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Rapid cooling to quantum degeneracy in dynamically shaped atom traps
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We report on a general method for the rapid production of quantum degenerate gases. Using !7#Yb, we achieve
an experimental cycle time as low as 1.6-1.8 s for the production of Bose-Einstein condensates (BECs) of
(0.5-1) x 10° atoms. While laser cooling to 30 uK proceeds in a standard way, evaporative cooling is highly
optimized by performing it in an optical trap that is dynamically shaped by utilizing the time-averaged potential
of a single laser beam moving rapidly in one dimension. We also produce large (>10°) atom number BECs and
successfully model the evaporation dynamics over more than three orders of magnitude in phase space density.
Our method provides a simple and general approach to solving the problem of long production times of quantum

degenerate gases.
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I. INTRODUCTION

The production of quantum degenerate gases has revo-
lutionized the field of atomic physics. Such gases are now
routinely used as a means towards understanding complex
many-body quantum phenomena from the realms of condensed
matter and nuclear physics [1,2]. As atom sources with pre-
cisely controlled properties, these gases can also significantly
advance applications such as atom interferometry [3] and
quantum information processing [4,5]. While the production
and measurement methods of quantum gas experiments are
well established, the measurement rate remains substantially
limited by the lack of a general method for rapid sample
production. Cycle times for such experiments are dominated
by the production time, typically tens of seconds, while the
actual experiment on the prepared sample lasts for about a
second before destructive measurement. This separation of
time scales is a severe impediment to the employment of
quantum degenerate gases towards precision devices such
as atomic clocks, inertial sensors, and gravimeters [3,6,7].
Bridging these time scales can significantly contribute to
all classes of quantum gas explorations and applications, as
most measurements rely on the statistics of results from many
experimental iterations.

The root of this time-scale problem lies in the speed of
collisional evaporative cooling. In a standard degenerate gas
production sequence, the initial step of laser cooling produces
temperatures in the few tens of pK, while light-induced
processes keep the density below 10'2cm™3. The resulting
phase space density (PSD) of 107> — 10~* is increased to
quantum degeneracy by subsequent evaporative cooling in
either magnetic or optical traps. Typical magnetic traps have
large volumes and relatively low initial densities, yielding low
collision rates and long evaporative cooling time scales of
tens of seconds. The production of BECs in small-volume
magnetic chip traps has provided one solution to the time-scale
problem [8,9]. While this method has recently achieved cycle
times of one second with 8’Rb [10], it can only be applied to
magnetic atoms.

Optical dipole traps (ODTs) [11,12] provide the flexibility
to cool all atoms, enabling applications with nonmagnetic
atoms and liberating the magnetic degree of freedom for in-
teraction control during cooling [12,13]. Standard ODTs have
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small volumes and high collision rates, leading to smaller atom
numbers but shorter evaporation time scales in the range from
afew to 10s. An overall BEC production time as low as 2 s has
been accomplished in an ODT [14] by combining one broad
and one very narrow transition for laser cooling in **Sr, to
realize an extremely high initial PSD of 0.1 before evaporative
cooling [15]. A BEC production time of 3.3 s was achieved in
87Rb by combining sub-Doppler laser cooling to a high initial
PSD of 2 x 1073 with fast evaporative cooling in an ODT in
which the volume was dynamically compressed by a moving
lens [16]. These methods, however, are not easily adaptable in
a general way to other atomic species and experimental setups.
In this paper we present a general technique for rapid quan-
tum degenerate gas production, where evaporative cooling is
optimized by dynamically controlling the ODT shape with the
time-averaged potential of a single rapidly moving laser beam.
This method straightforwardly allows for large initial and
small final trap volumes, combining the advantages of earlier
evaporative cooling strategies. It is applicable to all atoms
and requires no hardware beyond a standard optical trapping
setup. Applied to bosonic !*Yb with modest laser cooling
to PSDs <10~*, our experiment produces BECs containing
(0.5-1)x 10° atoms with an overall cycle time of 1.6-1.8 s. By
suitably altering the time dependence of the trap parameters,
we also produce large '7*Yb BECs with 1.2 x 10° atoms. The
observed evaporation dynamics are successfully captured over
three orders of magnitude in PSD by our theoretical model.
Forced evaporative cooling works by removing the high-
energy tail of the Maxwell-Boltzmann distribution and allow-
ing the remaining atomic sample to re-equilibrate by elastic
collisions to a lower temperature. Keeping the removal point
fixed at nkgT relative to the temperature 7 allows the deriva-
tion of scaling laws for the evaporation dynamics [17,18]. The
rate of elastic collisions I'g; = noo v and n determine the per-
particle evaporative lossrate as I'ey, = ['¢j( — 4)e™" forlarge n
[18,19], where ny is the peak particle density, o is the scattering
cross section, ¥ = +/8kgT /mm, and m is the particle mass.

We define the evaporation efficiency as y = — llnn((]'\o,; 713,'))’ where
pri) and N gy are the final(initial) PSD and particle number,
respectively. In the absence of additional loss processes, y can
be made arbitrarily high by using a large n and thus a long

cooling time scale. The reality of other loss processes tempers
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this idea and introduces a new time scale which competes
with that of evaporative cooling. This competition outlines an
important experimental challenge and is captured by the ratio
of “good” to “bad” collisions R = T'¢j/ I'joss. The prescription
for optimum efficiency, however, crucially depends on the
nature of the dominant loss process.

For one-body loss dominated systems characteristic of stan-
dard magnetic traps, R is proportional to the elastic collision
rate and scales as No>T !, where we have assumed a three-
dimensional (3D) harmonic trap with (geometric) mean trap
frequency @. Comparing against the scaling p oc No3T =3,
we find that maintaining or increasing the collision rate at
every step and achieving “runaway” evaporation is an excel-
lent prescription for efficient cooling [17]. Importantly, this
prescription simultaneously improves the speed of evaporative
cooling and final particle number. In an ODT, while three-body
processes can be neglected in certain situations [18,20,21], it
is often the dominant loss mechanism. Then R o« N '@ 372,
and y and R cannot be simultaneously optimized. Crucially,
unlike in one-body loss dominated systems, the inverted
scaling of R with density means maintaining a large N leads
to lowered @, reduced collision rates, and longer evaporation
time scales. Numerical modeling of evaporative cooling in an
ODT [22,23] can help optimize y, but the challenges of large
number and speed remain.

Our solution to these challenges involves the implemen-
tation of the time-averaged optical potential of a laser beam
moving rapidly, or “painting,” in one dimension. The ability
to dynamically control the center position modulation (CPM)
amplitude of the beam in addition to its total power, results
in independent, arbitrary control over both the trap depth
(U =nkpT) and frequency as a function of time, a key
advantage over methods with a fixed power-law relationship
between U and @ [18,23].

The rest of the paper is organized as follows. Section II
consists of the experimental setup and our model for the CPM
trap shape. In Sec. III we present our numerical model for
forced evaporative cooling in this trap along with a procedure
for optimizing evaporation efficiency, and apply our model to
an experimentally optimized evaporation trajectory. In Sec. IV
we describe rapid BEC production using our method, while
in Sec. V we focus on the production of large BECs. Finally,
Sec. VI provides a summary of this technique and an outlook
for applications.

II. EXPERIMENTAL SETUP

We perform our experiment in the apparatus described
in [24] using '7*Yb bosons. Our laser cooling procedure can
produce 10% atoms in 5's at 30 K in a compressed magneto-
optical trap (MOT) operating on the 'Sy— ¥, transition. In
the rest of this section, we describe the setup of our ODT and
characterization of the parabolic CPM trap.

A. Optical trap details

The ODT (Fig. 1) is generated by sending the output of a
fiber laser at 1064 nm (IPG YLR-100-LP) through an acousto-
optic modulator (AOM, 80 MHz, Intraaction ATM-804DA6B)
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FIG. 1. (a) Schematic of the optical trap setup. Gravity points
along y. The horizontally oriented AOM is driven by an FM
waveform (inset) resulting in a parabolic intensity profile. Arrows
on the laser beam indicate the direction of CPM. (b) Evolution of
the time-averaged trap shape U(x) = U(x,0,0) from Gaussian to
parabolic with increasing CPM amplitude for fixed laser power in
units of unmodulated beam waist w and trap depth Uj. (c) Fractional
reduction of trap depth and frequency in the painting direction w,
from unmodulated values Uy and w, ¢ for fixed power.

and focusing the diffracted beam (first order) to a Gaussian
waist of 35 um at the atoms. This light is then refocused with
orthogonal polarization back onto the atoms with a waist of
30 um, at an angle of 65° with respect to the first pass.

To implement the trap center position modulation, we
modulate the center frequency of the voltage controlled
oscillator (VCO, Minicircuits ZOS-100) supplying RF to the
AOM at 10 kHz with the waveform shown in Fig. 1(a), which
results in a nearly perfect parabolic trap shape (see appendix).
The largest CPM amplitude used is 260 um (520 um peak-to-
peak), and corresponds to shifting the center frequency of the
AOM by 7 MHz (14 MHz peak-to-peak) on top of 80 MHz.
The orientation of the AOM is such that the CPM occurs in
the horizontal plane. We control the overall ODT power with
the RF drive strength to the AOM. Using a power of 70 W
and CPM amplitude of 260 um at the atoms, we capture up to
5 x 107 atoms from the compressed MOT into the ODT.

B. CPM trap characterization

Crucial to the implementation of our forced evaporative
cooling model (see Sec. III) is an accurate model for the optical
trap shape as a function of laser power P and CPM amplitude
h [25]. Without CPM and neglecting gravity, one can apply
the scalings U(P) < P and @(P) o< P'/? in the absence of
beam imperfections (e.g., thermal lensing, astigmatism, etc.).
However, as depicted in Fig. 1, CPM allows for a large range
of depths and frequencies at each power. We calculate the trap
frequencies and trap depth for a single ODT beam with CPM
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in the x direction and traveling in the z direction as
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where « is the atomic polarizability at the ODT wavelength
A and zx = nw(z)/k is the Rayleigh range. f,(h/wo) and
fu(h/wy) are the fractional reduction factors shown in
Fig. 1(c), conveniently written as a function of the CPM
amplitude in units of beam waist.

To arrive at a reliable model for our specific time-averaged
potential, we measure the physical amplitude # (in pm)
of the center position modulation at the ODT focus for a
given applied voltage to the VCO. Furthermore, we account
for the effects of ellipticity and thermal lensing by allow-
ing power dependent waists w, = w,(P) and w, = w,(P),
changing the arguments of the fractional reduction functions
to fy(h/w,(P)) and f,(h/w,(P)), and appropriately altering
the equations in (1).

Finally, we include the second pass of the crossed dipole
trap by using a magnification of 5/6 given by the lenses
used to reimage the beam back onto the atoms at 65°. We
write Ui (x,y,2) = Uy (x,y,2) + U2 (x",y",2") + mgy, where
the subscripts 1 and 2 refer to the first and second passes of the
beam, and the coordinates (x’,y’,7’) are related to (x,y,z) by
a 65° rotation in the x-z plane. We then compute the roots of
0Uiota1(0,y,0)/0y|y=,+ = 0 for a densely spaced grid of P and
h values, and use these roots to compute U(P,h) and &(P,h)
referenced to the equilibrium position y*.

The comparison of our trap model to trap frequency mea-
surements made using "*Yb is shown in Fig. 2. As discussed
above, all trap parameters are independently determined by
observations of the beam itself, so there are no fit parameters
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FIG. 2. Comparison of CPM trap model (open triangles) to
measurements (solid circles) of the trap frequency. Different CPM
amplitudes are indicated with different colors. Boxes indicate trap
configurations used for measurements in Fig. 3. The black dashed
line is a parametric plot of (&@(P(¢),h(t))/2m, P(t)) corresponding to
the evaporation trajectory used in Fig. 5.
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FIG. 3. Measurements of Yb number and temperature evolution
for trap depth model calibration. The three different trap configura-
tions are as follows: (1, solid circles) P = 58 W, h = 259 um; (2,
solid squares) P =58 W, h = 130 um; (3, solid triangles) P =2.2 W,
h = 113 pum. The lines are fits using the evaporation model discussed
in Sec. III. The extracted trap depth for each curve is indicated on the
plot above. Our time-averaged trap model predicts U,/ kg = 300 uK,
U/ kp =576 uK, and Us/kp = 13.3 uK.

used here. We find good agreement between the theoretical
and experimental values.

To compare our model for the trap depth with the
experiment, we perform measurements of Yb number and
temperature evolution for three different fixed settings of ODT
power and CPM amplitude (indicated in Fig. 2 with boxes).
We then fit the observed dynamics with our evaporation model
(see Sec. III) for fixed power and CPM amplitude, using the
trap depth as a fitting parameter. The results are shown in
Fig. 3. The predicted trap depth values from our model are
given in the caption to Fig. 3, and are in good agreement with
those extracted from number and temperature dynamics.

III. EVAPORATION MODEL

We model the number and temperature evolution in the high
n limit, where the equation of state is well approximated by
E = 3NkgT. The dynamical equations are then [18,19,22]

N = —(Tey + 3p + The) N, )

d l_‘ev F3b d) FscEr
T =— —3)— — ——|T , 3
<3(n+a )= w) T 3)

where '3, = K3N ! f n3d37 is the per-particle loss rate for
three-body inelastic loss, K3 is a temperature-independent
three-body inelastic loss rate coefficient,« = (n — 5)/(n — 4),
and I'y. and E, are the spontaneous scattering rate and recoil
energy for "*Yb in our 1064-nm ODT. For the ODT intensities
used here, heating from spontaneous scattering is small. The
background lifetime Fb_gl is independently measured to be 35 s.

A. Optimization of evaporation trajectory

By neglecting the effects of three-body inelastic loss,
background gas collisions, and spontaneous scattering, one
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can construct analytical solutions to Egs. (2)—(3) based on
scaling laws by specifying a trajectory n(t) = 10 for all times
t and assuming a fixed relationship @ oc P'/? [18]. Without
these simplifying assumptions, however, it is essential to
turn to numerical techniques, especially with an additional
dynamically controllable parameter such as CPM amplitude.
Therefore, to inform our experimental choice of ramp profiles
P(t) and h(t), we run an optimization algorithm in MATHE-
MATICA using numerical solutions to Egs. (2)—(3). To speed
up the numerical integration of N and T, we compute the
trap parameters U (P,h) and &(P,h) for a dense grid of power
and CPM amplitude values. We then convert these tables into
interpolating functions, making the determination of U (¢) and
@(t) throughout the evaporation ramp extremely fast.

For the functional form of the power ramp P(t)
we try single exponential profiles of the form P(¢) =
Pye™'/™ and bi-exponential profiles of the form P(t) =
Py(ae™/™ 4 (1 — a)e™"/™2), guided by the fact that evap-
oration occurs on an exponential time scale. Furthermore,
a bi-exponential could potentially handle the presence of
two dominant time scales (e.g., evaporation and three-body
loss). For the CPM amplitude ramp h(f), we try out many
different functional forms, including offset exponential i (t) =
hie /™ 4+ (hg — hy), linear h(t) = max(ho — Bt,0), and con-
cave functions A () = max(hg — hi(1 — €/™),0) and h(r) =
max(ho — (t/t4)?,0). For the above functions, the parameters
Py and hy are fixed as they correspond to the trap loading
conditions, while the remaining parameters are varied as part
of the optimization algorithm.

Our optimization algorithm utilizes the gradient ascent

method where y = —m% is the quantity to be
maximized, and 7, satisfies p(ty) = 1. For the power ramp
profile, we find that the optimization procedure pushes the
bi-exponential profile towards a single exponential (i.e., tp; —
7py). CPM ramp optimization suggests that the system is very
robust to the form of A(¢). In fact, if we use P(¢) = Pye /%"
with tp = 1 's, and run the optimization algorithm for each of
the proposed functions A(t) above, the optimized values yop
are all within 1% of each other. For these reasons we choose
to adopt the single exponential power ramp and linear CPM
ramp, as these are the simplest options.

We find the system to be extremely robust to the time scale
of evaporation, as indicated in Fig. 4. For these simulations,
we fix the time scale 7p and optimize the slope of the CPM
ramp B. We restrict 7p 2 0.8, as we believe that our model
cannot accurately capture the evaporation dynamics on time
scales faster than this due to complications involving thermal
lensing and decoupling of horizontal and vertical temperatures.
As seen in Fig. 4, the optimized evaporation efficiency yop
varies little over the range 0.8 < tp < 3. In fact, the slight
slope of yop versus tp is caused by the introduction of a
new time scale, the background lifetime I', ! As described in
Sec. III B, we observe the same behavior in the experiment as
the maximum number of atoms in the Yb BEC is quite resilient
to the evaporation time scale.

B. Comparison of model and experiment

We experimentally investigate the evaporation efficiency
by maximizing the final BEC number. In agreement with our
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FIG. 4. CPM amplitude trajectory optimization for various power
ramp time scales tp. For each value 7p we run an optimization of
the CPM reduction slope S (solid blue triangles) to maximize the
evaporation efficiency y (solid red circles) at p = 1.

simulations we find that over time scales where one-body
loss is negligible, the evaporation efficiency is robust and
an exponential reduction of power and linear reduction of
CPM amplitude yield the largest y. A typical optimized
evaporation trajectory is shown in Fig. 5. Our theoretical model
successfully captures the dynamics over 3 orders of magnitude
in PSD. For these measurements, we wait 500 ms after ODT
loading before beginning forced evaporation to allow atoms in
the wings of the trap to escape.

For the model curves in Fig. 5, the only free parameters are
the initial number and temperature, and K3. We assume s-wave
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FIG. 5. Example of optimized evaporation trajectory. (a) and
(b) Measured number (blue circles), temperature (red circles), and
phase space density (black circles, inset) evolution during forced
evaporative cooling show excellent agreement with our theoretical
model (solid black line, see text). In (b) we also plot U(¢)/10kg
(dashed line). From the fit in (b) we find 7,,, = 10.5. (c) Trajectories
of trap frequency and depth (inset) for measurements in (a) and (b).
Dashed lines correspond to the same trajectories without reduction
of CPM amplitude. (d) Evolution of per-particle loss rates for
evaporation (solid line) and three-body inelastic loss (dashed line)
during forced evaporation.
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scattering only as the d-wave threshold for "*Ybis 75 1K, and
use 0 = 8ma?, where a = 5.6 nm [26]. From a least squares
fit to the data, we extract K3 = (1.08 & 0.03) x 10728 cmSs~!.
From the behavior of I'ey and I'3, in Fig. 5(d), we see that the
dynamically shaped ODT maintains dominance of evaporative
over three-body loss. Furthermore, the elastic collision rate I'¢
falls less than a factor of 2 from 1.7 to 1.1 kHz over the course
of the evaporation sequence. The evaporation efficiency y for
this ramp is 3.8, close to the highest value found using the
optimization algorithm discussed above with our initial trap
conditions and ramp profiles. We note that although runaway
evaporation where dI'g/dt > 0 is easily achieved with the
dynamically shaped ODT, we do not find this to be the optimal
evaporation strategy due to enhanced three-body loss.

IV. RAPID BEC PRODUCTION

In addition to providing a platform for highly efficient
evaporation of large atom number clouds, dynamical trap
shaping can be applied to the rapid production of BECs. For
this purpose we shorten the MOT loading and compression
time to a total of 0.8 s, and begin forced evaporative cooling
immediately following loading of the ODT with an initial
PSD of <10~*. The experimentally optimized fast BEC ramp
measurements are shown in Fig. 6.

For fast BEC production, we find the use of three distinct
evaporation stages to be optimal. In the first stage, we
exponentially reduce the power by a factor of 20 in 200 ms
while linearly reducing the CPM amplitude to zero in 150 ms.
Second, we exponentially reduce the laser power by a factor
of 6 in 300 ms. In a third, relatively slow evaporation stage, we
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FIG. 6. Rapid production of '"*Yb BECs with a total cycle time of
1.8 s. (a) and (b) Evolution of number and horizontal (7 ) and vertical
(Ty) temperatures during the first two phases of rapid evaporation (see
text). (c) Absorption images (insets) and horizontally integrated OD
profiles after the third phase of evaporation and 25-ms time of flight
(ToF) to a variable final laser power P;. Solid lines are fits to a
bimodal density distribution (see text), with dashed lines indicating
fits to the thermal component. For P; = 0.41 W, we find a nearly
pure condensate of 1 x 10° atoms.
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FIG. 7. Production of large, pure '7*Yb BECs using dynamical
trap shaping to combat three-body inelastic loss. Absorption image
(left) and horizontally integrated OD profile (right) after 50-ms ToF,
with fit (solid line) to a Thomas-Fermi BEC density distribution,
yielding a total of 1.2 x 10° condensed atoms. The thermal fraction
is consistent with zero.

linearly decrease the power another 30% in 350 ms, and then
hold at constant depth for 150 ms. In Fig. 6(b) we see that the
horizontal and vertical temperatures initially decouple due to
the rapid decrease of CPM amplitude in the first 150 ms. This
can be understood by considering the adiabatic temperature
evolution terms, since wy ;/w, . > wy/w, during this time.
Since the assumption of thermal equilibrium is violated at these
short time scales, we cannot apply our model in this regime.
Figure 6(c) shows absorption images and horizontally inte-
grated optical density (OD) profiles after the third evaporation
stage for a few final laser powers near the condensation transi-
tion. We fit the density profiles to a bimodal distribution con-
sisting of Gaussian thermal and Thomas-Fermi BEC profiles.
We detect nearly pure '7*Yb condensates of 1 x 10° atoms for
P; =0.41W, with a total cycle time of 1.8s. By shortening
the MOT loading and compression time to 0.6 s, we produce
BECs of 0.5 x 10° atoms with a total cycle time of 1.65s.

V. APPLICATION TO LARGE BEC PRODUCTION

We now turn our attention to the production of large atom
number condensates. As shown in Fig. 5(d), the three-body
loss rate grows noticeably near the point p = 1 due to a large
increase in the density. Therefore, in order to produce the
largest condensates we evaporate with the same functional
ramps as in Fig. 5 until p ~ 1, and subsequently continue
forced evaporation by fixing the power and increasing the
CPM amplitude.

Figure 7 shows an example absorption image and inte-
grated OD profile of a pure BEC produced from such an
evaporation ramp. For this particular measurement we finish
the initial evaporation stage at p &~ 1 with 2 = 130 um and
P = 1.0 W, and subsequently increase the CPM amplitude to
h = 180 um. The resulting trap frequencies are (w,,w,,w;) =
2m x (17,110,10) Hz. Following this method we can reliably
create pure 174Yb condensates of 1.2 x 10° atoms, a factor of
4 improvement over the largest reported Yb BEC number [24],
with a total cycle time of 15s.

VI. SUMMARY AND OUTLOOK

While an additional CPM degree of freedom from a second
orthogonal AOM can allow more control over atom cloud
compression [27] or final BEC shape [28,29], it is unlikely
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that it will provide significant improvements to the speed and
efficiency of evaporative cooling that we have demonstrated
here. In our current implementation, we choose the vertical
waist and large initial CPM amplitude to load about 50% of
the compressed MOT. Once a large atom number has been
loaded, we control all the relevant parameters for efficient
evaporative cooling by dynamically shaping the trap (Fig. 5)
to provide an appropriate @ to maximize y and simultaneously
provide large w, for tight confinement against gravity.

The CPM amplitude provides a simple way to control the
trap aspect ratio over a large range. Furthermore, a large
CPM amplitude with @, >> w, . can be used to realize two-
dimensional (2D) confinement, and square-wave modulation
can be used to generate multiwell traps.

Our fast and efficient quantum gas production methods can
be applied fruitfully to other atomic species, fermions, and
mixtures, and can significantly impact various applications,
such as atom interferometry [3,7,30]. The demonstrated fast
BEC production time in this work is at least one order of
magnitude shorter than that in typical quantum degenerate
gas experiments. The leading limitation to our cycle time
is the MOT loading rate, stemming from the relatively
narrow linewidth of the 'Sy — 3P, transition. Combining
broad- and narrow-line laser cooling either spatially [31] or
temporally [32] can shorten the cycle time further, and is also
applicable to other alkaline-earth-metal [14,33,34] as well as
lanthanide [35-37] atoms. Our scheme should also improve
the cycle time of alkali-metal atom experiments which feature
the advantage of sub-Doppler cooling with relatively broad
transitions as well as the combination of broad and narrow
transitions [38,39].

The broad applicability of our method to all laser-cooled
atomic species gathers additional appeal when one considers
that most optical trapping experiments already involve one
AOM to control the power during evaporative cooling. The
short cycle time can also allow for further technical simplifi-
cations including reduced vacuum requirements and the use of
lower ODT powers at wavelengths closer to atomic resonance.
In alkali-metal atoms such as Rb and Cs, where laser cooling
can produce samples at a few uK with PSD > 1073 [16,40],
an order of magnitude lower initial trap depth than used here
is adequate. Estimating for the commonly used ®’Rb atom,
where o and K3 [41] are similar to I7#Yb, it should be possible
to have 1-s BEC production times with only 0.5 W of ODT
power at 100-nm detuning.
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APPENDIX: FM WAVEFORM DERIVATION

In order to derive the FM waveform necessary to create
the parabolic time-averaged potential shown in Fig. 1(b),
we work with one-dimensional (1D) transverse profiles in
the painting dimension x. Consider the unmodulated beam
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FIG. 8. FM waveform for parabolic time-averaged potential. (a)
The three roots of the implicit equation £3/3h% — & + ¢ = 0 plotted
in the domain —7/2wnea < t < 7T/2Wmod, corresponding to a half
period. The root of interest for CPM is centered on the & axis (root 2).
(b) Time-averaged CPM potentials using root 2 from (a) as the FM
waveform for delta function (dashed black line) and Gaussian (solid
red line) initial beams.

shape to be a delta function /(x) = Pyd(x). In this case, for
a CPM amplitude of iy we want the time-averaged intensity
distribution to be of the form,

I(x) = = (hg — x*)O(ho — |x)),

Al
prss Aab

where © is the Heaviside function. To realize this potential
we want to find the function £(¢) such that the time average
of I(x — &(¢)) from ¢, to t, equals the expression in Eq. (A1),
where £(t;) = —ho and &(t) = hy.

We reason that the rastered delta function must spend an
amount of time at each point &’ that obeys

. N2
dile=g _ 1) _ <1 _ (5_) > (A2)
dtle—g  1(0) ho

Writing dt as d& /& we find
dt|e—g _ §|$=0 — (1 — (‘E_’)2> (A3)
dile=o  Elee ho

Treating .§|5=0 = v as a constant determined by wy,q and Ay,
we arrive at a differential equation for &(t),

-
__w
")

1] < ho. (A4)

Solving Eq. (A4) gives the implicit equation &(7)*/3h3 —
&(t) + vot = 0. The three roots are plotted in Fig. 8(a). Clearly
the solution that is centered on the y axis will be the desired
root. From the constraint |£] < kg, we find ] < 2ho/3vp.
Anticipating that we will construct the periodic waveform
shown in the inset to Fig. 1(a), we define the modulation period
27 /wmoa = 8ho/3vp. Next we compute the time average with
n = —2/’10/31)() and , = 2h0/3v0,

3v0 P() /2h0/3vo

4hy J_

_ @mod Po / T/20med (1 — o)
s —77/2Wmod |§(t0)|

where 7y satisfies x — §(fp) = 0. From Eq. (A4) we have
E(ty) = vo/(1 — (E(t0)/ ho)?). Lastly, the integral over the delta

I(x) =

8(x —&(@))dt

2ho /3o

dt, (AS)
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function evaluates to zero unless |fy| < 2ho/3vy, which is
equivalent to |£(fy)| < hg. Therefore,

3 3P, s
I(x) = 4_ho(1 — (§(0)/ ho)")O(ho — 1£(10)])

3Py, , 5
= —(hg — x7)O(ho — |x]). A6
4h(3)( 0 )O(ho — |x]) (A6)
Figure 8(b) shows the time-averaged potentials
for delta function [I(x)= Pyd(x) and Gaussian
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I(x)=1 exp(—Zx2 / wé) initial beam shapes, where
Io = 2/ Py/wy. As seen in the figure, the cases of the
delta function and Gaussian differ very little, and become
indiscernible when hy is much greater than the Gaussian
waist. In order to perform frequency modulation with the
waveform £(#) corresponding to the second root in Fig. 8(a),
we utilize the arbitrary waveform functionality of a Stanford
Research Systems DS345 function generator, passing it an
array of values very closely approximating the periodic
continuation of £(¢) (see inset to Fig. 1).
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