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Molecular level crossing and the geometric phase effect from the optical Hanle perspective
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Level-crossing spectroscopy involves lifting the degeneracy of an excited state and using the interference of
two nearly degenerate levels to measure the excited-state lifetime. Here we use the idea of interference between
different pathways to study the momentum-dependent wave-packet lifetime due an excited-state level crossing
(conical intersection) in a molecule. Changes in population from the wave-packet propagation are reflected in
the detected fluorescence. We use a chirped pulse to control the wave-packet momentum. Increasing the chirp
rate increases the transition to the lower state through the conical intersection. It also increases the interference
of different pathways in the upper electronic state due to the geometric phase acquired. Therefore, increasing
the chirp rate decreases the population of the upper electronic state and its fluorescence yield. This suggests that
there is a finite momentum-dependent lifetime of the wave packet through the level crossing as a function of
chirp. We dub this lifetime the wave-packet-momentum lifetime.
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I. INTRODUCTION

Level crossing occurs when two levels approach each other
and intersect or avoid each other and is a fundamental aspect in
quantum physics and chemistry. Level crossing can be induced
by a magnetic field (Zeeman splitting) or an optical field (Stark
effect). The external field lifts the degeneracy of the level and
the level spacing induced is less than the natural linewidth.
This type of level crossing has been well studied [1]. Larger
level spacing, such as an electronic level crossing, occurs in
molecules due to a cis- to trans-isomerization [2–4]. How the
wave packet propagates due to the electronic level crossing
(conical intersection) is still being understood. Here we
describe how a chirped pulse affects the wave-packet formation
and how the chirp rate can control wave-packet interference
and transport associated with a conical intersection.

The Hanle effect [5] has been used to study level crossing.
It has been observed in atoms [6–8], molecules [9,10], and
in experiments on the optical orientation of spins of electrons
in semiconductors [11,12]. The core of the Hanle effect is
that an external magnetic field allows one to control the
separation between two crossing energy levels and allows one
to control the florescence interference. Figure 1(a) illustrates
the crossing between two split excited-state levels a,b as
a function of magnetic field strength. The coherence or
phase relation between the levels alters the coherence in
the fluorescence. For example, for well-separated electronic
levels, independent emission from each level occurs and the
fluorescence signal is proportional to the sum of the squares
of amplitudes |Aa|2 + |Ab|2, where Aa(Ab) is the amplitude
from the state a(b). When both levels are nearly degenerate
and excited simultaneously, the fluorescence is proportional to
|Aa + Ab|2. Crossing occurs when the magnetic field is zero
and increasing the magnetic field strength lifts the degeneracy
and causes interference in the resonance fluorescence. Thus,
the absolute radiative lifetime can be measured by detecting
the fluorescence as a function magnetic field strength, without
any knowledge of the density of the emitters [13].
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Electronic level-crossings (conical intersections) occur in
nearly all molecules and are responsible for many excited-state
chemical processes [2–4,14–16]. The isomerization process
can be described in the Born-Oppenheimer approximation,
where the nuclear motion defines the potential energy surfaces
corresponding to different electronic states that intersect at
the conical intersection point, in the nuclear coordinate, with
the geometric topology of a double cone [Fig. 1(b)]. The
two potential energy surface topologies and their interaction
are influenced by the molecular structure [17,18], medium
[19–21], and the symmetry of the two states [2,14,22]. It
also depends upon whether the molecule isomerizes in the
ground or in the excited state [23]. The presence of a conical
intersection is recognized by the rapid nonradiative transfer
of energy from the upper to the lower state and the geometric
phase effect [16,24–32]. The rapid decay of the electronic
excited state and lack of fluorescence is a commonly known
description that may not apply to every molecule. For example,
upon two-photon excitation to the S2 state, more fluorescence
was observed from S2 than from S1. This is because of a rapid
decay of the S1 to S0 (ground state) as a result of a conical
intersection [33]. Examples of highly fluorescent molecules
with conical intersections do exist [34]. Transient absorption
measurements show indications of wave-packet bifurcation in
the potential energy surface due the conical intersection [34].
The phase of the wave packet, controlled with a pump and
dump chirped pulses, near a curve crossing has been studied
theoretically and shown to influence which pathway the wave
packet takes [35].

The main signature of the geometric phase effect is the
destructive interference in population transport due to a
conical intersection. The interference quenches the fluores-
cence [16,24–29]. The geometric phase is sensitive to the
wave packet’s angular momentum as it encircles the conical
intersection [36], which can be controlled by tuning the
spectral phase of the laser pulse [37]. Theoretically, angular
momentum is added to a wave packet by multiplying it by eilθ ,
where θ is the phase and l is the angular momentum [36]. A
wave packet with vanishing angular momentum encircling the
conical intersection [Fig. 1(b)] will spread more than a wave
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FIG. 1. (a) Level crossing due to the lifting of the degeneracy.
(b) Level crossing between electronic states in a molecule (conical
intersection). The wave-packet propagation acquires a geometric
phase when encircling the conical intersection (red-solid line).

packet with high angular momentum and thus decohere faster
and decrease the fluorescence yeild [36]. Determination of the
optimal pulse to control the wave packet’s phase and thus its
transport through the conical intersection of molecules in solu-
tion has been done by means of genetic algorithms [38–40] and
numerical simulations [41,42]. Alternatively, shaped pulses
can change the wave-packet profile by multiple interactions
with the same field while in the excited state or by multiple
transitions to the excited state [35,43,44]. Moreover, there is
evidence that geometric effects can play a role in condensed
phase dynamics [45].

As stated earlier, the molecular Hanle effect involves
changing the magnetic field strength to affect the interference
of light waves emitted from two excited states in the course
of measuring the fluorescence. Here we propose that by
analogy with the Hanle effect, varying a parameter of the laser,
such as its chirp rate, the wave-packet interference associated
with electronic level-crossings (conical intersection) can be
controlled. The resulting control of the wave packet can be
detected by changes in the fluorescence from the two crossing
levels as a function of chirp.

We consider a fluorescent molecule with three electronic
states S0, S1, and S2. The S2 state is directly excited by a
chirped laser pulse and the transition to the S1 state occurs
nonadiabatically via a conical intersection. The creation of the
wave packet in the excited state S2 is controlled by the chirp
rate. For a chirped pulse, the carrier frequency varies linearly
in time ω(t) = αt t , where αt is the chirp parameter, directly
affecting the phase of the wave packet as a function of time,
and thereby affecting population and coherence [46,47]. Using
Floquet theory, one obtains a solution to the time-dependent
Schrodinger equation with a chirped pulse in the form of
a linear combination of eigenstates. The eigenstates evolve
periodically in time with frequency αt t . The wave packet
consists of a linear combination of stationary vibrational states
with energy proportional to eiεnθ , where θ = αt t , and εn is the
associated vibrational eigenvalue [47,48]. Tuning the chirp
parameter allows us to control the angular momentum of
the wave packet and thus its deconstructive interference and
transport through a conical intersection. Similar to the Hanle
effect, we expect that the fluorescence yield as a function
of chirp will have a peak at zero chirp (transform limited).
Increasing the chirp rate increases the angular momentum,

and this will decrease (increase) the fluorescene yield of S2(S1)
due to wave-packet deconstructive (constructive) interference.
This suggests that a lifetime associated with the wave-packet
interference, due to the conical intersection (at the center
frequency of the pulse), can be deduced from the chirped
pulse width, which we refer to as the wave-packet momentum-
dependent lifetime.

This paper is organized as follows. In Sec. II we derive and
analyze the expressions for the fluorescence from the states
S1 and S2. In Sec. III we simulate the fluorescence using the
theory. Concluding remarks are presented in Sec. IV.

II. THEORY

The theoretical model aims to describe the fluorescence
from a solvated molecule with a ground state S0 and two
electronic states S1 and S2. The S1 state is located well outside
the laser spectrum. The states S1 and S2 are coupled by a
conical intersection. Many of the theoretical advances describ-
ing molecular isomerization have been done with quantum
chemistry [2,49–52] and semiclassical [53–55] calculations.
Quantum chemistry simulation of the excited electronic state
isomerization and the wave-packet propagation of a solvated
molecule is still a difficult task to complete. Inclusion of the
solvent makes the wave packet relax faster in the excited
state, and it follows the curvature of the potential surface
until it reaches the bottom of the well. Also, the solvent
polarity changes the relative energies of the excited-state
potential energy surfaces and effects the conical intersection
point [56,57], which is reflected in the fluorescence [58].
When describing the fluorescence for weak electric fields,
time-dependent perturbation theory can be used [59]; however,
the calculated signal is not sensitive to the phase of the
pulse. We gave consideration to using the density matrix for
describing the processes occurring in our system. The density
matrix for pure states cannot account for the interference in the
population due to the geometric phase effect, since it vanishes
in the diagonal elements [60]. Here we use an analytical
theory to incorporate the geometric phase acquired and the
wave-packet interference, as demonstrated below.

The theoretical description is organized as follows. First,
we derive the population transfer from the ground state to
the excited state S2. This initial population S2 can nonadia-
batically transition through the conical intersection to S1 or
remain in S2. Next, we describe the pathways contributing
to the S2 fluorescence and the deconstructive interference of
these pathways due the geometric phase acquired. Then the
nonadiabatic transition probability to the S1 state is discussed.
Finally, the expressions for the population of states S1 and S2

are presented.

A. Population transfer to the S2 state

Consider a two-level system, S0 and S2, when excited
by a single chirped pulse E(ω) = Ẽ0Ã(ω) exp[i α

2 (ω − ω0)2],
where Ẽ0 is the amplitude of the pulse, Ã(ω) is a Gaussian
envelope, α is the chirp rate in fs2, and ω0 is the center
frequency of the pulse. The pulse in the time domain is found
by using the Fourier transform and is given as

E(t ; α) = E0A(t ; α)e−iω(t ;α)t−iω0t , (1)
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FIG. 2. (a) The peak intensity of a chirped Gaussian pulse with
width 16 fs. (b) The initial population of the excited states 1 − PS0

as a function of chirp rate calculated using a 16-fs Gaussian pulse
with � = 3 ps, λα = 545 nm, λS2 = 581 nm, C = 0.044, and field
strength E0 = 0.044.

where A(t ; α) = e−t2/2τ 2
is the Gaussian envelope. In the

time domain, the spectral chirp increases the pulse width as

τ = τ0

√
1 + α2τ−4

0 . The frequency changes as ω(t) = αt t ,

where αt = α
2 (τ 4

0 + α2)−1 and the peak intensity decreases as
I = I0(1 + α2τ−4

0 )−1/2. For a chirped pulse there are regions
where the pulse intensity changes slowly or rapidly. This can be
seen in Fig. 2(a), where at α < 1000 fs2 the amplitude changes
rapidly, while for α > 1000 fs2 the amplitude changes slowly.
This indicates that there are two different regions. One region
is where the chirp rate will have a physical effect on population
transfer to the excited state. The other region is in the limit of
larger chirp rates, where the intensity changes very slowly,
and the chirp rate will have a limiting asymptotic effect on the
population transfer. The maximum value of the chirp rate in the
time domain can be found from the detuning frequency ω(t)
and is given as αmax = τ 2

0 . This does not define the transition
point between the two regions; it simply gives an indication
where the chirp rate is maximum.

The time evolution of the system is given by the
Schrodinger equation d

dt
	(t) = −iH (t)	(t), where 	(t) =

ψS0 (t) + ψS2 (t). Here we have set � equal to 1. The Hamilto-

nian can be written as

H =
(

0 μA(t ; α)
μA(t ; α) �(t ; α) − i�

)
, (2)

where �(t ; α) = (ωS2 − ωS0) − ω0 − ω(t) is the detuning
from S0 and S2, μ is the transition dipole moment, and �

is the decay rate. We performed a substitution for ψS2 (t) to
bring the linear frequency shift from the pulse equation (1)
into �(t ; α), so that the pulse is a Gaussian A(t ; α).

For |i�(t ; α) + �| large compared to the width of the
Gaussian envelope τ−1, an analytical solution can be derived
by setting d

dt
ψS2(t) equal to zero on the left-hand side

of Schrodinger’s equation and solving the coupled equa-
tions [61,62]. The S0 population can then be found as

PS0 = C exp

[
−�

2

∫ ∞

−∞

μ2A2(t ; α)

�2(t ; α) + �2
dt

]
, (3)

where C is a constant. From Eq. (3), we see that the population
transfer to the excited state (1 − PS0 ) is insensitive to ±�(t ; α).
The population of the excited state (1 − PS0 ) is shown in
Fig. 2(b). The population transfer is minimum for a transform
limited pulse (α = 0) and increases as the chirp rate increases,
whether its sign is positive or negative, until it reaches an
asymptotic value of 1. The absorptionlike peak shown in
Fig. 2(b) becomes broader when the intensity of the pulse
decreases. Thus, decreasing the intensity of the pulse decreases
the population of the excited state or the fluorescence yield. By
inserting a factor in the argument of the exponential [Eq. (3)],
we can simulate any decrease of the population reaching the
bottom of the potential energy surface, which we will do later
in the final expressions.

Wave-packet propagation in a steep potential energy surface
can lead to an asymmetric behavior with positive vs negative
chirp rates [63,64]. This is because for a negatively chirped
pulse, the low frequencies trail the high. Initially the pulse
excites higher-energy modes and they propagate to lower-
energy modes. The interaction between the already occupied
lower-energy modes and exciting low-frequency photons
causes stimulated emission and quenches the fluorescence
rate. The steeper the potential energy curvature, the greater
the excited-state depletion. A positively chirped pulse has the
opposite time ordering, so this does not occur. This is why
more fluorescence can observed for positive chirped pulses
than negative. The steepness of the potential energy surface
can influence the amount of population reaching the conical
intersection, for negatively chirped pulses, depending on the
particular system. Here we assume that there is no asymmetric
population depletion due the chirp rate prior to the wave packet
reaching the conical intersection.

Here we consider photon energies below the ionization
threshold, in the visible and UV range. For photon energies in
the x-ray range, theoretical studies revealed that a pump and
chirped probe pulse can be used to measure electron dynamics
through wave-packet motion and interference between two
electronic states in a diatomic molecule [65].

Initially, the population is created in the S2 excited state
PS2 = 1 − PS0 . However, after a few hundred picoseconds the
molecule fluoresces from both S1 and S2. This implies that the
fluorescence can be found by replacing PS2 → PS1 + PS2 . Now
the system is described by the relation PS1 + PS2 = 1 − PS0 .
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This suggests that both PS1 and PS2 have a form proportional
to 1 − PS0 , with the ground-state population given by Eq. (3).
Similar forms of Eq. (3), �(1 − PS0 ), have been used to
describe population transfer in avoided crossings with an
intense continuous-wave chirped laser [66], adiabatic rapid
passage population transfer in two- [67–69] and four-level
systems [67]. It has been studied for a pulsed excitation of a
two-level system [61]. A mathematical formalism similar to
what we used in the derivation of Eq. (3) has been used to
describe the population transfer for a two-level system when
the nuclear motion changes the electronic energy position
linearly (linear change in frequency) [70].

The shape of the peak shown in Fig. 2(b) has been
observed experimentally for Rb atoms [68]. Increasing the
chirp rate increases the amount of initial excitation and
increases isomerization yield [37], and has been verified
experimentally [35,38,40]. Therefore, the fluorescence yield
from S1 and S2 should track with the form of Eq. (3). In the
next section, we will describe how wave-packet interference
due to the geometric phase acquired along different pathways
changes the chirp dependence from an absorptionlike shape
[Fig. 2(b)] to an emissionlike shape.

B. Geometric phase and wave-packet mixing

The wave-packet pathways to reach the minimum of the
S2 potential energy surface are shown in Fig. 3. The black-
dashed line shows one pathway directly reaching the minimum
of the potential energy surface S2 or another red-dotted
line encircling the conical intersection and then reaching
the minimum. When the wave packet encircles the conical
intersection it acquires a geometric phase of π (sign change).
The Appendix describes how the geometric phase can be
accounted for by a pseudomagnetic field, i.e., a vector potential
inserted into the effective nuclear Hamiltonian [71]. When
the wave packet propagates around the conical intersection, it
will have a preferred direction depending upon the sign of its
angular momentum.

The geometric phase is observed when the two pathways
mix at the minimum of the potential energy surface [60,72–75].

FIG. 3. Illustration of the excited-state wave-packet pathways.
S1 and S2 are connected by a conical intersection. The wave packet
is initially excited in S2. Low-momentum wave-packet components
propagate directly to the bottom of S2 (black dashed). Higher-
momentum wave-packet components either overcome the barrier and
go to the S1 state (yellow-dashed) or encircle the conical intersection
returning to the S2 minimum (red-dotted) and create destructive
interference, quenching the fluorescence from S2.

The mixing of the two pathways will depend upon the wave-
packet momentum. For example, wave-packet components
with low momentum will relax directly to the minimum of
the potential energy surface (black-dashed line in Fig. 3),
since they do not have enough momentum to make it over the
barrier to the conical intersection. Wave-packet components
with higher momentum will make it over the barrier to
S1 (yellow-dashed line in Fig. 3) or encircle the conical
intersection and stay in S2 (red-dotted line in Fig. 3). In the
simplest description, this can be described as a bifurcation of
the wave packet in the excited-state potential energy surface
S2,

∣∣ψS2

〉〈
ψS2

∣∣ = 1√
2

(∣∣ψA
S2

〉〈
ψA

S2

∣∣ + eiC(γ )
∣∣ψB

S2

〉〈
ψB

S2

∣∣),
where one wave packet encounters the conical intersection
and acquires a geometric phase |ψB

S2
〉〈ψB

S2
| and the other does

not, |ψA
S2

〉〈ψA
S2

|. The mixing of the two wave packets creates a
population proportional to [60]

PS2 = 1 + ∣∣〈ψA
S2

∣∣ψB
S2

〉 ∣∣ cos
[
C(γ ) − arg

〈
ψA

S2

∣∣ψB
S2

〉 ]
, (4)

where C(γ ) is the geometric phase acquired after propagating
around the conical intersection. See the Appendix for the
derivation of C(γ ). Here we assume only one conical intersec-
tion C(γ ) = −π and that the argument in the cosine is zero.
The mixing of the wave-packet components from these two
pathways creates destructive interference [Eq. (4)], reducing
the fluorescence rate of S2. If the wave packet encircles the
conical intersection an even number of times, the sign change
cancels. However, this is not expected, since many conical
intersections involve a barrier that the wave packet must
overcome [36].

There are a couple reasons why the pathways involve the
minimum of S2. First, the transition probability to the S1 state
is maximum at the conical intersection point and decreases as
1/r , where r is the distance between the crossing point and
the transition point on the potential energy surface [76]. For
a molecule in the condensed phase, wave-packet relaxation
occurs faster and follows the potential energy surface [77].

An important requirement for observing the geometric
phase effect is to have an excitation pulse with sufficient
energy and bandwidth. The initial wave packet will have a
high enough momentum and a broad range of momenta to
experience multiple pathways in the potential energy surface,
with one of them circling the conical intersection.

Chirping the pulse increases the population in the excited
state and increases the angular momentum of the wave
packet. This would suggest that the wave packet has more
angular momentum to overcome the barrier and encircle the
conical intersection (red-dotted line in Fig. 3) or transition
nonradiatively to the S1 state (yellow lighter line in Fig. 3).
Thus by increasing the chirp rate, we increase the amount of
wave-packet components encircling the conical intersection
and thus decrease the S2 fluorescence. At the same time we
increase the amount of wave-packet components transitioning
to S1, thus increasing the S1 fluorescence. The sign of the
chirp, while it may affect the direction of the wave-packet
motion around the conical intersection, does not change the
effect of chirp rate on the final populations in this system.
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C. Nonadiabatic transfer to the S1 state

The transition probability from S2 to S1, ℘S1, via the conical
intersection can be calculated using semiclassical nonadiabatic
Landau-Zener theory (Zhu-Nakamura theory) [78,79]. The
transition probability to stay in the S2 state is then given by
℘S2 = 1 − ℘S1. The Landau-Zener theory does not include
the effects of the geometric phase; however, it is widely
used with simulating systems that have the geometric phase
effect [76,78–81]. The theory can incorporate either a one- or
two-dimensional curvature of the potential energy surfaces and
their coupling into the calculation of the transition probability.

D. Final expressions for fluorescence

The net population transfer from S0 to S2 is given as 1 −
PS0 using Eq. (3). Equation (4) describes the wave-packet
bifurcation and destructive interference in the excited S2 state,
which is general and does not depend upon the chirp rate.
Now, we will combine the population transfer [Eq. (3)], and the
wave-packet deconstructive interference [Eq. (4)] to determine
the final expression for the fluorescence from S2.

As the chirp rate increases beyond its maximum, αmax = τ 2
0 ,

the excitation pulse becomes longer and its intensity changes
slowly. In the large chirp limit, the effect of the chirp rate
on the fluorescence of S2 reaches an asymptotic value and
can be described by its effective probability to remain in that
state ℘S2 (see Sec. II C). The effect of the chirp rate on the
population transfer from the ground to the excited state S2

is described by the second term in Eq. (3). However, the
mixing of the two pathways reaching the minimum of S2

[Fig. 3 and Eq. (4)] creates destructive interference, as the
chirp rate is increases. The deconstructive interference can be
incorporated by changing the sign of the exponential in Eq. (3).
The population of S2 can be written as

PS2 = ℘s2 + Cs2 exp

[
−βS2

�

2

∫ ∞

−∞

μ2A2(t)

�2(t) + �2
dt

]
, (5)

where CS2 is a constant and βS2 is a constant that is less than 1.
The term βS2 was inserted to describe the distribution of initial
population (1 − PS0 ) between the two states S1 and S2 as a
function of chirp. Decreasing βS2 will widen the width of the
exponential in Eq. (5) and decrease the population measured in
the fluorescence. Equation (5) suggests that the fluorescence is
maximum when using a transform limited pulse and decreases
as the chirp rate increases until it reaches its asymptotic value.

The fluorescence from S1 can be expressed in the same
manner; however, increasing the chirp rate increases the
transition to S1 [35,37]. The population of S1 can be written
as

PS1 = ℘s1 − Cs1 exp

[
−βS1

�

2

∫ ∞

−∞

μ2A2(t)

�2(t) + �2
dt

]
, (6)

where CS1 and βS1 are constants. Equations (5) and (6)
represent the population of the two states S1 and S2 coupled
by a conical intersection. It is important to note that a similar
form of Eq. (6) was derived for intense chirped pulses in
the dressed state representation [66]. They obtained similar
expressions as Eq. (6) for the population transfer between
crossing energy levels. Here we consider a Gaussian shaped
pulse and incorporate the geometric phase effect into the

population transport with an electronic level-crossing due to a
conical intersection.

III. SIMULATION

Equations (5) and (6) are used to simulate the fluores-
cence probabilities of S1 and S2 individually. The transition
probabilities, ℘S1 and ℘S2 in Eqs. (5) and (6), are calculated
using the Zhu-Nakamura theory mentioned in Sec. II C. In
this model system, we use two Morse potentials that have a
minimum corresponding to the fluorescence frequency, shown
in Fig. 4. The transition region was considered the region
between the minimum of the S2 state and the minimum of
the upper adiabatic state. (See the black arrow in Fig. 4.)
The coupling between the states was considered linear
VS1S2 (R) = cR, where c = 0.0008 is the coupling between
states in Hartree units [76]. The transition probability to the
S2(S1) state in the large-chirp-rate limit was calculated as
℘S2 = 0.75 (℘S1 = 0.25). This reflects what is commonly
expected for a conical intersection, which is that the majority
of population transfer occurs nonadiabatically to the lower
state [33].

To simulate the distribution of population among the two
states and reproduce the relation PS1 + PS2 = 1 − PS0 , the
parameters where chosen as βS2 = 0.76,βS1 = 0.72,CS1 =
0.20, and CS2 = 0.25. The initial population 1 − PS0 (blue-
dashed line) is shown in Fig. 5(b) with PS1 + PS2 (red-solid
line), and this shows that the model system satisfies the relation
PS1 + PS2 = 1 − PS0 . The broadening of the feature from the
initial population Fig. 5(b) to the final population Fig. 5(a)
reflects the distribution of the population measured in the
individual S1 and S2 states as a function of chirping the
pulse. This suggests that the linewidths of the peaks seen
Fig. 5(a) are sensitive to the chirp rate or the wave-packet
angular momentum; therefore, we identify the width as a
momentum-dependent lifetime. Measurement of the lifetime
of S1 and S2 in Fig. 5(a) can be easily done, since the chirp rate
can be related to the FWHM of the pulse. The FWHM never
goes to zero, so we need to subtract the FWHM at zero chirp. In

FIG. 4. The nonadiabatic potential energy surfaces used to
calculate the nonadiabatic transition between S1 and S2.
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FIG. 5. (a) The simulated fluorescence from S1 and S2 using
Eqs. (5) and (6). See the text for the parameters. (b) The initial
population (1 − PS0 ), the same as shown in Fig. 2(b) (blue-dashed),
is compared to PS1 + PS2 (red-solid) from (a).

this case, the FWHM of the pulse at the positive chirp FWHM
point is subtracted from 16.0 fs and divided by 2. Division by
2 is necessary because we want to measure half of the FWHM.
The same is done for the FWHM point for the negative chirp
value. This gives a lifetime of 150 fs for the S1 state and 180 fs
for the S2 state. Since population transport is sensitive to the
intensity of the pulse, we expect that lifetime will depend upon
the intensity of the pulse. Experimental studies can reveal the
dependence of this lifetime upon pulse parameters such as the
intensity and the center frequency of the pulse.

IV. CONCLUSION

The model presented here describes population transfer
between two crossing electronic levels following the excitation
from a chirped pulse. We showed that interference can arise
due to the wave packet propagating along different pathways
in the excited state and their interference. Recent experimental
results are now beginning to be able to detect the wave packet
branching in the excited state [34]. It was recently shown
in experiments on molecular isomerization, using transient
absorption methods, that the vibrational frequencies observed

had a range of amplitudes. The distribution of vibrational fre-
quency amplitudes could indicate that some modes experience
more deconstructive interference than others [82], which also
supports this theory.

Chirping the pulse changes the frequency as a function
of time and directly affects how the vibrational coherences
are initially created in the excited state, which can be
represented as Floquet states [47]. Thus the wave-packet
angular momentum in the excited state can be changed by
chirping the pulse. It is for this reason that we expect that a
chirped pulse will be able to detect the interference of various
pathways in the potential energy surface.

In the Hanle effect, the application of a magnetic field
allows one to measure a lifetime by controlling the interference
of the two pathways contributing to the fluorescence. In
our case, the interference between wave packets can be
controlled through their chirp-dependent momentum. Thus a
momentum-dependent lifetime can be obtained. We showed
that the lifetime is measureable in the fluorescence signal as a
function of chirp. The lifetime can be measured for molecules
that show asymmetry between positive vs negative chirp rates
due to the steepness of the potential energy surface [63,64].
The lifetime should be measured for the positive chirp values
only. This is because it is known that positive chirp rates
are not sensitive to the steepness of the potential energy
surface.

The vibrational coherences of the excited-state wave packet
during an isomerization process have been measured experi-
mentally [34,82–87]. Theoretical studies suggest separation of
the vibrational coherences into tuning or coupling modes [16].
The identification of the tuning or coupling modes in the
experimentally observed transient absorption oscillations is
actively being understood. It has been suggested that the tuning
modes are more susceptible to wave-packet interference. The
lower-amplitude oscillations can then be identified as tuning
modes. The coupling modes are not susceptible to wave-packet
interference and thus have a higher oscillation amplitude [82].
This suggests that the use of chirped pulses in experiments
on molecular isomerization may help to identify tuning and
coupling modes. The tuning modes would then show a
decrease in amplitude while increasing the chirp rate. The
coupling modes would not show any change with increasing
the chirp rate. We hope that the concepts presented here
will inspire future experimental work to uncover excited-state
molecular processes and wave-packet propagation.

Note added in proof. Recent experimental work on a system
with two electronic states coupled by a conical intersection
reports on fluorescence changes as a function of chirp that
resemble the predictions presented here, providing clear
evidence ‘smoking gun’ that the theory presented here is
amenable to experimental measurement [88].
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APPENDIX

The geometric phase arises naturally during adiabatic
evolution of the system with a cyclic evolution H (T ) = H (0),
such that after one evolution the eigenstate returns to itself
with an associated phase factor |	(T )〉 = eiC(γ )|	(0)〉, where

C(γ ) =
∫ T

0
dt〈ψ(t)|H (t)|ψ(t)〉 = γd + γ (C) (A1)

γd is a constant, and γ (C),

γ (C) =
∮

C

〈ψ |i∇ψ〉dx, (A2)

is the geometric contribution due to propagation around
the conical intersection [71]. The effect of the conical
intersection, in the Born-Oppenheimer approximation, can
be approached by introducing a pseudomagnetic field, i.e.,
a vector potential, into the effective nuclear Hamiltonian,
∇ → ∇ − i(êφ/2ρ) [71]. The pseudomagnetic field has the
form of a magnetic solenoid that is zero everywhere ex-
cept at the conical intersection (δ-function singularity). The
pseudomagnetic field for a solenoid in cylindrical coordinates
(ρ,φ,z) with current flowing along the z axis leads to a phase
γ (C) = ∮

C
1

2ρ
ρdφ = −π , which is why this effect is termed

the molecular Aharonov-Bohm effect [89].

[1] G. Moruzzi and F. Strumia, The Hanle Effect and Level-Crossing
Spectroscopy (Springer Science & Business Media, New York,
2013).

[2] D. R. Yarkony, Rev. Mod. Phys. 68, 985 (1996).
[3] D. R. Yarkony, J. Phys. Chem. A 105, 6277 (2001).
[4] B. G. Levine and T. J. Martı́nez, Annu. Rev. Phys. Chem. 58,

613 (2007).
[5] W. Hanle, Z. Phys. 30, 93 (1924).
[6] B. P. Kibble, G. Copley, and L. Krause, Phys. Rev. 153, 9

(1967).
[7] A. V. Papoyan, M. Auzinsh, and K. Bergmann, Eur. Phys. J. D

21, 63 (2002).
[8] J. Alnis, K. Blushs, M. Auzinsh, S. Kennedy, N. Shafer-Ray,

and E. R. I. Abraham, J. Phys. B: At. Mol. Opt. Phys. 36, 1161
(2003).

[9] D. R. Crosley and R. N. Zare, Phys. Rev. Lett. 18, 942 (1967).
[10] R. S. Ferber, O. A. Shmit, and M. Y. Tamanis, Chem. Phys. Lett.

61, 441 (1979).
[11] D. Awschalom, D. Loss, and N. Samarth, Semiconductor

Spintronics and Quantum Computation, (Springer Science &
Business Media, New York, 2002).

[12] M. I. Dyakonov, Spin Physics in Semiconductors (Springer
Science & Business Media, New York, 2008).

[13] R. N. Zare, J. Chem. Phys. 45, 4510 (1966).
[14] L. J. Butler, Annu. Rev. Phys. Chem. 49, 125 (1998).
[15] J. D. Coe and T. J. Martı́nez, J. Am. Chem. Soc. 127, 4560

(2005).
[16] W. Domcke, D. R. Yarkony, and H. Köppel, Theory, Computa-
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