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Transition rates for a Rydberg atom surrounded by a plasma
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We derive a quantum master equation for an atom coupled to a heat bath represented by a charged particle
many-body environment. In the Born-Markov approximation, the influence of the plasma environment on the
reduced system is described by the dynamical structure factor. Expressions for the profiles of spectral lines
are obtained. Wave packets are introduced as robust states allowing for a quasiclassical description of Rydberg
electrons. Transition rates for highly excited Rydberg levels are investigated. A circular-orbit wave-packet
approach has been applied in order to describe the localization of electrons within Rydberg states. The calculated
transition rates are in a good agreement with experimental data.
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I. INTRODUCTION

Open quantum systems have been a fascinating area of
research because of their ability to describe the transition from
the microscopic to the macroscopic world. The appearance
of the classicality in a quantum system, i.e., the loss of
quantum information of a quantum system, can be described by
decoherence resulting from the interaction of an open quantum
system with its surroundings [1,2].

An interesting example for an open quantum system
interacting with a plasma environment is highly excited
atoms, so-called Rydberg states, characterized by a large main
quantum number. Rydberg states play an important role in
astrophysics to study stellar atmospheres [3,4]. In particular,
ionization processes of Rydberg states of hydrogen and helium
and their recombination processes are significant for hydrogen
and helium plasmas in a very low-density environment which
exists in stellar atmospheres with weakly ionized layers [3,5,6].
Because the interaction with the plasma, characterized by the
plasma frequency, is no longer small compared to the energy
differences of quantum eigenstates, the surrounding plasma
cannot be considered as a weak perturbation of the excited
atom. The time evolution, in particular transition rates, is
modified as shown in this work. An essential problem is the
construction of optimum, robust states.

Note that Rydberg states are energetically near to the
continuum of scattering states. The screening of a given ion by
the free electrons and neighboring ions in a plasma results in
the reduction of the ionization potential and line broadening of
eigenenergy levels of the given atom. For the Rydberg states
near the continuum edge, it may be quite difficult to rigorously
distinguish the borderline between the real continuum edge
and bound states. For example, it is known that in solar
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astrophysics, spectral lines are visible up to a main quantum
numbers of about 17 [7]. The correct treatment of the Rydberg
states which are near the continuum edge is a longstanding
problem in plasma spectroscopy; see Refs. [8,9]. Thus a
many-body approach to Rydberg states in a plasma is also
of interest for spectroscopy.

Because of their macroscopic characters and long lifetimes,
nowadays Rydberg states have become a fundamental concept
of open quantum systems in different fields of physics,
such as quantum information research [10–12] and ultracold
plasmas [13–16]. Recently, the existence of Rydberg excitons
in the copper oxide Cu2O [17] has been demonstrated,
which enables visible measurements of coherent quantum
effects [18]. Actually, using a localized semiclassical represen-
tation of bound states to study the connection between classical
mechanics and the large-quantum-number limit of quantum
mechanics has been a topic of interest since the development of
quantum mechanics [19,20]. As a mesoscopic object, the Ryd-
berg atom may be regarded as an outstanding example demon-
strating both macroscopic classical and microscopic quantum
behavior. In a series of papers by Stroud et al. [21–28],
the dynamics of a hydrogenic Rydberg atom has been dis-
cussed in detail. It has been shown that the behavior of a wave
packet constructed by energy eigenstates of the hydrogen atom
is different for the short- and the long-term evolution. This
difference is essential for the investigation of the connection
between the quantum and classical description of nature and
gives a possibility to explain the emergence of classicality in
a quantum system.

Motivated by these exciting perspectives, we study the
properties of hydrogenic Rydberg atoms and, in particular,
the transition rates of highly excited Rydberg states. Different
environments are of interest: the interaction with the radiation
field, the interaction with phonons (Rydberg excitons), and the
interaction with charged particles. We focus on the special case
where the environment is described by a plasma background;
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see Refs. [29–31]. A similar derivation for a test particle
interacting through collisions with a low-density background
gas by using the quantum master equation approach is
reported in Refs. [32,33]. The influence of the plasma on
the dynamics of the atom is determined by the dynamical
structure factor of the surrounding plasma. Robust states
are represented by optimized Gaussian wave packets. As an
example, transition rates are calculated and compared to other
theoretical approaches and experimental data.

Another example which will be considered is the profiles
of spectral lines. They are essentially determined by the
interaction of the bound states with the radiation field and
the charge carriers of the plasma. Both of them can be treated
as a thermal bath for the bound states, which are regarded as
the reduced system in the theory of open quantum systems.
Various approaches can be used to calculate the spectral
line profiles in a plasma environment, for instance, unified
theory [34], quantum mechanical scattering theory [35], and
the Green’s-function methods [36,37], which are based on the
assumption that the plasma is in equilibrium. Quantum kinetic
theory, as a nonequilibrium approach, can also be applied
to investigate the line profiles of the plasma, which will be
presented in this work.

This paper is organized as follows: in Sec. II A, we outline
the derivation of the general quantum master equation in the
Born-Markov approximation. Then we discuss the special
case of plasma as a many-body environment in Sec. II B. In
Sec. II C, the general quantum master equation is investigated
in detail by introducing the basis of the energy eigenstates
of the hydrogen atom. The Pauli equation and the spectral
line profiles are derived in this section. After the introduction
of wave packets in Sec. III A and a general discussion of
the circular Rydberg states in Sec. III B, the wave-packet
description for the bound Rydberg electron is introduced.
The robustness and validity of the wave-packet description are
discussed in Sec. III C. The transition rates for the hydrogenic
Rydberg atom derived with the use of the circular-orbit wave
packet and their comparisons with classical Monte Carlo
simulations and experimental data are presented in Sec. III D.
Conclusions are drawn in Sec. IV.

II. QUANTUM MASTER EQUATION FOR RYDBERG
ATOMS IN A PLASMA

A. General quantum master equation

We are investigating the reduced system of a Rydberg atom
(A) embedded in a bath (B) consisting of charged particles c,
electrons (c = e) and (singly) charged ions (c = i), charge
ec, mass mc, particle density nc, and temperature T . The
microscopic model under consideration is a hydrogen atom
coupled to a surrounding charge-neutral plasma,

∑
c ecnc = 0.

In the bath, in general, the formation of bound states such
as atoms is also possible. Furthermore, the interaction of the
atom is mediated by the Maxwell field which also contains,
besides the Coulomb interaction with the charged particles,
single-particle states, i.e., the photons. The total system is
then described by the Hamiltonian

Ĥ = ĤA + ĤB + Ĥint. (1)

In a plasma environment, the Hamiltonian ĤB includes both
the kinetic energy and the Coulomb interactions of charged

particles ĤCoul [see Eq. (15) below], as well as the degrees of
freedom of the photonic field Ĥ⊥

photon describing the transversal

Maxwell field of the plasma environment, i.e., ĤB = ĤCoul +
Ĥ⊥

photon.
The atomic Hamiltonian reads, in the nonrelativistic case,

ĤA = P̂2

2M
+ p̂2

2m
− e2

4πε0|r̂| , (2)

where the center-of-mass (c.m.) motion is described by the to-
tal mass M = me + mi and the variables R̂,P̂, and the relative
motion is described by the reduced mass m and the relative
variables r̂,p̂. The eigenstates |�n,P〉 of the isolated hydrogen
atom are the solutions of the Schrödinger equation ĤA|�n,P〉 =
En,P|�n,P〉 with the eigenenergy En,P = P2/(2M) + En. The
quantum number n = {n̄,l,m,ms} describes the internal state
for bound states En < 0, and n = {p,ms} for scattering states
Ep = p2/(2m) > 0. For the bound states, the wave function
�(R,r) = 〈R,r|�n,P〉 = �P(R)ψn(r) contains the eigenstates
ψn(r) of the hydrogen atom. The c.m. motion �P(R) is given
by a plane wave. In this work, we concentrate on the internal
degrees of freedom of the bound states. The c.m. motion,
which, e.g., determines the Doppler broadening of the spectral
line profile, will not be discussed here in detail. In most cases,
it will be dropped, considering the adiabatic limit.

The interaction between the atomic electron and the plasma
environment is given by the coupling of the atomic current
operator to the electromagnetic field of the bath,

Ĥint(t) =
∫

d3rĵ μ

A (x)Âμ,B(x), (3)

with xμ = {ct,r}. Introducing the creation [ψ̂†(x)] and
annihilation [ψ̂(x)] operator for the atomic electron,
the current operator of the atomic subsystem ĵ

μ

A (x) =
{c�̂A(x),ĵA(x)} can be explicitly written as �̂A(x) =
−eψ̂†(x)ψ̂(x) for the electron probability density and ĵA(x) =
ie�

2me
{ψ̂†(x) ∂

∂r ψ̂(x) − [ ∂
∂r ψ̂

†(x)]ψ̂(x)} for the electric current
density of the electron (nonrelativistic limit). Without further
explanation, the operators in this work are given in a Heisen-
berg picture,

Ô(t) = eiĤ t/�Ôe−iĤ t/�. (4)

The source of the electromagnetic field of the bath Â
μ

B(x) =
[ÛB(x),ÂB(x)] is the current density ĵ

μ

B (x) of all charge
carriers in the plasma. In the present work, the Coulomb gauge
∇ · ÂB(x) = 0 is used. The Fourier transform

ĵq,B(ω) =
∫

	0

d3r
∫ ∞

−∞
dteiωt−iq·rĵB(t,r) (5)

of the electrical current in the surrounding plasma can be
decomposed into a transverse component

∑
c ĵ⊥,c

q,B(ω) coupled

only to the vector potential Âq,B(ω), and a longitudinal
one

∑
c ĵ

||,c
q,B(ω)q/q which is related only to the Coulomb

potential. Because of the continuity equation, the relation
q · ĵq,B(ω) = qĵ

||
q,B(ω) = ω�̂q,B(ω) holds, where �̂q(ω) is the

Fourier transform of the corresponding charge density operator
�̂(x).

The general form of the interaction (3) includes the
Coulomb interaction via the longitudinal component of the
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currents, and the coupling of the transverse component of
the currents with the radiation field. We do not investigate the
radiation interaction connected with the transverse component.
The radiative field of the plasma determines the natural
broadening, which has already been extensively discussed
in [38,39] by using the quantum master equation approach.
However, in this work we focus on the Coulomb interaction of
the hydrogen atom with its surrounding charged particles. In
this case, the distribution and the motion of the charge carriers
in the plasma produce a scalar potential which is given in terms
of the longitudinal current [40],

Ûq,B(ω) =
∑

c

�̂c
q,B(ω)

ε0q2
=

∑
c

ĵ
||,c
q,B(ω)

ε0ωq
. (6)

This results in the pressure broadening of the spectral lines, as
shown in Sec. II C 2.

The state of the total system is described by the statistical
operator ρ̂(t). We assume that the observables Â of the
subsystem A commute with the observables B̂ of the bath
B. If only the properties of the subsystem A are relevant, we
can consider the corresponding statistical operator

ρ̂A(t) ≡ TrB ρ̂(t) (7)

performing the trace over all bath variables. Then, the average
value of any observable Â of the subsystem A is calculated as
〈Â〉t ≡ Tr{Â ρ̂(t)} = TrA{Â ρ̂A(t)}.

The equation of motion for the total statistical operator ρ̂(t)
[39] reads

∂

∂t
ρ̂(t) − 1

i�
[Ĥ ,ρ̂(t)] = −ε[ρ̂(t) − ρ̂rel(t)], (8)

with the relevant statistical operator ρ̂rel(t) = ρ̂A(t)ρ̂B, which
implies that the quantum systems A and B are uncorrelated.
The equilibrium state ρ̂B of the bath B is assumed as the grand
canonical distribution,

ρ̂B = 1

ZB
exp

[
− ĤB − ∑

c μcN̂c

kBT

]
,

(9)

ZB = TrB exp

[
− ĤB − ∑

c μcN̂c

kBT

]
,

with the chemical potentials μc of the species c. The limit
ε → 0+ has to be performed after the thermodynamic limit.

A closed equation of motion can be derived for the reduced
statistical operator ρ̂A(t) of the subsystem A by performing the
average with respect to the bath in (8). If the bath is assumed to
have short memory in the sense that the correlation in the bath
decays very quickly in comparison to the time evolution of the
reduced system (Markov approximation), and the dynamics of
the reduced system is considered only in second order with
respect to Ĥint (Born approximation), we obtain [39]

∂

∂t
ρ̂A(t) − 1

i�
[ĤA,ρ̂A(t)] = D[ρ̂A(t)], (10)

with the influence term

D[ρ̂A(t)] = − 1

�2

∫ 0

−∞
dτeετ TrB[Ĥint,[Ĥint(τ ),ρ̂A(t)ρ̂B]].

(11)

This is the quantum master equation (QME) in the Born-
Markov approximation. To go beyond the Born approximation,
a more general solution has been given in [41].

The Born approximation indicates that higher orders of the
interaction Hamiltonian in the time evolution of the opera-
tor (4) can be dropped. Consequently, the time dependence in
the Born approximation is given by the interaction picture

Ô I(t,t0) = ei(ĤA+ĤB)(t−t0)/�Ôe−i(ĤA+ĤB)(t−t0)/�. (12)

At t = t0, the interaction picture coincides with the
Schrödinger picture. Note that the time of reference t0 is
often taken as zero. In the interaction picture, the QME in
the Born-Markov approximation reads

∂

∂t
ρ̂I

A(t,t0) = DI(t,t0), (13)

i.e., only the perturbation determines the time evolution of
ρ̂I

A(t,t0) [note that ĤB commutes with ρ̂A(t)]. The influence
term in interaction representation follows as

DI(t,t0) = − 1

�2

∫ 0

−∞
dτeετ TrB

{
Ĥ I

int(t,t0),
[
Ĥ I

int(t + τ,t0),

ρ̂I
A(t,t0)ρ̂B

]}
. (14)

In zeroth order with respect to the perturbation, ρ̂I
A(t,t0) is

constant and thus not changing with time t .

B. The influence term for a charged particle system

In this section, the master equation for the reduced statistical
operator (13) shall be applied to atomic bound states in a many-
particle plasma environment. However, most of the discussion
is valid for a much more general case.

For the plasma surrounding the radiating atom, the Hamil-
tonian is described by

ĤCoul =
∑
c,p

�
2p2

2mc

ĉ†pĉp + 1

2

∑
c,d,p1p2,p

′
1p

′
2

eced

ε0	0|p′
1 − p1|2

×δp1+p2,p′
1+p′

2
δσ1,σ

′
1
δσ2,σ

′
2
ĉ†p1

d̂†
p2

d̂p′
2
ĉp′

1
, (15)

where we used second quantization ĉp,ĉ
†
p for free-particle

states |p〉 = |p,σ 〉 (wave vector and spin) of charge c. The
grand canonical equilibrium (9) also contains the particle-
number operator N̂c = ∑

p ĉ
†
pĉp. The macroscopic state of

the bath is fixed by the Lagrange multipliers μc and T . 	0 is
the volume of the total system. Because of charge neutrality∑

c ecN̂c ≡ 0, both μe and μi are related. The photonic field
Ĥ⊥

photon is not relevant in our present consideration, which is
focused on the Coulomb interaction with the charged particles
of the bath.

The longitudinal part of the interaction Hamiltonian can
be extracted from the general form Ĥint (3) by using the
expression (6) and performing the Fourier transform with
respect to the time for the atomic charge density operator,

�̂I
q,A(t,t0) =

∫ ∞

−∞

dω

2π
e−iω(t−t0)�̂I

q,A(ω), (16)
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so that

Ĥ
I, ||
int (t,t0) =

∑
q

1

ε0q2	0

∫
dω

2π
e−iω(t−t0) �̂I

q,A(ω)�̂I
−q,B(t,t0),

(17)
with �̂q,B = ∑

c �̂c
q,B and �̂c

q,B = ∑
p ecĉ

†
p−q/2,σ ĉp+q/2,σ . In

this work, only the contribution of the electrons in the plasma
is considered. Because of the large mass ratio, the ionic
contribution related to the microfield should be treated in a
different way; see Sec. IV. Coming back to the influence
term (14), the factorization of the interaction Hamiltonian
allows us to perform the average over the bath degrees of
freedom separately,

DI(t,t0) = − 1

�2

∫ 0

−∞
dτeετ

∑
q,q ′

1

ε2
0q

2q ′2	2
0

∫
dω

2π

∫
dω′

2π

×e−i(ω+ω′)(t−t0)−iω′τ{[�̂I
q,A(ω)�̂I

q′,A(ω′)ρ̂I
A(t,t0)

− �̂I
q′,A(ω′)ρ̂I

A(t,t0)�̂I
q,A(ω)

]
×〈�̂I

−q,B(t,t0)�̂I
−q′,B(t + τ,t0)〉B

−[
�̂I

q,A(ω)ρ̂I
A(t,t0)�̂I

q′,A(ω′)

− ρ̂I
A(t,t0)�̂I

q′,A(ω′)�̂I
q,A(ω)

]
×〈�̂I

−q′,B(t + τ,t0)�̂I
−q,B(t,t0)〉B

}
, (18)

with 〈·〉B = TrB{· · · ρ̂B}. The charge density autocorrelation
function 〈�̂I

−q,B(t,t0)�̂I
−q′,B(t + τ,t0)〉B is calculated in thermo-

dynamic equilibrium. Because of homogeneity in space and
time, it is ∝ δq′,−q and not dependent on the time t as well as t0.
We introduce the Laplace transform of the bath autocorrelation
functions, which can also be defined as the response function

�r (q,ω) = 1

�2

∫ 0

−∞
dτeετ e−iωτ 〈�̂I

−q,B(t0,t0)�̂I
q,B(t0+τ,t0)〉B.

(19)

The response function �r (q,ω) is a complex physical quantity
which is related to the dynamical structure factor of the plasma
or the dielectric function, as shown in Appendix A. It can be
decomposed into real and imaginary parts,

�r (q,ω) = 1
2γr (q,ω) + iSr (q,ω), (20)

where γr (q,ω) and Sr (q,ω) are both real functions. They fulfill
the Kramers-Kronig relation and are related to the damping and
the spectral line shift, respectively [see Eqs. (B9) and (B10) in
Appendix B].

With the response function (19), we find that the influence
term (14) can be rewritten as

DI(t,t0) = −
∑

q

1

ε2
0q

4	2
0

∫
dω

2π

∫
dω′

2π
ei(ω′−ω)(t−t0)

×�r (q,−ω′)
[
�̂I

q,A(ω),�̂I
−q,A(−ω′)ρ̂I

A(t,t0)
]+H.c.

(21)

The second contribution of the right-hand side of Eq. (21)
is the Hermitian conjugate of the first contribution, so that
DI(t,t0) is a real quantity. Approximations for the response
function �r (q,ω) are obtained from the approximations for the

dielectric function such as the random-phase approximation
and improvements accounting for collisions.

C. Atomic quantum master equation

In a next step we introduce the orthonormal basis of the
hydrogen bound states in the Hilbert space of the atomic
subsystem to obtain the Pauli equation for population numbers
and the spectral line profiles.

1. Pauli equation for occupation numbers

We use the basis of hydrogenlike states |ψn〉 of the
Hamiltonian ĤA. For the charge density operator

�̂q,A =
∫

d3r̄eiq·r̄�̂A(r̄)

=
∫

d3r̄eiq·r̄[eeδ(r̂e − r̄) + eiδ(r̂i − r̄)]

= eee
iq·r̂e + eie

iq·r̂i , (22)

the time dependence in the interaction picture can be written
in matrix representation as (ee = −ei)

�̂I
q,A(t,t0) = e

i
�

ĤA(t−t0) �̂q,Ae− i
�

ĤA(t−t0)

=
∑
nn′

eeT̂n′n Fn′n(q)e−iωnn′ (t−t0), (23)

with

T̂n′n = |ψn′ 〉〈ψn|, (24)

ωnn′ = En − En′

�
, (25)

Fn′n(q) =
∫

d3r ψ∗
n′ (r)ψn(r) (1 − e−iq·r), (26)

in adiabatic approximation me � mi . Furthermore, the atom
is assumed to be localized at R = 0. Performing the Fourier
transformation with respect to t , we obtain the atomic charge
density in Fourier space,

�̂I
q,A(ω) =

∑
nn′

eeT̂n′n Fn′n(q) 2π δ(ω − ωnn′ ). (27)

With Eq. (27), the influence function (21) can be repre-
sented as

DI(t,t0) = −
∑

nn′,mm′,q

e−i(ωnn′ +ωmm′ )(t−t0) Kmm′;n′n(q,ωmm′ )

×{
T̂n′nT̂m′mρ̂I

A(t,t0) − T̂m′mρ̂I
A(t,t0)T̂n′n

} + H.c.,

(28)

with

Kmm′;n′n(q,ω) = e2
e

ε2
0q

4	2
0

F ∗
mm′(q)Fn′n(q) �r (q,ω) (29)

containing information about the atomic system, the plasma
bath, and the interaction between them. In matrix representa-
tion, the atomic QME (13) can be represented as (|ψi〉 is initial
state; |ψf 〉 is final state)

∂

∂t
ρI

A,if (t,t0) = 〈ψi |DI(t,t0)|ψf 〉, (30)
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with the influence function

〈ψi |DI(t,t0)|ψf 〉
= −

∑
mn,q

{
eiωim(t−t0) Kmn;in(q,ωmn) ρI

A,mf (t,t0)

+ eiωmf (t−t0) K∗
mn;nf (q,ωnf ) ρI

A,im(t,t0)

− ei(ωim+ωnf )(t−t0) [Kmi;f n(q,ωmi)

+K∗
nf ;mi(q,ωnf )] ρI

A,mn(t,t0)
}
, (31)

with the density matrix ρI
A,mn(t,t0) = 〈ψm|ρ̂I

A(t,t0)|ψn〉. The
corresponding atomic QME in the Schrödinger picture is ob-
tained with ρI

A,mn(t,t0) = eiωmn(t−t0)ρA,mn(t); see Appendix B.
We investigate the diagonal elements of the density matrix

by setting i = f in the above expression (30). This leads to
an equation for the population number Pi(t) = ρI

A,ii(t,t0) =
ρA,ii(t),

∂Pi(t)

∂t
=

∑
n,q

[kni(q,ωni)Pn(t) − kin(q,ωin)Pi(t)]

−
∑

n,m�=i,k

2Re[eiωim(t−t0) Kmn;in(q,ωmn)] ρI
A,mi(t,t0)

+
∑

m>n,q

2Re{eiωnm(t−t0) [K∗
ni;mi(q,ωni)

+Kmi;in(q,ωmi)]} ρI
A,mn(t,t0), (32)

with kab(q,ωab)=2Re Kab;ab(q,ωab)=e2
e |Fab(q)|2γr (q,ωab)/

(ε2
0q

4	2
0), where expression (20) is used and the indices m and

n are interchanged in the derivation. The interaction picture
shows a slow time dependence in ρI

A,nm(t,t0) owing to the
influence of the bath, given by Eq. (13), and a quick time
variation due to the factor eiωnm(t−t0) with ωnm �= 0. The second
and third terms oscillate with the characteristic transition
frequencies ωnm and ωim, respectively. Subsequently, their
contributions vanish when averaging over a time interval that
is large in comparison to the inverse of the characteristic
transition frequencies because the population numbers are
approximately constant. This is the so-called rotating-wave
approximation (RWA). For the long-term evolution of the
reduced system, the nondiagonal elements in Eq. (32) can be
neglected and consequently we obtain a closed rate equation
for the population number—the Pauli equation,

∂Pi(t)

∂t
=

∑
n,q

[kni(q,ωni)Pn(t) − kin(q,ωin)Pi(t)]. (33)

Comparing with the standard form of the Pauli equation,
∂
∂t

Pi(t) = ∑
n[wn→iPn(t) − wi→nPi(t)], we have, for the tran-

sition rates,

wn→i =
∑

q

kni(q,ωni) =
∑

q

e2
e |Fni(q)|2 γr (q,ωni)

ε2
0q

4	2
0

,

(34)

wi→n =
∑

q

kin(q,ωin) =
∑

q

e2
e |Fin(q)|2 γr (q,ωin)

ε2
0q

4	2
0

.

To derive the Pauli equation, we used the RWA, which neglects
quickly oscillating terms. Also the dependence on the time t0,
where the interaction picture coincides with the Schrödinger
picture, disappears. The validity of the RWA in the theory of

open quantum systems is under discussion. The dynamics is
modified if contributions of the right-hand side of Eq. (32)
are dropped. In our investigation, we found that if the RWA is
carried out prematurely, it will be inappropriate to describe the
dissipative properties of the relevant atomic system (Rydberg
states) and results in erroneous transition rates. More details
can be found in Appendix B. Additionally, the nondiagonal
elements of Eq. (30) are also derived and a principle discussion
on the validity of the RWA is given.

2. Quantum kinetic approach to spectral line profile

In open quantum system theory, one separates a reduced
subsystem out from the total quantum system, which includes
all relevant observables that one is interested in. The remaining
degrees of freedom are treated as irrelevant for the dynamical
behavior and are denoted as the observables of the bath.
However, the selection of the relevant observables that are
appropriate to describe the dynamics of the system depends
sensitively on the physical problems that we tackle.

For instance, the degrees of freedom of the emitted photons
are irrelevant for the dynamics of the population numbers of
the atomic energy eigenstates and therefore can be considered
as part of the bath in the derivation of the Pauli equation. This
consideration is also applied in the derivation of the natural
linewidth of the spectral line profile [38,39]. In contrast, these
degrees of freedom are most important for the description of
the spectral line profile in a plasma environment, where we
obtain the spectral line shapes by measuring the energy of the
emitted photons. The emitted photons are therefore relevant
degrees of freedom. To correctly describe the spectral line
shapes via the open quantum system theory, we must extend
the reduced system by including the set of the degrees of
freedom of the emitted photons. This means that the radiation
field together with the atomic system should be considered
as the reduced system to be described by the QME, and
the surrounding plasma is the bath coupled to the system by
Coulomb interaction.

Absorption as well as spontaneous and induced emission
coefficients, related by the Einstein relation, are obtained from
QED where the transverse part of the Maxwell field,

Ĥ⊥
photon =

∑
k,s

�ωk,s n̂k,s , (35)

is quantized and denoted by the photon modes |k,s〉. The
frequency ωk = c|k| = 2πc/λ is the dispersion relation for the
frequency as a function of the wave number λ. n̂k,s = b̂

†
k,s b̂k,s

is the occupation number with the polarization s = 1,2. As
mentioned above, the photon field must be treated as part of
the reduced system with the Hamiltonian ĤS = ĤA + Ĥ⊥

photon,
and the eigenstates will be denoted by the expression |ñ〉 =
|ψn,Nn(k,s)〉 containing corresponding quantum numbers
for the eigenenergy Ẽn = En + ∑

k,s Nn(k,s) �ωk,s with the
occupation number Nn(k,s) of the mode |k,s〉.

Emission and absorption are described by the interaction
Hamiltonian [see Eq. (3)], Ĥ rad = ∫

d3r ĵ⊥A · Âph = ∫
d3r d̂A ·

Êph, after integration by parts with the atomic dipole operator
d̂A. The decomposition of the electric field of the photon
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subsystem (two polarization vectors êk,s) is

Êph = i
∑
k,s

√
�ωk

2	0
êk,s [b̂k,s − b̂†k,s]. (36)

For a given measured photon mode |k̄,s̄〉 in the experiment,
only the mode with k = k̄ and s = s̄ in the Hamiltonian Ĥ rad

contributes. This allows us to introduce an operator describing
emission and absorption,

d̂S = d̂A ⊗ (b̂k̄ − b̂†k̄), (37)

where the polarization index is suppressed. The initial and final
states in this case are given by |ĩ〉 = |ψi,Ni(k)〉 and |f̃ 〉 =
|ψf ,Nf (k)〉 with Nf (k) = Ni(k) + δk,k̄, respectively. This
means that for the measured photon mode k̄, the occupation
number fulfills Nf (k̄) = Ni(k̄) + 1, while for all other photon
modes, their occupation numbers remain unchanged. A shift
of the eigenenergy levels is caused by the interaction with
the plasma environment via the momentum exchange. Subse-
quently, this leads to a deviation of the measured transition
frequency ωk̄ from the characteristic transition frequencies
ωnn′ between the unperturbed atomic eigenstates |ψn〉. We
define the deviation by using the eigenenergies Ẽn via

�ωnn′ = (Ẽn − Ẽn′ )/�. (38)

We use the interaction picture with Ĥ0 = ĤS + ĤB so that
the power spectrum P (ωk̄) = ∫ ∞

0 e−εt e±iωk̄t 〈d̂A〉t dt , as shown
in [42] in the framework of the linear response theory, can be
rewritten as

P (ωk̄) =
∫ ∞

0
e−εt 〈d̂S〉t dt =

∑
if

Li,f , (39)

where the photon frequency is absorbed by the new dipole
operator d̂S of the reduced system (including photons) and

〈d̂S〉t = Tr{ρ̂S(t)d̂S} =
∑
if

ρI
S,f i(t)d

I
S,if (t), (40)

with ρI
S,f i(t) being the solution of the QME in the interaction

picture [see Eq. (44)], and the matrix elements dI
S,if (t) =

〈ψi |dA|ψf 〉e−i�ωif t . Consequently, the spectral line shapeLi,f

in Eq. (44) can be written as

Li,f =
∫ ∞

0
dt e−εt ρI

S,f i(t)d
I
S,if (t). (41)

In order to obtain the solution of the QME, a similar reduced
charge density operator containing the photon information as
in Eq. (37) can be introduced for the extended reduced system,

�̂q,S = �̂q,A ⊗ (b̂k̄ − b̂
†
k̄). (42)

Using the basis set |ñ〉 of the unperturbed reduced system,
we obtain the matrix elements of the reduced charge density
operator �̂I

q,S(t) at time t ,

〈ñ′|�̂I
q,S(t)|ñ〉

= ee Fn′n(q) ei�ωn′nt [δNn′ (k̄),Nn(k̄)−1 − δNn′ (k̄),Nn(k̄)+1],

where the Kronecker’s δ is connected to the atomic emission
and absorption with the transition frequency ωn′n. Performing

the Fourier transform with respect to the time t , we obtain the
reduced charge density operator in Fourier space,

�̂q,S(ω) =
∑
n′>n

ee T̂ −
n′n · Fn′n(q) δ(ω − �ωn′n)

−
∑
n′<n

ee T̂ +
n′n · Fn′n(q) δ(ω + �ωnn′ ), (43)

with T̂ −
n′n = |ñ′〉〈ñ| · δNn′ (k̄),Nn(k̄)−1 denoting the one-photon

absorption and T̂ +
n′n = |ñ′〉〈ñ| · δNn′ (k̄),Nn(k̄)+1 denoting the one-

photon emission.
The QME in RWA in the interaction picture can be written

in terms of the matrix element ρI
S,f i(t) = 〈f̃ |ρ̂I

S(t)|ĩ〉:

∂ρI
S,f i(t)

∂t
= −�BS

f i (ωk̄)ρI
S,f i(t) + �V

f i ρ
I
S,f i(t), (44)

which is shown in detail in Appendix C. The influence
function, i.e., the right side of Eq. (44), characterizes the
spectral intensity of the emitted photons by a coefficient
�BS

f i (ωk̄) describing the shift of the eigenenergy levels and
the pressure broadening,

�BS
f i (ωk̄) =

∑
n,q

{Knf ;f n(q,�ωnf ) + Knf ;f n(q, − �ωf n)

+K∗
ni;in(q,�ωni) + K∗

ni;in(q, − �ωin)}, (45)

and a coefficient �V
f i describing the vertex correction,

�V
f i =

∑
q

{Kii;ff (q,�ωff ) + Kii;ff (q, − �ωff )

+K∗
ff ;ii(q,�ωii) + K∗

ff ;ii(q, − �ωii)}. (46)

The vertex correction has no dependence on the photon
frequency ωk̄ and contributes only beyond the dipole approx-
imation. Formally integrating the expression (44) yields

ρI
S,f i(t) = ρI

S,f i(0) · e−{�BS
f i (ωk̄)−�V

f i }t . (47)

Inserting this formal solution into Eq. (41), the line-shape
function can be expressed as

L(ωk̄)i,f ∝ 1

ωk̄ − ωif + iε − i�BS
if (ωk̄) + i�V

if

. (48)

The expression (48) coincides with the result of the unified
theory for spectral line profiles [43] if only the electron
contribution (impact approximation) is considered. Note that
the unified theory gives the result in the Born approximation
with respect to the interaction with the surrounding plasma,
which corresponds to the Born-Markov approximation for
the coupling to the plasma considered as the bath. Strong
coupling of the radiator to the perturbing environment has been
treated in the Green’s-function approach using a T-matrix ap-
proximation; see [43]. The improvement of the Born-Markov
approximation for the QME considering strong interactions
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and the ionic contribution of the plasma environment, given by
the microfield distribution, will be discussed below in Sec. IV.

III. ROBUST CIRCULAR WAVE PACKET AND
TRANSITION RATES

A. Wave packets

Within the QME approach, the statistical operator of the
reduced system ρ̂A is of interest. The density matrix ρA,mn =
〈m|ρ̂A|n〉 is represented with respect to the states |n〉 of the
reduced system. One possibility is using the orthonormal basis
set of energy eigenstates of the unperturbed atom according
to the interaction picture. In the case considered here, these
are the hydrogen orbitals including the scattering states. The
hydrogen orbitals are long living if the perturbation by the
surrounding plasma is weak. Accordingly, the transition rates
due to collisions with the plasma are small.

Rydberg atoms, as ubiquitous states formed due to the
recombination of electrons and positive ions in laser-produced
plasmas [14], play a significant role for understanding the evo-
lution of expanding plasmas. Their interaction effects with the
plasma particles are comparable or greater than the differences
of atomic energy eigenstates En for n near a fixed value n0. On
the other hand, the pressure broadening of the Rydberg states
is also comparable to the energy difference between adjacent
orbitals since it is scaled as n−3 with respect to the principal
quantum number n. Furthermore, the transition rates are quite
large because of the enormous dipole moment (〈nl|r|n l ±
1〉 ∼ n2). Consequently, the pure Rydberg state is strongly af-
fected by the plasma environment and has only a short lifetime.
In this case, mixtures of pure Rydberg states should be taken
into account. Hence one can look for more robust states that are
formed as a superposition of energy eigenstates, which might
be more stable in the time evolution. For a local interaction
such as the Coulomb potential, the position r of the atomic
electron enters the interaction part of the Hamiltonian, and
localization is favored because r commutes with Ĥint and is a
conserved quantity with respect to this part of the Hamiltonian.
Therefore, localized states are more robust with respect to
the interaction with the surrounding plasma. In this case, a
wave-packet description for Rydberg states can be introduced
to describe the evolution of the system, in particular transition
rates.

In addition, the introduction of the wave-packet description
may allow us to investigate the boundary between the quantum
and classical descriptions of systems. In fact, since the intro-
duction of quantum mechanics, many physicists attempted
to establish the connections between these descriptions of
nature by exhibiting the so-called coherent wave packet. One
of the famous examples is the well-known coherent state of
the linear harmonic oscillator [44], which may be regarded as
an excellent example to describe the macroscopic limit of a
quantum mechanical system according to the correspondence
principle. For the Coulomb problem, e.g., the hydrogen atom,
many attempts to construct localized semiclassical solutions
of the coherent-state type have been made [45–49]. Note
that the hydrogen atom is equivalent to the four-dimensional
harmonic oscillator so that coherent wave packets can be intro-
duced accordingly [47]. Recently, Makowski and Peplowski

constructed well-localized two-dimensional wave packets for
two different potentials [50,51] where an excellent quantum-
classical correspondence is observed. We use Brown’s circular-
orbit wave packets [45,52] as a quasiclassical representation
to describe the highly excited Rydberg states of the hydrogen
atom.

B. Circular Rydberg states

In the present work, we are interested in the extreme-
circular Rydberg states where a valence electron of the atom
is highly excited to quantum states l = m = n − 1. In the case
of a hydrogen atom, we have

ψn(r) = 〈r|ψn,n−1,n−1〉

= cn

(
r

aB

)n−1

e−r/(naB) sinn−1(θ )ei(n−1)φ, (49)

where cn = [2/(naB)]3/2[2n(2n + 1)!]−1/2. Furthermore, in
this section, we use the abbreviation ψn(r) for the circular
wave function ψn,n−1,n−1(r) and use the notation n for the
principal quantum number. It can be seen from Eq. (49) that
the hydrogen electron in this eigenstate is already excellently
localized in the radial (r) and polar (θ ) direction.

Besides the above-mentioned localized properties, these
extreme-circular Rydberg states also have other remarkable
properties: long radiative lifetimes, giant magnetic moments,
no linear Stark shift, and smallest quadratic Stark shifts
[53–55]. According to the dipole selection rule �l = 1,
the radiative decay channels of circular Rydberg states are
strongly suppressed. As a consequence, transition between
adjacent circular states can be regarded as a two-level quantum
system which may be used to realize a two-qubit quantum
gate [56].

Different methods for creating circular Rydberg atoms have
been developed, for example, the adiabatic rapid passage
technique [57,58], the crossed-field method [59,60], and the
adiabatic radio-frequency field technique [61–63]. In addition
to the production of circular Rydberg states, special trapping
techniques are indispensable for studies and applications
of these states. For instance, as recently demonstrated by
Anderson et al. [54], a room-temperature magnetic trap for
circular Rydberg atoms has been realized. There, circular
Rydberg states with n = 57 are generated within a sample of
107 cold 87Rb atoms via a two-step excitation process with two
laser beams. It was possible to observe the center-of-mass and
internal-state evolution of circular states. These experiments
can be employed to provide a source of long-lived circular
state atoms for precision measurements.

C. Wave packet for circular motion

We now introduce a circular-orbit wave packet of the
hydrogen atom as a coherent state constructed from the
superposition of circular-orbit eigenfunctions of the hydrogen
atom (49) with a Gaussian weighting function around a large
principal quantum number n0 [52]:

|Gn0,φ0〉 =
∑

n

gn0,n√
Nn0

ei(n−1)φ0 |ψn〉, (50)
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with the Gaussian factor and the normalization factor, respec-
tively,

gn0,n = exp

{
− (n − n0)2

4σ 2
n0

}
,

(51)

Nn0 =
∞∑

n=1

exp

{
− (n − n0)2

2σ 2
n0

}
,

where σn0 is the standard deviation considered as a fixed
parameter for n0. Without loss of generality, we can put φ0 = 0
because it fixes, as a phase factor, only the initial position
of the wave packet at the azimuthal angle φ. We drop φ0

in the following. Due to the superposition with a Gaussian
factor, we also have good localization with respect to φ in
the wave-packet description (50). The actual Hilbert space
Hn,n−1.n−1 considered here is only a subspace of the entire
Hilbert space H of the hydrogen atom. The generalization to
the full Hilbert space to include all bound and scattering states
could be done straightforwardly.

The time-dependent wave packet in the coordinate repre-
sentation in terms of spherical coordinates is given by

〈r|Gn0〉t =
∑

n

gn0,n√
Nn0

eiEnt/�ψn(r), (52)

with En = Ry/n2 and Ry = 13.6 eV. For an appropriate
Gaussian factor, only the terms with principal quantum number
adjacent to n0 contribute. Therefore, we can use the central
quantum number n0 to approximate other states in the radial
and θ direction. In addition, for short-term time evolution, the
energy En in the factor eiEnt/� in Eq. (52) can be expanded
around n0 up to the second order, which relates directly to the
quantum revival; see below. The probability distribution of the
wave packet can be represented as

|〈r|Gn0〉t |2 =
∑
m,n

c2
n0

(
r

aB

)2n0−2

e−2r/(n0aB) sin2n0−2(θ )

×e−(a1−iωrevt)(n−n0)2−(a1+iωrevt)(m−n0)2+i(φ−ωclt)(n−m),

(53)

with a1 = 1/(4σ 2
n0

), ωcl = |E ′
n0

|/� = 2Ry/(�n3
0), and ωrev =

|E ′′
n0

|/(2�) = 3Ry/(�n4
0), where E

′
n0

and E
′′
n0

are the first and
second derivatives of En with respect to the main quantum
number n at n0, respectively. As pointed out in [64], ωcl relates
to the classical Kepler period Tcl = 2πrcl/vcl for the Kepler

trajectory with rcl = n2
0 aB and vcl =

√
Ry/(men

2
0), and the

quantum revival period can be defined by ωrev.
For highly excited states, |x| � n0 with x = n − n0 and

|y| � n0 with y = m − n0, the sum
∑

m,n can be replaced
by the integral

∫ ∞
−∞ dx

∫ ∞
−∞ dy. Integrating over the variables

r and θ and performing the integral over x, y yields the
probability distribution of the wave packet,

|Gn0 (φ,t)|2 ∼
√

π2

a2
1 + (ωrevt)2

exp

[
− φ2

cl(t)

2[a2
1 + (ωrevt)2]/a1

]
,

(54)

with φcl(t) = φ − ωclt . From this probability distribution, the
time-dependent width of the wave packet for a Rydberg
electron can be extracted,

σφ
n0

(t) =
√

[a2
1 + (ωrevt)2]/a1 =

√
1

4σ 2
n0

+ σ 2
n0

(E ′′
n0

t)2

�2
. (55)

For the initial time t = 0, we have σ
φ
n0 = 1/(2σn0 ). The

expression (54) also shows that on such a short-time scale,
the central position of the probability distribution is exactly
determined by the Kepler motion. The localized wave packet
for the hydrogen atom moves along the classical Keplerian
trajectory of the electron and its width broadens. With time
evolution, the localization of the wave packet is destroyed and
interference fringes of different eigenstates are displayed. On a
much longer time scale Trev = 2π/ωrev, the wave packet finally
reverses itself, which is the above-mentioned quantum revival
as indicated in Eq. (54).

The dynamics of the wave packet shown above is purely
due to quantum mechanical evolution without plasma sur-
roundings. Within a plasma environment, the hydrogen atom
undergoes interactions with the plasma particles which results
in the shift of the eigenenergy levels, the broadening of plasma
spectral lines, the screening of the Coulomb potential, the
localization of the hydrogen atom (proton and bound electron),
etc. In this work, we concentrate on the localization of the
bound electron immersed in a plasma environment.

The scattering of the bound electron by free plasma
electrons results in the localization of the electron of the
hydrogen atom, i.e., the collisions with the plasma tend to
localize the Rydberg electron and narrow the wave packet. As
in the case of free particles in a surrounding environment [2],
the spreading of the wave packet competes with the lo-
calization effect induced by the plasma environment. The
optimum width of a Gaussian wave packet where both effects,
i.e., localization and quantum diffluence, nearly compensate
describes a state which is nearly stable in time and is denoted
as the robust state.

In this work, we are interested in time scales, which are
even smaller than the classical Keplerian periodicity Tcl. We
assume that on such a short-time scale, a Rydberg electron
behaves like a free electron because of the weak coupling
between the electron and the proton. Comparing with the
relaxation processes, which describe the inelastic coupling
between the internal energy eigenstates and the surrounding
environment, the quasiclassical Kepler motion of the wave
packet is assumed to be influenced by the elastic scattering of
the Rydberg electrons with its surroundings. Similarly, as in the
case of the quantum Brownian motion of a free particle [2], the
equation of motion for the reduced density matrix with respect
to variable x = rcl φ obeys

∂

∂t
ρ(x,x ′,t) = −�Rn

(x − x ′)2, (56)

with the localization rate,

�Rn
= npl

π (2π�)2

∫ ∞

0
dq

q4

3
V 2

q F 2
nn(q)

√
me

2πkBT q2

×e−�
2q2/(8mekBT ), (57)
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TABLE I. Localization rate �Rn
(57) in units of (1023 cm−2 s−1)

for different plasma densities and temperatures.

Quantum number n0

T (K) npl (cm−3) 10 20 30 40

100 109 5.722 5.722 5.722 5.721
1012 180.3 180.1 180.0 179.7
1015 5090 4969 4813 4645

1000 109 5.722 5.722 5.722 5.722
1012 180.9 180.8 180.7 180.6
1015 5619 5549 5474 5399

10 000 109 5.722 5.722 5.722 5.722
1012 180.9 180.9 180.9 180.9
1015 5696 5670 5645 5619

describing how fast interferences of an entangled system of
extension |x − x ′| are suppressed; for details, see Appendix D.
According to [2], the optimal width of the wave packet is
defined by equilibrating the interplay between the spreading
of the wave packet and the localization of the wave packet,
and reads

σ cl
n = 1

2

(
�

me�Rn

)1/4

. (58)

As a consequence, an optimal width σn0 can be calculated
using the relation (55) for t = 0 and the relation σ

φ
n0 = σ cl

n0
/rcl,

so that

σn0 = rcl

2 σ cl
n0

. (59)

For the plasma with temperature T = 300 K and density npl =
109 cm−3, we obtain an optimal width σn0 = 0.75 for n0 = 13,
which will be shown in the next section to be appropriate to
describe the transition rate.

In Table I, we show the dependence of the localization
rates on the plasma parameters for different principal quantum
numbers. For given temperature and density, the localization
rate decreases slightly with the increasing quantum number n0.
At a fixed temperature, the localization rate is raised drastically
when the plasma density increases. At the same time, the
localization rate shows only a weak dependence on the plasma
temperature.

The transition between descriptions of the bound electron
in hydrogen atom by the wave packet and the pure quantum
eigenstate may be determined by comparing the optimal
width (58) with the orbit radius rn0 = rcl = n2

0aB. For this,
a function b(n0,npl,T ),

b(n0) = b(n0,npl,T ) = σ cl
n0

rn0

− 1, (60)

can be introduced. For the given electron density npl and
temperature T of the plasma, quantum mechanical descriptions
are valid for b(n0) > 0, and for the opposite case [b(n0) < 0],
the wave-packet descriptions can be used.

In Fig. 1, we show this function for different plasma den-
sities at the given temperature T = 300 K. With the increase
of the plasma density, the principal quantum number ncr at

0 5 10 15 20 25 30 35 40 45 50n
-1

-0.5

0

b[
n]

npl=1012m-3

npl=1015m3

npl=1018m-3

npl=1021m-3

FIG. 1. Boundary between classical and quantum mechanical
descriptions of the hydrogen electron at T = 300 K for different
densities.

b(ncr) ≈ 0, characterizing the change from a pure quantum
description to a classical description, drops drastically.

We discussed the descriptions of the bound electron, in
particular the validity of the wave-packet description. We have
shown that this question is related to the localization of the
wave packet if an optimal width of the wave packet is assumed,
which also has a dependence on the mass of the localized object
as shown in Eq. (58). Similar considerations can be made for
the free electrons and ions in the plasma (see Sec. IV).

D. Transition rates

We are interested in a matrix representation of the QME.
We use robust states |i〉 = |Gni

〉 for the initial state and |f 〉 =
|Gnf

〉 for the final state to investigate the atomic transition rates
of the Rydberg states. For the reduced Hilbert spaceHn,n−1.n−1

used to construct the circular-orbit wave packet, there is
no completeness relation

∑
n |n〉〈n| = 1̂ because noncircular

orbits are missing. Only if we project on the reduced Hilbert
space can this relation be applied. A more general discussion
about the completeness relation in the wave-packet case is
found in Refs. [65,66]. Therewith, the charge density operator
in Hilbert space Hn,n−1.n−1 is expressed as

�̂I
q,A(t) =

∑
mn

ee T̂mn Fmn(q)eiωmnt . (61)

In Fourier space, the charge density operator reads

�̂I
q,A(ω) =

∑
mn

ee T̂mn Fmn(q) 2πδ(ω + ωmn). (62)

Note that the operators given in this section are all projected
on the reduced Hilbert space Hn,n−1.n−1. The use of the full
Hilbert space is more complex and should be worked out in
future investigations.

In the present section, the diffusion of the wave packet with
the center quantum number n0 is of essential interest. The
dynamics along the classical trajectory, shown in the previous
section, is given by φcl(t). To investigate the diffusion of the
wave packet with respect to the quantum number n, we come
back to the QME in which the influence function for the wave
packet in Hilbert space Hn,n−1,n−1 is obtained by inserting the
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charge density operator (62) into Eq. (21),

DI[ρ̂I
A(t)] = −

∑
nn′,mm′,q

e−i(ωnn′+ωmm′ )(t−t0) Kmm′;n′n(q,ωmm′ )

×{T̂n′nT̂m′mρ̂I
A(t,t0) − T̂m′mρ̂I

A(t,t0)T̂n′n} + H.c.

(63)

The influence function in RWA can be represented in matrix
representation as

〈f |DI
[
ρ̂I

A(t)
]|i〉

=
∑
s,h,q

Gni ,h
nf ,s

{
Kss;hh(q,ωss) + K∗

hh;ss(q,ωhh)

−
∑

n

{Ksn;sn(q,ωsn) + K∗
hn;nh(q,ωhn)}

}
ρI

A,sh(t), (64)

with

Gni ,h
nf ,s = gnf ,s · gni,h√

Nnf
Nni

, (65)

where the g function is given by Eq. (51). After decomposition
of the response function �r (q,ω) = γr (q,ω)/2 + iSr (q,ω), we
have the dissipator for the circular wave packet,

〈f |DI[ρ̂I
A(t)

]|i〉 = −1

2

∑
s,h

Gni ,h
nf ,s {D1 + D2 + D3} ρI

A,sh(t),

(66)

with

D1 =
∑

q

V 2
q |Fss(q) − Fhh(−q)|2 γr (q,0), (67)

D2 =
∑

q

{khs(q,ωhs) + ksh(q,ωsh)}, (68)

D3 =
∑
n�=s,h

∑
q

{ksn(q,ωsn) + khn(q,ωhn)}. (69)

This dissipator, describing the decoherence of the nondiagonal
elements of the wave packet, has three different contributions.
D1 originates from the vertex correction and contributes
only beyond the dipole approximation. D3 represents the
contributions of all intermediate transitions. The transition
between the contributing initial state s and final state h is
hidden in D2 and from which the transition rates for the wave
packet can be defined [see also Eq. (B15) in Appendix B and
the discussion there]:

Wni→nf
=

∑
s,h

Gni ,h
nf ,s · wh→s , (70)

with the atomic transition rate given in Eq. (34).
In collision theory, the T matrix T̂ = V̂ + V̂ Ĝ0V̂ +

V̂ Ĝ0V̂ Ĝ0V̂ + · · · is used to calculate the cross sections and
the transition rates. Comparison with the Born approximation
implemented in the derivation of the QME (13) shows that
only the first term V̂ in the T matrix is taken into account.
In order to obtain a better description of the collision effects
in plasma, higher-order terms should be evaluated. We use a
semiclassical approximation reported in Ref. [67] to describe
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FIG. 2. Transition rates of ni = 13 to near nf states induced at a
T = 300 K electron plasma with density npl = 109 cm−3, calculated
from the wave-packet description with the width σn0 = 0.55 and
σn0 = 0.75 compared to the results from classical Monte Carlo
simulation (MCS) [69], the calculation in the Born approximation
with and without collision effects from Ref. [29], and experimental
data [70].

the modification of the transition rate due to the collision
effects in plasma, which is given by

f (n,Δn,�) = ln

[
1 + 1

�n�(1 + 2.5n�/�n)

]

·
[

ln

(
1 + 1

�n�

)]−1

, � =
√

|En|
kBT

, (71)

with �n = n − n′ and the binding energy En for the hydrogen
atom. Therefore, the modified transition rate for the wave-
packet description may be written as

Wni→nf
=

∑
s,h

Gni ,h
nf ,s · wh→s · f (h,|h − s|,�). (72)

In Fig. 2, we show the transition rates calculated from the
expression (72) for two different values for the width of the
hydrogenic wave packet. Comparing with the experimental
data of helium, it can be seen that the transition rates
calculated with the wave-packet width σn0 = 0.75, evaluated
using Eq. (59) for the given plasma parameters T and npl,
are in best agreement. The agreement reveals the coherent
wave-packet character of the Rydberg electron.

The comparison between the results of the classical Monte
Carlo simulation and the experimental data indicates that a
classical treatment is more appropriate to calculate the transi-
tion rates of the highly excited states. In the classical Monte
Carlo simulation, the highly excited free electron is treated
as a point in an 18-dimensional phase space which behaves
in accordance with classical laws under the influence of the
Coulomb interactions [68]. From the quantum mechanical
point of view, this treatment is equivalent to represent the
electron as an incoherent wave packet with vanishing width.
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FIG. 3. Transition rates of ni = 40 to near nf states induced by
a T = 20 K electron plasma with density npl = 109 cm−3, calculated
from the wave-packet description with the width σn0 = 0.5,2,3
compared to the results from classical Monte Carlo simulation [69]
(green line) and the results in the Born approximation with and
without collision effects from Ref. [67].

Another comparison for the transition rates with the initial
principal quantum number ni = 40 is shown in Fig. 3. From
the figure, the validity of the wave-packet description can also
be verified from the agreement between the results of classical
Monte Carlo simulations and the results calculated with the
wave-packet width σn0 = 2.

IV. DISCUSSION AND CONCLUSION

We derived quantum master equations for an atom inter-
acting with the charged particles of a plasma environment.
In the Born-Markov approximation, the influence function
of the plasma environment is determined by the dynamical
structure factor of the plasma. As a consequence of the atom-
plasma interaction, the electrons in highly excited Rydberg
states become localized. Localization of free electrons due to
interactions with the environment is known from the quantum
Brownian motion [2]. This may be a good approximation in
the limit of highly excited Rydberg states where the mean
free path of the electrons is small compared to the radius of
the Kepler orbit. We derived a localization rate for electrons
moving on a Kepler orbit, where the diagonal atomic form
factor appears.

Robust states are introduced as optimized wave packets.
The quantum diffluence of the wave packets is nearly compen-
sated by the localization due to collisions with the surrounding
plasma. A critical quantum number ncr is found. States with
a lower quantum number are described by pure quantum
states as solution of the atomic (hydrogen) Hamiltonian.
For higher quantum numbers n0 > ncr, the superposition of
different quantum states leads to a wave packet characterized
by an average quantum number n0. Consequently, classical
motion (Kepler ellipses) with a corresponding Kepler radius
rcl = n2

0aB and an average azimuthal angle φcl(t) is observed.
By construction, we are restricted to circular motion only.

By avoiding the restriction to the Hilbert subspace of circular
orbits (l = m = n − 1), more general Kepler orbits can be
obtained taking into account all bound states for constructing
the wave packet.

As another example for the use of the atomic master
equation, the spectral line shape for transitions at low quantum
numbers has been derived. The equivalence with a quantum
statistical approach to profiles of spectral lines [43] has been
shown. After decoupling the ion and electron subsystems of the
plasma environment, only the electron contribution to the spec-
tral line shape has been considered (impact approximation).
The standard description of the interaction with the plasma ions
is the ionic microfield. The ionic structure factor determines the
microfield distribution, and a superposition of the Stark shift
in the ionic microfield and the electron contribution in impact
approximation leads to the line profiles as derived from the
unified theory [43].

For comparison, the influence of the plasma ions on the
line profile can also be calculated in the Born approximation,
similar to the treatment of the plasma electrons using the
impact approximation. The ions localize more strongly in
comparison to the electrons as a consequence of the larger
localization rate (57) if the electron mass is replaced by
the ion mass. In other words, for electrons in plasma under
normal conditions, the quantum description is applicable,
whereas for ions, the classical description is more appropriate.
The domains within the plasma density-temperature diagram,
where the robust states of the ions are localized so that the
concept of the classical ionic microfield can be justified while
electrons should be treated quantum mechanically, have been
outlined, for instance, in Ref. [30].

In the present work, we have shown that for electrons
in Rydberg states, localization may occur owing to the
interaction with the plasma environment. Transition rates
were calculated using robust quantum states formed by wave
packets. Comparing with experiments and MCS results, the
use of robust quantum states gives a better agreement with
measured data and classical calculations than the approach
using pure hydrogen eigenenergy states. Thus, the wave-
packet description which accounts for localization is more
appropriate not only for the ions, but also for the electrons when
considering highly excited Rydberg states. We performed
exploratory calculations using the Brown circular-orbit wave
packets. The approach can be further worked out to more
general wave packets formed by the entire Hilbert space of the
atomic states.

The existence of the plasma environment also leads to a
reduction of the bound electron binding energy because of the
screening effects in the plasma. Consequently, bound states
shift into the continuum which is the so-called lowering of the
continuum edge [71]. This means there is a maximum principal
quantum number nmax(T ,n) for the Rydberg states at a given
plasma temperature T and a given density n where separate
bound states below the continuum can be identified. The
reduction of the principal quantum number ncr, below which
a pure hydrogen quantum state is robust, as shown in Fig. 1,
has to be compared to the pressure ionization of the plasma.
Using the standard expression for the lowering of the ionization
potential in Ref. [72], estimations for the maximum principal
quantum number nmax can be made. For instance, at the plasma
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densities 109 and 1015 cm−3, the maximum principal quantum
numbers are nmax ≈ 200 and nmax ≈ 20, respectively. Near the
continuum edge, it is difficult to distinguish between the real
continuum edge and the point at which the spectroscopic series
merges into a continuum due to line broadening. It would be
of interest to investigate whether a wave-packet description
might be more suitable near the continuum edge. For this,
the definition of the wave packet (50) should be extended
to include the continuum states, similar to the case of free
electrons where a Gaussian wave packet can be formed by
plane-wave states.

A fundamental issue in the theory of open quantum systems
is that the subdivision of the total system into the reduced
system and the bath is arbitrary and can be changed. Degrees of
freedom of the bath which are strongly coupled to the reduced
system may be incorporated into the reduced system, so that the
bath contains only weakly coupled degrees of freedom which
may be treated in the Born-Markov approximation. Various
approximations, in particular the Born-Markov approximation
and the rotating-wave approximation, performed in the present
work can be improved in future work; see also Ref. [41] and
Appendix B. Furthermore, the electron in atom and the plasma
electrons must be antisymmetrized so that exchange terms
will occur. With respect to radiation processes, it is in general
not the single electron which emits radiation but the whole
reduced system which couples to the radiation field. As an
interesting application of this aspect, the treatment of radiation
from many-electron atoms, for instance the Kα radiation, is
presently under investigation.

A main advantage of the QME for a hydrogen Rydberg
atom surrounded by a plasma is the use of robust states instead
of the pure hydrogen eigenenergy states. The treatment of
localization allows the transition to classical physics and the
very efficient use of classical descriptions, for instance in
molecular dynamical simulations. On the other side, QMEs
are an essential ingredient to formulate a nonequilibrium
approach for many-body systems, which can also be done
on a very fundamental level as QED. The Rydberg atoms
considered in the present work are an interesting object to
describe the transition from the quantum microworld to the
macroscopic classical world where new properties such as
trajectories emerge.
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APPENDIX A: DYNAMICAL STRUCTURE FACTOR AND
RESPONSE FUNCTION

The response function γr is the real part of the Laplace
transform of the density-density correlation function. With the
eigenstates |φn〉 of the bath, (ĤB − ∑

c μcN̂c)|φn〉 = Bn|φn〉,
the spectral density of the density-density correlation function
follows as

I (q,ω) = 1

e2
e

∑
n,m

e−βBn∑
n′ e−βBn′ 〈φn|�̂−q,B|φm〉〈φm|�̂q,B|φn〉

×2π δ(ω − Bn/� + Bm/�). (A1)

The spectral density is the Fourier transform of the density
autocorrelation function,

〈�̂−q,B(τ )�̂q,B(0)〉B = e2
e

∫ ∞

−∞

dω

2π
I (q,ω)eiωτ . (A2)

We find

�r (q,ω) = e2
e

2�2
I (q, − ω)

+ iP
e2
e

�2

∫ ∞

−∞

dω′

2π
I (q, − ω′)

1

ω − ω′ , (A3)

where P denotes the principal value of the integral.
Now we can use the fluctuation-dissipation theorem,

γr (q,ω) = e2
e

�2
I (q, − ω), (A4)

and have, for Sr (q,ω), which determines the Lamb shift, the
Kramers-Kronig relation

Sr (q,ω) = P
e2
e

�2

∫ ∞

−∞

dω′

2π
I (q, − ω′)

1

ω − ω′

= P
∫ ∞

−∞

dω′

2π
2γr (q,ω′)

1

ω − ω′ . (A5)

The response function can be related to the dynamical
structure factor (DSF) of the bath, which is defined via the
Fourier transform of the correlation function of the density
fluctuation [73]:

SB(q,ω) = 1

2πnpl	0e2
e

∫ ∞

−∞
dτeiωτ 〈δ�̂q,B(τ )δ�̂−q,B(0)〉B,

(A6)
where npl is the electron density in plasma and δ�̂q,B(τ ) =
�̂q,B(τ ) − 〈�̂q,B(τ )〉B is the density fluctuation of the electrons.
Because of the plasma environment in equilibrium, the
condition 〈�̂q,B(τ )〉B = eenplδq,0 holds for all time. Then the
DSF can be rewritten as

SB(q,ω) = 1

2πnpl	0e2
e

∫ ∞

−∞
dτeiωτ 〈δ�̂q,B(τ )δ�̂−q,B(0)〉B

= 1

2πnpl	0
I (−q,ω) + npl

2π	0
δ(ω)δ(q). (A7)

The last term in the above expression contributes only at ω = 0
and q = 0. For dynamical processes, this contribution can be
neglected.

It can be obviously seen that the functions γr (q,ω),
Sr (q,ω), I (q,ω), and SB(q,ω) are all related to the density-
density correlation function and connected to each other,
which means that we need only one of them to construct the
correlation function of the plasma environment. In this work,
we use the DSF SB(q,ω) which is directly related to the inverse
dielectric function ε−1(q,ω) in plasma physics by employing
the well-known fluctuation-dissipation theorem [71],

SB(q,ω) = �

πnpl

1

e�ω/kBT − 1

ε0q
2

e2
e

Im
{

lim
ε→0+

ε−1(q,ω + iε)
}
.

(A8)
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The dielectric function can be treated by perturbation theory
or numerical simulations as a quantum many-body problem.
An analytical approach calculating the dielectric function in
the context of the linear response theory and the random phase
approximation can be found, e.g., in Refs. [39,71].

APPENDIX B: ROTATING-WAVE APPROXIMATION

In this Appendix, we will investigate the influence of the
RWA on the dynamics of the reduced system. The neglect of
quickly oscillating terms in Eq. (32) modifies the dynamics of
the system. This procedure depends on the choice of the basis
|ψn〉, which defines the diagonal and nondiagonal elements of
the density matrix.

In contrast to the expressions given in Sec. II C 1, here we
consider the result if performing the RWA in an earlier stage.
The starting point is the QME (13) (interaction picture) with
the influence function (28). The RWA implies that the explicit
dependence on t − t0 disappears so that in Eq. (28) only the
terms with m = n′ and m′ = n contribute. We find

D̂I
(1)(t,t0) = −

∑
nn′,q

Kn′n;n′n(q,ωn′n)
{
T̂n′n′ ρ̂I

A(t,t0)

− T̂nn′ ρ̂I
A(t,t0)T̂n′n

} + H.c. (B1)

In addition, the explicit dependence on t − t0 disappears for
n′ = n and m′ = m so that

D̂I
(2)(t,t0) = −

∑
mn,q

Kmm;nn(q,ωmm)

×{
T̂mmρ̂I

A(t,t0)δmn − T̂mmρ̂I
A(t,t0)T̂nn

} + H.c.

(B2)

The term m = n in the sum of D̂I
(2) gives the same contribution

as in D̂I
(1) if n′ = n. To avoid this double counting, the

corresponding contributions in D̂I
(2) should be subtracted. The

correct contribution can be expressed as

D̂I
(2)(t,t0) =

∑
n′ �=n,q

V 2
q Fnn(q)F ∗

n′n′(q)[�r (q,ωn′n′)+�∗
r (q,ωn′n′)]

× T̂n′n′ ρ̂I
A(t,t0)T̂nn

=
∑

n′ �=n,q

V 2
q Fnn(q)F ∗

n′n′(q) γr (q,0)·T̂n′n′ ρ̂I
A(t,t0)T̂nn.

(B3)

In dipole approximation, this expression yields no contribu-
tion. Beyond dipole approximation, this term contributes only
to the vertex correction. Altogether, the influence function in
RWA follows as

D̂I
RWA(t,t0) = D̂I

(1)(t,t0) + D̂I
(2)(t,t0). (B4)

The influence function D̂I
(1)(t,t0) can be transformed into a

more transparent form. With the decomposition of the response
function �r (k,ω) (20), the influence function (B1) and (B2)

can be rewritten as

D̂I
(1)(t,t0) = −

∑
nn′,q

{
1

2
kn′n(q,ωn′n)

[{
T̂n′n′ ρ̂I

A(t,t0)

+ ρ̂I
A(t,t0)T̂n′n′

} − 2 T̂nn′ ρ̂I
A(t,t0)T̂n′n

]
− i

∑
nn′,q

V 2
q Fn′n(q)Fnn′(−q) Sr (q,ωn′n)

×[
T̂n′n′ ρ̂I

A(t,t0) − ρ̂I
A(t,t0)T̂n′n′

]}
. (B5)

The last term in Eq. (B5) can be rewritten as the commutator
describing the reversible Hamiltonian dynamics, which in fact
represents the line shift of the eigenenergy levels of the atomic
system induced by the coupling to the background as known
from the coupling to the radiation field. The terms in the
first line of the influence function (B5) are responsible for
the transition processes of atoms. Since Fnn(q)F ∗

n′n′(q) is a
complex quantity, the influence function D̂I

(2)(t,t0) can also be
decomposed into a real part,

D̂(2)[ρ̂A(t)] =
∑

n′ �=n,q

V 2
q · Re{Fnn(q)F ∗

n′n′ (q)}

× γr (q,0) · T̂n′n′ ρ̂I
A(t,t0)T̂nn, (B6)

and an imaginary part,

Ĥ
(2)
shift =

∑
n′ �=n,q

V 2
q · Im{Fnn(q)F ∗

n′n′ (q)}

× γr (q,0) · T̂n′n′ ρ̂I
A(t,t0)T̂nn. (B7)

We go back to the Schrödinger picture with Eq. (12),
ρ̂I

A(t,t0) = ei(ĤA+ĤB)(t−t0)/� ρ̂A(t)e−i(ĤA+ĤB)(t−t0)/�. Then the
atomic QME becomes

∂ρ̂A(t)

∂t
− 1

i�

[
ĤA + Ĥ

(1)
shift + Ĥ

(2)
shift,ρ̂A(t)

]
= D̂(1)[ρ̂A(t)] + D̂(2)[ρ̂A(t)], (B8)

with the shift Hamiltonian operator,

Ĥ
(1)
shift =

∑
nn′,q

V 2
q |Fn′n(q)|2Sr (q,ωn′n)T̂n′n′ , (B9)

which is related to the shift of the eigenenergies. The dissipator
D̂(1)[ρ̂A(t)], which is the real part of the influence function, is
given in the Schrödinger picture by

D̂(1)[ρ̂A(t)] =
∑
nn′,q

kn′n(q,ωn′n)

×
[
T̂nn′ ρ̂A(t)T̂n′n − 1

2

{
T̂n′n′ ,ρ̂A(t)

}
+

]
, (B10)

where the curly brackets denote the anticommutator. Without
the contributions from D̂I

(2)[ρ̂A(t)], the QME (B8) has the
Lindblad form. Generally, by performing the RWA here
we can render the QME in the Lindblad form in which
the terms describing atomic emissions and absorptions can
be separated, as shown in Ref. [38]. However, we should
point out that the neglecting of the term D̂I

(2)[ρ̂A(t)] yields an
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incorrect description of the dissipative system beyond dipole
approximation.

We implement the matrix representation of the QME (B8)
in the Schrödinger picture with Eq. (12); then the atomic QME
in RWA becomes

∂ρA,if (t)

∂t
+ iωif ρA,if (t)

= −
∑
n,q

[Kin;in(q,ωin) + K∗
f n;f n(q,ωf n)] · ρA,if (t)

+ δif

∑
n,q

[Kni;ni(q,ωni)+K∗
ni;ni(q,ωni)]·ρA,nn(t)

+ (1−δif )
∑

q

[Kii;ff (q,ωii)+K∗
ff ;ii(q,ωff )]·ρA,if (t).

(B11)

The last contribution comes from D̂I
(2)(t,t0), given by Eq. (B3).

On the other hand, we can also study the dissipator (B10) in
its matrix representation. The Pauli equation resulting from the
diagonal matrix elements of the the dissipator (B10) is given by

∂P
(1)
i (t)

∂t
=

∑
n,q

{
kni(q,ωni)P

(1)
n (t) − kin(q,ωin)P (1)

i (t)
}
.

(B12)

This relation coincides with the Pauli equation (33) because
the contribution D̂I

(2)(t,t0) does not affect the behavior of the
population numbers given by the diagonal terms of the density
matrix. Note that in comparison to the derivation given in
this appendix, two additional terms occur in Eq. (32), which
contain nondiagonal matrix elements ρA,if (t). The neglecting
of these additional terms is only valid if the differences of
neighbored eigenenergies En of the basis |ψn〉 are large
enough so that these terms oscillate quite quickly. In the case
of Rydberg states, these terms oscillating with frequency ωif

are also relevant and can no longer be ignored.
The nondiagonal matrix elements of the dissipator (B8),

i.e., D̂RWA[ρ̂A(t)] = D̂(1)[ρ̂A(t)] + D̂(2)[ρ̂A(t)], can be
represented as

∂ρA,if (t)

∂t
+ iω̃if ρA,if (t) = 〈ψi |D̂RWA[ρ̂A(t)]|ψf 〉

= −1

2
{d1 + d2 + d3} ρA,if (t),

(B13)

with the modified transition frequency ω̃if due to the shift
Hamiltonian in Eq. (B8). The contributions d1, d2, and d3 are
defined similarly as in Eq. (67),

d1 =
∑

q

V 2
q |Fii(q) − Fff (−q)|2 γr (q,0), (B14)

d2 =
∑

q

{kif (q,ωif ) + kf i(q,ωf i)}, (B15)

d3 =
∑
n�=i,f

∑
q

{kin(q,ωin) + kf n(q,ωf n)}. (B16)

The mixed contribution in d1 originates from the dissipator
D̂(2)[ρ̂A(t)] (B6), whereas another two contributions belong

to the dissipator D̂(1)[ρ̂A(t)] (B10). It can be seen that the
expression (B15) relates directly to the transition rates of the
atomic eigenstates comparing with the Pauli equation (33)
for a given two-level system transition, which gives a clue to
define the transition rates for the Rydberg wave packet via the
QME, as explained in Sec. III D.

For the sake of investigating the effect of the RWA, we
return to the atomic QME (30) which reads, in the Schrödinger
picture,

∂ρA,if (t)

∂t
+ iωif ρA,if (t) = 〈ψi |D̂[ρ̂A(t)]|ψf 〉, (B17)

with the influence function [remember ρI
A,mn(t,t0) =

eiωmn(t−t0)ρA,mn(t)]

〈ψi |D̂[ρ̂A(t)]|ψf 〉
= −

∑
mn,q

{Kmn;in(q,ωmn) ρA,mf (t)

+K∗
mn;f n(q,ωmn) ρA,im(t)

− [Kmi;f n(q,ωmi) + K∗
nf ;mi(q,ωnf )] ρA,mn(t)}. (B18)

The RWA for the nondiagonal terms means we should
set m = i in the first term, m = f in the second term, and
m = i, n = f in the third term of the influence function (B18).
By using the decomposition of the complex response function,
�r (q,ω) = γr (q,ω)/2 + iSr (q,ω), we obtain the same expres-
sion as Eq. (B13).

We found that the RWA performed in Eq. (28) by neglecting
D̂I

(2)(t,t0) leads to a QME in Lindblad form. However, the

term D̂I
(2)(t,t0) has a significant contribution in some special

cases, for example, the vertex correction of the spectral line
profiles. On the other hand, if the RWA is performed in the
matrix representation, the contribution of D̂I

(2)(t,t0) can be
automatically included in the influence function. If the RWA
is carried out prematurely in Eq. (B1), it will be inappropriate
to describe the dissipative properties of the relevant atomic
system (Rydberg states) and results in erroneous transition
rates.

In principle, the RWA obtained by the removal of terms
that oscillate quickly with respect to some characteristic time
scales of the system is problematic, as pointed out by different
authors [74–78]. It depends on the choice of the basis |ψn〉
for the representation of the density matrix, and in the case
of small energy differences of neighbored eigenenergies En,
the oscillation may become not quick enough compared to the
characteristic time scales of the system. In a study of the spon-
taneous emission of a two-level system, Agarwal found that
the RWA gives an incorrect value for environmentally induced
frequency shifts with respect to the system frequency [74].
Fleischhauer studied the photodetection without the RWA,
finding that for ultrashort pulses, whose length is of the order
of the oscillation period, the mean number of photocounts with
the RWA and without the RWA is substantially different [75].
Recently, Fleming et al. investigated the validity of the RWA
in an open quantum system and argued that the quantum state
resulting from the RWA is inappropriate for calculating the
detailed properties of the state dynamics such as entanglement
dynamics [76]. In Ref. [77], Majenz et al. showed that
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the RWA leads to the lack of important qualitative features
of the population dynamics in a special three-level model.
Recently, Mäkelä and Möttönen [78] discovered that the
RWA yields a considerable reduction of non-Markovianity
and is problematic if non-Markovian dynamics is of essential
relevance.

In this work, irreversible behavior is not produced by the
RWA, but is already inherent in the solutions of Eqs. (13)
and (14). The source term with ε > 0 in Eq. (8) is obtained

from phase averaging in the evolution of ρ̂rel(t); see Eq. (1.101)
in Ref. [39]. A positive ε is necessary to get γr > 0 [Eq. (20);
see also (A8)], which is calculated here in the Born approx-
imation. According to Eqs. (33) and (34), γr determines the
relaxation rate w of the states of the system A. Averaging over
the phases related to t0 in the interaction picture, all oscillations
with ωnm > w ∝ γr are damped out so that the corresponding
contributions tend to zero and can be dropped; see also
Eq. (3.40) in Ref. [39]. Consequently, the RWA is obtained.

APPENDIX C: DERIVATION OF THE QME FOR THE SPECTRAL PROFILE

As mentioned before, the charge density operator in the case of spectral line profiles is given by

�̂I
q,S(ω) =

∑
n′>n

ee T̂ −
n′n · Fn′n(q) δ(ω − �ωn′n) −

∑
n′<n

ee T̂ +
n′n · Fn′n(q) δ(ω + �ωnn′). (C1)

The first term in (C1) describes the absorption process, while the second one signifies the emission process. Inserting this
expression into the influence function (21), we obtain an influence function including both emission and absorption terms, which
can be used as the starting point to derive the spectral line profile. The terms representing the emission processes can be selected
by using the matrix element representation 〈f̃ |DI[ρ̂S(t)]|ĩ〉 with the change of the photon number �N = Nf (k̄) − Ni(k̄) = 1:

〈f̃ |DI[ρ̂I
S(t)]|ĩ〉 = −A1 − A2 + A3 + A4, (C2)

with

A1 =
∑

n>f,m<n,q

exp[i(−�ωnm + �ωnf )t] Kf n;nm(q,�ωnm) 〈ψm,�N |ρ̂S(t)|ψi〉

+
∑

n<f,m>n,q

exp[i(�ωmn − �ωf n)t] Kf n;nm(q, − �ωmn) 〈ψm,�N |ρ̂S(t)|ψi〉,

A2 =
∑

n>i,m<n,q

exp[−i(−�ωnm + �ωni)t] K∗
mn;ni(q,�ωnm) 〈ψf ,�N |ρ̂S(t)|ψm〉

+
∑

n<i,m>n,q

exp[−i(�ωmn − �ωin)t] K∗
mn;ni(q,�ωnm) 〈ψf ,�N |ρ̂S(t)|ψm〉,

A3 =
∑

i>n,m<f,q

exp[i(−�ωf m + �ωin)t] {Kni;f m(q,�ωf m) + K∗
mf ;in(q,�ωin)} 〈ψm,�N |ρ̂S(t)|ψn〉,

A4 =
∑

i<n,m>f,q

exp[i(−�ωf m + �ωin)t] {Kni;f m(q, − �ωmf ) + K∗
mf ;in(q, − �ωni)} 〈ψm,�N |ρ̂S(t)|ψn〉,

where the indexes m and n are interchanged. These terms can be further simplified in RWA. This means that we can set m = f

in A1, m = i in A2, and m = f, n = i in A3 and A4. The QME in RWA becomes

∂ρI
S,f i(t)

∂t
= −�BS

f i (ωk̄)ρI
S,f i(t) + �ν

f i ρ
I
S,f i(t), (C3)

with a coefficient �BS
f i (ωk̄) describing the shift of the eigenenergy levels and the pressure broadening,

�BS
f i (ωk̄) =

∑
n,q

{Knf ;f n(q,�ωnf ) + Knf ;f n(q, − �ωf n) + K∗
ni;in(q,�ωni) + K∗

ni;in(q, − �ωin)}, (C4)

and a coefficient �V
f i describing the vertex correction,

�V
f i =

∑
q

{Kii;ff (q,�ωff ) + Kii;ff (q, − �ωff ) + K∗
ff ;ii(q,�ωii) + K∗

ff ;ii(q, − �ωii)}, (C5)

which has no dependence on ωk̄ in our approximation.

042711-15
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APPENDIX D: COLLISIONAL DECOHERENCE OF A
RYDBERG ELECTRON IN PLASMA

Following the method represented in the book by Joos
et al. [2], the reduced density matrix for the Rydberg electron
can be derived under the assumptions of recoil-free collisions
and elastic scattering,

ρ(Rn,R
′
n) → ρ(Rn,R

′
n) ·

{
1 +

∑
k′

[1 − ei(k−k′)·(Rn−R
′
n)]

×|〈k′,n|T̂ |k,n〉|2
}
, (D1)

where the T matrix is given by T̂ = V̂ + V̂ Ĝ0V̂ +
V̂ Ĝ0V̂ Ĝ0V̂ + · · · . In the elastic scattering process, the prin-
cipal quantum number n of the Rydberg electron does not
change, which means the Rydberg electron motions along the
classical Kepler orbit. For the bound electrons, the T matrix in
the Born approximation can be represented as

〈k′,n|T̂ |k,n〉 = Vq Fnn(q)δ(Ek − Ek′), (D2)

with q = k − k′ and Ek = k2/(2me). Vq denotes the interac-
tion potential and Fnn(q) is the diagonal atomic form factor.

In the Born approximation, we have

A :=
∑

k′
[1 − ei(k−k′)·(Rn−R

′
n)]|〈k′,n|T̂ |k,n〉|2

= 	0

(2π )3

∫
d3k′ [1 − ei(k−k′)·(Rn−R

′
n)]

×V 2
q F 2

nn(q)δ2(Ek − Ek′)

= 	0meT

(2π�)3k

∫ 2k

0
dq qV 2

q F 2
nn(q) [1 − eiq·(Rn−R

′
n)]. (D3)

In the third line, the integrals over k′ and φ have been carried
out and the integral over θ is replaced by

∫ k+k′

|k−k′| dq by using the

relation q2 = k2 + k′2 − 2kk′ cos θ . The squared δ function is
evaluated by using the Fourier representation of the δ function,

δ2(Ek − Ek′) = δ(Ek − Ek′) · lim
T →∞

1

2π�

∫ T/2

−T/2
dt ei(Ek−Ek′ )t/�

= me

�2k′ δ(k − k′) · lim
T →∞

T

2π�
. (D4)

For a collection of N independent scattering events in
plasma, the above expression (D3) should be multiplied by
a factor N . For the momentum distribution P (q) of the plasma
environment, the classical Maxwell-Boltzmann distribution is
taken, where the momentum distribution P (�k) of the plasma

environment, assumed to fulfill Maxwell-Boltzmann distribu-
tion P (q) = ( �

2

2πmekBT
)3/2 exp[−�

2q2/(2mekBT )], is taken. We
find

A = N	0T

π (2π�)2

√
me

2πkBT

∫ ∞

0
dq qV 2

q F 2
nn(q)

×e−�
2q2/(8mekBT ) [1 − eiq·(Rn−R

′
n)]. (D5)

For the scattering process described here, we have the time
evolution of the reduced density matrix (QME) by taking the
differential limit of small T ,

ρ(Rn,R
′
n,T ) − ρ(Rn,R

′
n,0)

T

= N	0

π (2π�)2

√
me

2πkBT

∫ ∞

0
dq qV 2

q F 2
nn(q)

×e−�
2q2/(8mekBT ) [1 − eiq·(Rn−R

′
n)]. (D6)

To avoid the divergence of the integral in (D6), the Debye
potential [71] can be used. As the next step, we can use the
long-wavelength limit to evaluate (D6), i.e., we can expand the
exponential function eiq·(Rn−R

′
n) up to second order and obtain

the QME in the long-wavelength limit,

∂

∂t
ρ(Rn,R

′
n,t) = − N	0

π (2π�)2

√
me

2πkBT

∫ ∞

0
dq qV 2

q F 2
nn(q)

×e−�
2q2/(8mekBT )[q · (Rn − R

′
n)]2. (D7)

As shown in Sec. III C, the Rydberg electron moves
along the Kepler orbit, i.e., Rn = (n2aB,π/2,φ) and R

′
n =

(n2aB,π/2,φ′). This assumption allows us to calculate the
term [q · (Rn − R

′
n)]2 by averaging it over all possible di-

rections (Rn − R
′
n): [q · (Rn − R

′
n)]2 = q2 · (x − x ′)2/3 with

x = rclφ. Then, we have

∂

∂t
ρ(x,x ′,t) = −�Rn

· (x − x ′)2, (D8)

with the localization rate defined by

�Rn
= N	0

π (2π�)2

∫ ∞

0
dq

q4

3
V 2

q F 2
nn(q)

√
me

2πkBT q2

×e−�
2q2/(8mekBT ). (D9)

For a free electron moving in the plasma environment, we
can recover the localization rate from the expression (D9) by
setting F 2

nn(q) = 1, which coincides with the result reported in
Ref. [79] up to a factor 2π2.
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