very high
rotational states (super-rotors), but they also remain closely
centered around a specific target energy or frequency. The
controlled rotation could be used to selectively dissociate
molecules [9] or a specific molecular bond [10] and has
been shown to change molecular characteristics, such as the
molecule’s stability against collisions [11] and its scattering
from surfaces [12]. Furthermore, a gas of super-rotors may
exhibit new optical properties [13] and formation of vortices
[14].

Over the last few years, several state-of-the-art experiments
have been performed [15–17] utilizing different molecules
and exploring the dynamics during and after the OC laser
pulse, including the excitation process [16], the gyroscopic
stage in which the molecules remain oriented [18], and the
equilibration and thermalization that follows the pulse and
produces an audible sound wave [19]. However, while the
experimental setups improved considerably, the process of
capture of molecules into the chirped resonant rotation is still
poorly understood. This process was only studied numerically
[20] or under the constraint that the molecules rotate in a plane
perpendicular to the laser propagation axis [8,21,22]. The
former assumption makes it impossible to study the response
of a randomly oriented molecular ensemble to the OC pulse.
As a result, the efficiency of the OC, i.e., the fraction of
molecules captured by the chirped laser drive, was not analyzed
sufficiently.

In this work, we show that under the rigid-rotor approxima-
tion the OC is an example within a broad family of driven
nonlinear systems exhibiting a sustained phase locking or
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autoresonance (AR) with a chirped drive. This phenomenon
has been observed and studied in many applications, including
atomic systems [23,24], plasmas [25,26], fluids [27], and
semiconductor quantum wells [28]. By using methods in
the theory of AR and analyzing the associated phase-space
dynamics we calculate the efficiency of the OC process. The
quantum counterpart of the AR is the quantum energy ladder
climbing [29–31], but we show that the classical AR analysis
is relevant to many current experimental setups.

The scope of the paper is as follows. In Sec. II, we
discuss the driven-chirped molecular rotation in three di-
mensions, transform to action-angle variables, and use the
single resonance approximation to reduce the problem to one
degree of freedom. Section III focuses on calculating the
efficiency of the resonant capture process in the system via
analyzing its dynamics in a continuous phase space instead of
a single-particle approach. In Sec. IV, we compare the theory
with numerical simulations and discuss the validity of our
approximations and the applicability to current experimental
setups. Our conclusions are summarized in Sec. V.

II. THE MODEL

A. Parametrization

The fundamental idea of the OC is that an anisotropic
molecule will “chase” a rotating linearly polarized wave (and,
thus, be rotationally excited), whose polarization rotation
accelerates over time. In practice, such a driving wave is
created by combining two counter-rotating and antichirped
circularly polarized laser beams [8]. For a wave propagating
along the Z axis, with polarization angle φd (t) in the XY

plane, after averaging over the optical frequency of the laser
beams, the interaction potential energy of a molecule in
spherical coordinates is given by U = −ε sin2 θ cos2 (ϕ − φd )
[8], where ε = (α‖ − α⊥)E2

0/4, α‖,α⊥ are the polarizability
components of the molecule, and E0 is the electric field
amplitude of the combined beam. For simplicity, we use
a linearly chirped driving frequency ωd = dφd/dt = βt/2,
where β > 0 is the chirp rate, but any sufficiently slow chirp
will lead to similar results. The initial rotation frequency is set
by taking an appropriate initial time.

Our driven system can be characterized by three different
time scales, i.e., the drive sweeping time ts = 1/

√
β, the
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characteristic thermal rotation time tth = 1/ωth = √
I/kBT ,

and the driving time scale td = Lth/ε = √
IkBT /ε, where T

is the temperature, I is the molecule’s moment of inertia, and
Lth = Iωth is the characteristic thermal angular momentum.
These three time scales define two dimensionless parameters:

P1 = ts

td
= ε√

IkBTβ
, (1)

which measures the drive’s strength, and

P2 = ts

tth
=

√
kBT

Iβ
, (2)

characterizing the nonlinearity of the problem. These param-
eters enter naturally in the dimensionless Hamiltonian of our
driven system in spherical coordinates,

H = P2

2

(
p2

θ + p2
ϕ

sin2 θ

)
− P1 sin2 θ cos2(ϕ − φd ), (3)

where we normalize the canonical momenta and later the
total angular momentum L with respect to Lth and use the
dimensionless time τ = √

βt . The evolution equations based
on this Hamiltonian comprised one of the two sets used for
Monte Carlo simulations in this work. Figure 1 shows the
distributions (histograms) of the normalized angular momenta
at the end of the chirped OC drive after starting from an
initially thermal molecular ensemble. The resonant normalized
angular momentum in the OC equals the instantaneous driving
frequency normalized with respect to ωth (see below). The
initial and final normalized driving frequencies in Fig. 1 were
1 and 8, respectively, and we used parameters P2 = 2.51
and P1 = 0.63 [Fig. 1(a)], 2.51 [Fig. 1(b)], and 39.8 [Fig.
1(c)]. When parameter P1 is increased (for constant P2 this
corresponds to increasing the laser intensity), more molecules
experience significant acceleration. Nevertheless, if one seeks
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FIG. 1. Monte Carlo simulation of the distribution of angular
momenta Lf for an initially thermal ensemble (3000 molecules) after
the OC pulse with initial and final normalized driving frequencies
ω0 = 1 and ωf = 8. The parameters are P2 = 2.51 and (a) P1 = 0.63,
(b) P1 = 2.51, and (c) P1 = 39.8.

a narrow distribution around a specific target frequency, the
acceleration in Figs. 1(b) and 1(c) does not provide the desired
level of control, showing a broad distribution around the target.
In contrast, Fig. 1(a) is a representative example for the degree
of control and accuracy one can achieve with the OC, provided
the parameters are chosen appropriately. In this work we
calculate the excitation efficiency and the width of the final
distribution of the angular momentum in the P1,2 parameter
space.

B. Transformation to action-angle variables and
single-resonance approximation

Like many other physical systems, it is convenient to
transform our driven problem to the action-angle variables
of the unperturbed problem since the latter is integrable.
This canonical transformation θ,ϕ,pθ ,pϕ → 
L,
Lz

,L,Lz

(see Appendix for details) leads to nontrivial angle variables
(related to Euler angles), while the actions L and Lz are the
normalized total angular momentum and its projection on the
Z axis. The transformed Hamiltonian assumes the form

H (
L,
Lz
,L,Lz) = P2

L2

2
+ P1U (
L,
Lz

,Lz/L,φd ), (4)

where U is a periodic function of 
L,
Lz
of period π , and its

exact form is presented in the Appendix.
The perturbing part in Eq. (4) contains several oscillating

terms; however, the main resonance in our case is defined by
requiring stationarity � ≈ const of the phase mismatch � =
2(
L + 
Lz

− φd ). Assuming a weak drive, i.e., P1/P2 � 1
(this approximation is discussed in Sec. IV) in the vicinity of
the resonance, we can use the single-resonance approximation
[32], i.e., discard all the rapidly oscillating terms in the
Hamiltonian. The resulting approximate, single-resonance
Hamiltonian is (see Appendix)

Hr = P2
L2

2
+ P1V cos � + P1F, (5)

where

V = 1

8

(
1 + Lz

L

)2

, (6)

F = 1

4

(
1 − Lz

2

L2

)
. (7)

The corresponding evolution equations are

d
L

dτ
= P2L − P1

Lz

L2
(V ′ cos � + F ′), (8)

d
Lz

dτ
= P1

1

L
(V ′ cos � + F ′), (9)

dL

dτ
= 2P1V sin �, (10)

dLz

dτ
= 2P1V sin �. (11)

Here, the prime denotes differentiation with respect to Lz/L.
Equations (10) and (11) yield the integral of motion, C =
L − Lz (0 � C � 2L), which allows reduction to a single

043406-2



CAPTURE INTO RESONANCE AND PHASE-SPACE . . . PHYSICAL REVIEW A 93, 043406 (2016)

degree of freedom:

dL

dτ
= 2P1V sin �, (12)

d�

dτ
= 2P2L + 2P1

C

L2
(V ′ cos � + F ′) − τ. (13)

Equation (9) still needs to be solved to obtain the precession of
the angular momentum around the Z axis, but for calculating
L, the one-degree-of-freedom set above is sufficient. This is
our second (approximate) set used in the simulations below,
which, due to the adiabaticity and reduced number of degrees
of freedom, is considerably faster numerically than the full
set of evolution equations in terms of the original spherical
coordinates. We assume, and verify a posteriori, that if

L � 1 is the range of L values in a persistent resonance
with the drive in our problem, then P2
L 	 P1. Under this
assumption, the second term in Eq. (13) can be neglected, and
the phase-locking (resonance) condition d�/dτ ≈ 0 yields
2P2L − τ ≈ 0. Let Lr (τ ) = τ/2P2 = ωd (τ )/ωth be the value
of L satisfying the resonance condition exactly and define
the deviation δL = L − Lr from the exact resonance. The
evolution equations then yield

dδL

dτ
= 2P1V sin � − 1

2P2
, (14)

d�

dτ
= 2P2δL. (15)

By taking the derivative of Eq. (15) with respect to time and
inserting Eq. (14), we get

d2�

dτ 2
= −4P1P2V sin � − 1, (16)

where we shifted � by π and, to lowest order in δL,
V ≈ 1

8 (2 − C
Lr

)
2

is evaluated at Lr . Equation (16) describes
a pseudopendulum under the action of a constant torque.
The Hamiltonian in this problem, with d�/dτ acting as the
momentum, is

H = 1

2

(
d�

dτ

)2

+ Veff(�), (17)

where

Veff(�) = −4P1P2V cos � + �. (18)

This tilted cosine effective potential and the associated phase-
space portrait of dynamics of the pseudopendulum are shown
in Fig. 2 for P1P2V = 0.75. The phase space (bottom panel
in the figure) is comprised of open and closed trajectories,
provided P1P2V > 1/4. The open trajectories exhibit a con-
tinuous growth of the phase mismatch, i.e., they are not
phase locked with the drive, while for the closed trajectories
the phase mismatch is bounded. The closed trajectories are
surrounded by the separatrix having area shown in red in
the bottom panel of the figure. As V (Lr ) in our problem
is slowly varying (increasing) in time, both the closed and
open trajectories evolve adiabatically in time, unless near the
separatrix. This means that deeply trapped trajectories remain
trapped, i.e., the rotation frequency follows the drive, L(τ ) ≈
ωd (τ )/ωth, constituting the AR in the system. The main
problem remains the fate of the trajectories near the separatrix.
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FIG. 2. The effective potential [Eq. (18)] (top) and the phase-
space portrait of the associated dynamics (bottom). The boundary of
the red filled area in the bottom panel is the separatrix. The value of
P1P2V was 0.75 and the equal energy lines in the bottom panel are
separated by energy steps of π .

These trajectories, in principle, can change their trapping status
as the result of nonadiabatic dynamics and, thus, affect the
OC efficiency. It should be mentioned that many other AR
systems [25–28] are described by the resonant Hamiltonian
similar to Eq. (17). The process of capture into resonance in
all these problems depends critically on the specific form of
function V . In many such problems V ∼ √

I , where I is the
relevant action variable in the problem. In all such cases, the
capture into resonance from equilibrium and transition to AR
is guaranteed provided the driving amplitude exceeds a sharp
threshold [25]. Because of a different dependence of V on L

no such threshold is characteristic of the driven molecule case.
The study of this different capture mechanism comprises the
main goal of the present investigation.

III. TRAPPING EFFICIENCY

A. The complexity of the resonant trapping problem

We have seen in simulations in Sec. II that for a range of
parameters the OC yields controlled rotational excitation of
molecular ensembles. Here we study the efficiency of such
excitation process; i.e., we evaluate the fraction of molecules
from some initial distribution, which are captured into and
remain in resonance. Intuitively, one can assume that if the
value of V changes adiabatically, molecules will be either
trapped or not according to their initial location in phase
space—inside or outside the separatrix. While the changes of
V are generally adiabatic (as seen later), this intuition proves to
be wrong. Indeed, the molecules which are inside the separatrix
initially remain in resonance at later times, but additional
molecules can cross the separatrix and enter the trapped region
even if they were outside initially. An illustration of this
process is presented in Fig. 3. Figure 3(a) shows the final
phase-space distribution of a molecular ensemble having the
same L = 1 and C = 1 initially and uniformly distributed
values of � [see Fig. 3(b)]. The normalized driving frequency
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FIG. 3. Numerical simulations (single-resonance approximation)
of passage through resonance with 500 molecules with initial L0 = 1
and C = 1. All panels show the phase space (�,L), with green and
blue circles representing resonantly trapped and untrapped molecules,
respectively. The left panels show the initial distributions and differ
by a small shift of the initial driving frequency: (b) ω0 = 0.5, (c)
0.49, and (d) 0.51. (a) Final distribution of the initial condition (b) at
ωf = 1.5. The parameters are P1 = 1, P2 = 10, and � is shifted so
that � = 0 is at the saddle point (see Sec. III B).

was varied from ω0 = 0.5 to ωf = 1.5, and one can see
that, despite a much lower initial driving frequency compared
to the rotation frequency of the molecules, a considerable
number of molecules end up captured into resonance and
rotationally accelerated (green). The location of the newly
trapped molecules in the initial ensemble is shown in green in
Fig. 3(b). We find that this location and the fraction of trapped
molecules strongly depends on the initial value of the driving
frequency. This complexity is illustrated in Figs. 3(c) and
3(d), showing in green the location of the molecules trapped
in resonance with the drive for the same initial conditions,
but with the initial driving frequency changed by ±0.01. The
fractions of the trapped molecules in Figs. 3(c) and 3(d) were
22% and 26%, respectively, compared to 46% in Figs. 3(a)
and 3(b).

One approach to deal with the problem of nonadiabatic
passage through the separatrix is to study an ensemble of
initial conditions, checking whether the associated trajectories
cross the separatrix. Previous works used such an approach
with simpler systems, but the probabilistic nature of this nona-
diabatic phenomenon led to rather complex results [33,34].
Here, we develop an alternative approach which examines
the continuous phase-space dynamics of the initial ensemble
instead of working with a collection of individual trajectories.
This approach yields the resonant capture probability without
ever specifying which initial conditions yield trajectories
crossing the separatrix.

B. Phase-space dynamics

We base our analysis on Eq. (16), where V = 1
8 (2 − C

L
)
2

is evaluated at Lr and, therefore, both V and the associated
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FIG. 4. Numerical simulations (single-resonance approximation)
for 1 × 104 molecules distributed uniformly between L = 3.5 and
4.5 initially with C = 4. The panels show the distribution of the
ensemble at three consecutive times (in terms of the normalized
driving frequency): (a) ωd = 3, (b) 4, and (c) 5. Green and blue circles
show resonantly trapped and untrapped molecules, respectively, and
the black lines are the associated separatrices. The parameters are
P1 = 0.63 and P2 = 10. � is shifted so that � = 0 is at the saddle
point of (c). A video of the simulation is provided in the Supplemental
Material [35].

separatrix area are monotonically increasing functions of time.
For molecules close to the separatrix, trapped or untrapped,
this approximation is satisfied because 
L � 1, where now
we associate 
L with the width of the separatrix in L. For
untrapped molecules far from the separatrix we can still
evaluate V at Lr , because the phase mismatch � for such
molecules varies rapidly and the effect of the driving term in the
quasipotential averages out. Next, instead of passage through
resonance with an ensemble of molecules having the same
value of L as illustrated in Fig. 3, we consider an ensemble
of molecules with initially uniform density in phase space
between L1 = 3.5 and L2 = 4.5 with all molecules having the
same C = 4. We show a numerical simulation in such a system
as the driving frequency (and therefore Lr ) successively passes
the resonance with all the molecules in the ensemble in Fig. 4
(a video of this simulation can be found in the Supplemental
Material [35]). As the driving frequency sweeps through the
ensemble [time progresses from Fig. 4(a) to Fig. 4(c)], the
area of the associated separatrix (in black) increases and the
added area is filled with the same density of molecules as in the
original distribution. However, the area of the separatrix, which
was empty when the separatrix first entered the distribution,
remains empty, forming a phase-space hole passing through
the distribution (similar phase-space holes were studied in
plasma physics applications [36]). Note that the separatrix
crossing occurs near the saddle point (where the adiabaticity
condition is not met) and the molecules “line up” to enter the
separatrix, as seen in Fig. 4(b). Following the crossing, the
area filled by the newly trapped molecules is very regular,
and the only irregular regions of phase space after passage
through resonance are those near the boundaries L1,2 of the
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original distribution. Furthermore, one can observe that the
whole distribution is shifted to lower values of L after the
drive completed its passage through the ensemble.

The resonant phase-space dynamics shown in Fig. 4 can
be explained on the bases of (a) the adiabaticity in the
problem [37] and (b) the incompressibility of the phase
space [38]. The adiabaticity guarantees the conservation of
the area of the empty hole inside the growing separatrix,
while the incompressibility of the phase space ensures that
the distribution of the newly trapped molecules inside the
separatrix would be the same uniform (original) distribution as
long as Lr is well within the range L1,L2. Therefore, as time
progresses and the resonant separatrix passes an infinitesimal
distance δLr inside the distribution, the density δN of newly
trapped molecules is

δN = PδS = P
∂S

∂Lr

δLr, (19)

where P is the initial (uniform) density of the molecules in
phase space and δS is the change of the area of the separatrix
during the corresponding infinitesimal time interval. Thus, the
number of newly trapped molecules after passage through
the whole distribution is 
N = P
S, 
S being the full
added area of the separatrix after the passage. These simple
arguments also allow us to calculate the probability of capture
into resonance for a general initial distribution of L and C (i.e.,
Lz), which is discussed next.

C. Capture probability

The generalization to the case of an arbitrary initial phase-
space density distribution P (L,C) independent of � can
proceed by viewing this distribution as a collection of uniform
infinitesimally thin layers, each having some value of C. As the
most prevailing case, we focus on initially thermal distribution
of molecules, where the distribution of L is

Pth(L) = L exp

(
−L2

2

)
, (20)

and, therefore,

P (L,C) =
{

0 , L < C/2
NPth(L)

4πL
, L > C/2,

(21)

where N is the density of the molecules. For a given C, we view
this distribution as a collection of uniform layers of thickness
δP as illustrated in Fig. 5. The resonant drive passes all these
layers, so at any given time we have a collection of identical
separatrices around the resonant Lr . Since the layers have a
uniform density, and 
L � 1, the passage of the separatrix
through the layers can be treated as discussed above. As the
separatrix advances an infinitesimal distance δLr , the total
density (after summation over all the layers and integration
over �) of newly trapped molecules for given C will be [see
Eq. (19)]

δN (Lr,C) = P (Lr,C)
∂S

∂Lr

δLr . (22)

Next, we integrate Eq. (22) over C and change the integra-
tion from C to R = Lz/L = 1 − C/Lr , which is uniformly

C/2

L

P
(L

,C
)

δP

FIG. 5. Phase-space density distribution P (L,C) viewed as a
collection of uniform layers of height δP each.

distributed between −1 and 1, to get

δN(Lr ) = δLr

NPth(L)

4πL

∫ 1

−1

dS

dR
(1 − R)dR. (23)

Finally, we collect the newly trapped molecules as the resonant
Lr passes from some initial Lr0 to a final value Lrf (the
normalized driving frequency varies from ω0 to ωf ) to get
the density of all newly resonantly trapped molecules:


N =
∫ Lrf

Lr0

NPth(L)

4πL
dLr

∫ 1

−1

dS

dR
(1 − R)dR. (24)

After integrating in R (by parts) and in Lr , the last expression
becomes


N =
√

π

2

NQ

4π
[erf(χf ) − erf(χ0)], (25)

where χ = Lr/
√

2 = ωd/(
√

2ωth) and Q = ∫ 1
−1 SdR is the

total “volume” of the separatrix in the three-dimensional
extended phase space which includes the R dimension. To
get the total density of trapped molecules, we must add
the density of the initially trapped molecules, which for

L � 1 is


N0 = QN

4π
Pth(ω0). (26)

Then the total capture probability in the problem is

Pcap = Q

4π

{√
π

2
[erf(χf ) − erf(χ0)] + Pth(ω0)

}
. (27)

Finally, Q in the last equation can be found numerically via

Q =
√

2

P2

∫ 1

−1
dR

∫

�

√
D(1 − cos �) + sin � − �d�,

(28)
where D =

√
[4P1P2V (R)]2 − 1, 
� is the width of the

separatrix in �, and we shifted � in Eq. (28) so that � = 0
is at the saddle point. Note that Q depends on P2 and
the product P1P2 and, therefore, for a given ω0,ωf , the
capture probability scales with temperature as T −1/2 via P2.
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FIG. 6. Monte Carlo simulations (single-resonance approxima-
tion) of the resonant capture probability of an initially thermal
ensemble (2000 molecules) versus the initial normalized driving
frequency ω0. The solid line is the analytic result [see Eq. (27)].
The parameters are P1 = 1.58, P2 = 10, and ωf = 8.

Furthermore, asymptotically for large P1P2, Q ∼ √
P1/P2,

which is independent of the chirp rate β.

IV. RESULTS AND DISCUSSION

We illustrate our theory in Fig. 6, where the prediction
of Eq. (27) is compared with numerical simulations (single-
resonance approximation). We applied the OC drive to a
thermal ensemble for parameters P1 = 1.58, P2 = 10. The
final normalized driving frequency in this example was 8,
while the initial normalized driving frequency was varied. One
observes an excellent agreement of the theory (black line) with
simulations. Note that counterintuitively, when ω0 decreases
and Pth(ω0) becomes small, the capture probability increases
and reaches a maximum. In these cases, the vast majority of
captured molecules cross the separatrix during the evolution
and do not start in resonance initially.

Additional results are presented in Fig. 7, testing a broader
range of parameters. In each panel in the figure, the OC
drive with normalized frequency varying from ω0 = 1 to
ωf = 5 is applied to a thermal ensemble and P2 is kept
constant at 39.8 [Fig. 7(a)], 10 [Fig. 7(b)], and 2.51 [Fig.
7(c)], while P1 is varied. The numerical results include the
simulations in spherical coordinates (blue diamonds), the
single-resonance simulations (red circles), and both compared
with the analytical result (solid line). One can see that the
analytic prediction correctly describes the simulations only
in a certain range of parameters. This is not surprising, as
several approximations were made in the theory and need
to be discussed next. One such approximation is the relative
smallness 
L � 1 of the width of the separatrix in L. In terms
of parameters P1,2, this condition yields the inequality√

P1/P2 � 1, (29)

which justifies the approximation in Eq. (13). In addition, we
used the single-resonance assumption, allowing us to discard
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FIG. 7. The resonant capture probability for three equal P2 lines
in P1,2 parameter space in Fig. 8. The red circles show full simulation
in original spherical coordinates, blue diamonds are single-resonance
simulations, and the analytic result is shown by the solid line. The
parameters are (a) P2 = 39.8, (b) 10, and (c) 2.51, with ω0 = 1 and
ωf = 5. Dashed lines show the location of the weak drive limit. The
number of molecules in simulations ranges from 500 to 5000, but the
numerical uncertainty in all cases is smaller than the marker size.

higher nonresonant harmonic contributions in deriving Eq. (5),
which requires P1/P2 � 1 and is guaranteed by Eq. (29). The
location of P1 = P2 is shown in Fig. 7 by dashed lines and one
can see that both types of simulations agree until one violates
condition P1/P2 � 1, but the theoretical curves deviate earlier,
because condition (29) is stricter. The ratio P1/P2 measures
the relative strength of the drive, so Eq. (29) describes the
weak drive limit.

Another assumption of the theory is the adiabatic-
ity of autoresonant evolution, i.e., ν−2dν/dτ � 1, where
ν = √

4P1P2V is the characteristic frequency of autoreso-
nant modulations (oscillations of trajectories trapped inside
the separatrix). We estimate dν/dτ ∼ O(

√
P1P2dLr/dt) ∼

O(
√

P1/P2) and, therefore the adiabaticity is guaranteed if

P2P
1/3
1 	 1. (30)

Note that the resonant capture is impossible when there is
no separatrix (no trapped trajectories) for all C values, which
leads to the condition

P1P2 > 1/2 (31)

for trapping. While this condition does not affect the validity of
the results, it provides a useful border in P1,2 parameter space.
We summarize this analysis in Fig. 8 showing the P1,2 param-
eter space with boundaries defined by the above conditions as
black solid lines and the region of validity of the analytic results
in color with the color map corresponding to the theoretical
capture probability for ω0 = 1 and ωf = 5. The black diamond
in the figure shows the conditions of experiments [16,17,39]
(E0 ≈ 4.3 × 109 V/m, β ≈ 1.7 × 1024 s−2 for O2 molecules
at room temperature), which are in the region of validity of
the theory. The red dashed lines mark the parameter range
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FIG. 8. Validity conditions in P1,2 parameter space. The color
coding represents the capture probability for a drive with ω0 = 1,
ωf = 5. The black lines are the weak drive limit [Eq. (29)], location
of formation of the separatrix [Eq. (31)], and the adiabaticity condition
[Eq. (30)]. The dash-dotted black line is an example of the quantum
limit for O2 at room temperature. The horizontal red dashed lines
represent the values of P1,2 simulated in Fig 7. The blue triangles
are the parameters used in Fig. 1, while the black diamond shows
parameters used in experiments [16,17,39].

in simulations in Fig. 7, while the blue triangles show the
conditions of simulations in Fig. 1, where panel (c) is way
outside the weak drive limit.

At this stage, we discuss the assumed classicality of our sys-
tem. The classical thermal distribution (20) is valid only when
the most probable j , the quantum number associated with the
total angular momentum, in the thermal equilibrium is large,
say jth > 5. In addition, the dynamics of trapped molecules
must be classical. For this to be true, the characteristic area
S (dimensional) of the separatrix in phase space must exceed
Planck’s constant h, so mixing of a few angular momentum
states would be possible. Then, the inequality

√
P2/P1 < jth

can serve as a condition for classicality of trapped trajectories.
An example of this condition is presented in Fig. 8 by the
dot-dashed line for O2 at room temperature. Unlike the rest of
the above conditions, this line is not fixed in the P1,2 space and
is both temperature and molecule dependent via jth (jth = 9
in the figure). Note that the classical results presented in this
work are in the range of typical OC experiments. Note also
that the conservation law L − Lz = const in our theory is
the classical counterpart of the OC quantum selection rule
|j,m〉 → |j + 2,m + 2〉, where m is the magnetic quantum
number [22].

Finally, in developing the theory, we have assumed that
the characteristic parameters P1,2 are constant. In typical
experiments these parameters may vary in time. For example,
the laser-pulse amplitude may have slow temporal dependence,
the chirp rate β may vary in time, and the trapped molecules
may experience slow centrifugal expansion at high rotation
speeds. Because of the adiabaticity, these effects can be taken
into account within our theory by using instantaneous values
of P1,2. For example, the adiabaticity guarantees continued

trapping in the system as long as P1P2V [see Eq. (16)] is an
increasing function of time. If this function starts to decrease
because of the aforementioned variation of parameters, some
molecules can escape the trapping. This effect of “leaked
molecules” was recently observed experimentally [16,17].
Note that this leakage can be stopped by slowly increasing
the driving amplitude, i.e., P1, in time.

V. SUMMARY

In conclusion, we have studied the process of capture
of an ensemble of molecules into resonance in the optical
centrifuge and calculated the associated capture probability.
Based on three characteristic time scales in the problem, we
have introduced two dimensionless parameters P1,2 [see Eqs.
(1) and (2)], transformed the problem to action-angle repre-
sentation, and applied the single-resonance approximation in
our analysis, allowing a significant acceleration of numerical
simulations. We have then studied the continuous phase-space
dynamics of the reduced one-degree-of-freedom system and
found the probability of filling of separatrix by newly trapped
molecules. This calculation was based on the adiabaticity in the
problem and the incompressibility of the phase space, avoiding
the complex issue of deciding the fate of individual trajectories.
For a thermal ensemble, we have compared the analytic results
with numerical simulations, showing excellent agreement,
provided one satisfies the weak drive limit, the adiabaticity,
and the classicality conditions, which were mapped in P1,2

parameter space. It is shown that these conditions hold in
current experimental setups. The results of this work can be
used in analyzing existing and planning future experiments.
It also seems important to generalize the theory into the
quantum regime and study the transition from the quantum
ladder climbing to the classical autoresonance [29,40] in the
problem of molecular rotations. Finally, a similar phase-space
analysis can be applied in studying the problem of capture into
autoresonance in other dynamical systems.
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APPENDIX

The transformation to action-angle variables discussed in
Sec. II is carried out similarly to [41,42]. We proceed by
solving the Hamilton-Jacobi equation in the problem to obtain
the generating function [41]

W (L,Lz,ϕ,θ ) = ±
∫ √

L2 − L2
z

sin2 θ
dθ + ϕLz, (A1)

where the actions are the angular momentum L and its
projection Lz on the Z axis, the integration is along the
trajectory, and the choice of the sign accounts for the difference
between the ascending and descending nodes. The canonical
transformation equations in this case are

pϕ = ∂W

∂ϕ
= Lz, (A2)
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pθ = ∂W

∂θ
= ±

√
L2 − L2

z

sin2 θ
, (A3)


L = ∂W

∂L
= ±

∫
L sin θ√

L2 sin2 θ − L2
z

dθ, (A4)


Lz
= ∂W

∂Lz

= ∓
∫

Lz

sin2 θ

1√
L2 − L2

z

sin2 θ

dθ + ϕ. (A5)

It was shown in [41] that the angles 
L,
Lz
are two of the

Euler angles, and 
L measures the rotation of the molecule
in its plane of rotation while 
Lz

measures the precession
of the rotation plane itself. Substitution of the first two
transformation equations into the unperturbed Hamiltonian
yields

H0 = P2L
2/2. (A6)

For calculating the perturbed part of the Hamiltonian we set

L = 0 when θ is at its minimal value, and 
Lz

= 0 when the
line of nodes is along the X axis, and solve the integrals in
Eqs. (A4) and (A5) to find

cos θ =
√

1 − L2
z/L

2 cos 
L, (A7)

ϕ = 
Lz
+ arctan[(L/Lz) tan 
L] + π

2
. (A8)

Next, we define s = signLz and notice that arctan(L/Lz tan

L) can be written as the sum s
L + sf (|L/Lz|,
L), where
f is a periodic function of 
L of period π . We expand this

function in Fourier series to get

f (|L/Lz|,
L) =
∞∑

n=1

(|L/Lz| − 1)n

n(|L/Lz| + 1)n
sin (2n
L), (A9)

which, in terms of A = (|L/Lz| − 1)/(|L/Lz| + 1), becomes

f (|L/Lz|,
L) = − i

2
ln

(
1 − Ae−2i
L

1 − Ae2i
L

)
. (A10)

At this point, we write the action-angle representation of the
perturbed part of the Hamiltonian using Eqs. (A7) and (A8):

U = [(
1 − L2

z/L
2
)

cos2 
L − 1
]

sin2 �, (A11)

where � = 
Lz
+ s
L + sf − φd , and then we use Eq. (A10)

to find the closed-form expressions for cos (2f ), sin (2f ).
We define the phase mismatch � = 2(
L + 
Lz

− φd ) in the
problem, use this definition to replace 2(
Lz

− φd ) in Eq.
(A11), and average the resulting U (Lz/L,
L,�) with respect
to the fast phase 
L. This yields the full Hamiltonian in the
single-resonance approximation:

H (
L,
Lz
,L,Lz) ≈ P2

L2

2
+ P1V cos � + P1F, (A12)

where

V = 1

8

(
1 + Lz

L

)2

, (A13)

F = 1

4

(
1 − Lz

2

L2

)
. (A14)

Note that this result is independent of s and that angle 
L

exhibits nontrivial behavior, as it always increases, regardless
the direction of rotation (given by s).
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