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Recently, a new type of Feshbach resonance, i.e., orbital Feshbach resonance (OFR), was proposed for the
ultracold alkaline-earth-metal–like atoms and was experimentally observed in the ultracold gases of 173Yb atoms.
Unlike most of the magnetic Feshbach resonances of ultracold alkali atoms, when the OFR of 173Yb atoms
appears, the energy gap between the thresholds of the open channel (OC) and the closed channel (CC) is much
smaller than the characteristic energy of the interatomic interaction, i.e., the van der Waals energy. In this paper
we study the OFR in systems with a small CC-OC threshold gap. We show that in these systems the OFR can
be induced by the coupling between the OC and either an isolated bound state of the CC or the scattering states
of the CC. Moreover, we also show that in each case the two-channel Huang-Yang pesudopotential is always
applicable for the approximate calculation of the low-energy scattering amplitude. Our results imply that in the
two-channel theoretical calculations for these systems it is appropriate to take into account the contributions from
the scattering states of the CC.
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I. INTRODUCTION

Feshbach resonance [1] exists in many kinds of ultracold
gases and can be used as a power tool for controlling the
interaction between ultracold atoms [2]. For instance, in the
ultracold gases of alkali atoms, when the relative motional state
of two atoms in the open channel (OC) is near resonant to a
bound state of the closed channel (CC) with higher threshold
energy, magnetic Feshbach resonance (MFR) can be induced
by the short-range coupling between different channels [3].
With the help of this resonance effect, one can precisely control
the scattering length between these two atoms by magnetically
changing the interchannel energy difference. In almost all the
current experiments of ultracold alkali atoms, when the MFR
appears, the gap between the threshold energies of the OC and
the CC is as high as 108–109 Hz [2]. As a result of this large
energy gap, the resonance is usually induced by the coupling
between the OC and a single bound state (or several bound
states with similar energies) of the CC. The contribution of the
scattering states of the CC to the resonance can be neglected.

For ultracold alkaline-earth-metal–like atoms, recently, we
proposed a new type of Feshbach resonance, i.e., orbital
Feshbach resonance (OFR) [4]. This resonance can occur in
the scattering between two alkaline-earth-metal–like atoms in
different electronic orbital and nuclear spin states. The OFR is
a result of the spin-exchange interaction [5–7] and the Zeeman
effect [8] in such a system and can be used for magnetically
controlling the interaction between alkaline-earth-metal–like
atoms. The OFR has been experimentally observed in ultracold
173Yb atoms which are in the 1S0 and 3

P0 electronic orbital
states with different quantum numbers of nuclear spins [9,10].
In these experiments, when the OFR occurs, the energy
gap between the thresholds of the CC and the OC is about
2 × 105 Hz [9,10]. This energy gap is not only much smaller
than the CC-OC threshold gap of the MFR of ultracold alkali
atoms but also much smaller than the characteristic energy
(i.e., the van der Waals energy) of the interaction potential
between these 173Yb atoms, which is about 1.8 × 107 Hz [7].

This paper will address the effect of this small energy gap
in OFR. Our results can be summarized as follows:

(i) For systems with a small CC-OC threshold gap, the
effects contributed by the scattering states of the CC may be
very important. As a result, the OFR can be induced by the
coupling of either of the following two types: (A) the coupling
between the OC and an isolated bound state of the CC or (B)
the coupling between the OC and the scattering states of the
CC [11,12].

(ii) In each of the above cases, the two-channel Huang-Yang
pseudopotential [4,13] (i.e., the pseudopotential used in our
previous work [4]) is always applicable for the approximate
calculation of the low-energy scattering amplitude.

Our results imply that in the two-channel few-body or
many-body calculations for systems with a small CC-OC
threshold gap, it is appropriate to take into account the
contributions of the scattering states of the CC.

This paper is organized as follows. In Sec. II, we derive the
Hamiltonian for alkaline-earth-metal–like atoms with different
orbitals and spins, and we introduce the OFR. In Sec. III we
illustrate result (i) with a square-well model by analyzing three
different cases. In Sec. IV we investigate the applicability of
the two-channel Huang-Yang pseudopotential and derive result
(ii). Some discussions are given in Sec. V. In the appendixes
we show some of the details of our calculation and provide a
brief explanation of the principle of the Feshbach resonance
induced by the coupling between the OC and the scattering
states of the CC [11,12].

II. OFR OF ALKALINE-EARTH-METAL–LIKE ATOMS

We consider the scattering of two fermionic alkaline-earth-
metal–like atoms in the 1S0 and 3

P0 electronic orbital states
with different quantum numbers of nuclear spin. We denote
the electronic states 1S0 and 3

P0 for the ith atom (i = 1,2)
as |g〉(E)

i and |e〉(E)
i , respectively, and denote the nuclear spin

states for the ith atom as | ↑〉(N)
i and | ↓〉(N)

i (Fig. 1). Here the
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|e (E)| ↑ (N)

|g (E)| ↑ (N)

|g (E)| ↓ (N)

|e (E)| ↓ (N)

δg

δe

FIG. 1. Energy-level diagram of a single atom. Here δe is the
Zeeman energy difference between states |e〉(E)|↓〉(N) and |e〉(E)|↑〉(N),
and δg is the one between states |g〉(E)|↓〉(N) and |g〉(E)|↑〉(N). The
Zeeman energy difference δ in Eq. (3) can be expressed as δ = δe − δg .
In our system with δ > 0, the open channel is the state |o〉 with one
atom in |e〉(E)| ↑〉(N) and one atom in |g〉(E)| ↓〉(N).

superscripts E and N denote the electronic orbital and nuclear
spin degree of freedom, respectively. We further define |o〉 as
the state where one atom is in |g〉(E)| ↓〉(N) and the other one
is in |e〉(E)| ↑〉(N) and |c〉 as the state with one atom being in
|g〉(E)| ↑〉(N) and the other one being in |e〉(E)| ↓〉(N), i.e.,

|o〉 ≡ |g, ↓; e, ↑〉 ≡ 1√
2

[|g〉(E)
1 | ↓〉(N)

1 |e〉(E)
2 | ↑〉(N)

2

− |e〉(E)
1 | ↑〉(N)

1 |g〉(E)
2 | ↓〉(N)

2

]
, (1)

|c〉 ≡ |g, ↑; e, ↓〉 ≡ 1√
2

[|g〉(E)
1 | ↑〉(N)

1 |e〉(E)
2 | ↓〉(N)

2

− |e〉(E)
1 | ↓〉(N)

1 |g〉(E)
2 | ↑〉(N)

2

]
. (2)

The Hamiltonian of such a system can be written as (� = m =
1, with m being the single-atom mass)

Ĥ = −∇2
r + δ|c〉〈c| + Û ≡ Ĥ0 + Û , (3)

where Ĥ0 and Û are the free Hamiltonian for the two-atom
relative motion and the interatomic interaction, respectively.
Here r is the relative position of these two atoms, and δ is
the Zeeman energy difference of states |c〉 and |o〉. It can
be expressed as δ = (�g)μBB(m↓ − m↑), with B being the
magnetic field, μB being the Bohr’s magneton, �g being the
difference of the Landé g factors corresponding to states |e〉(E)

and |g〉(E), and m↑ (m↓) being the quantum number of nuclear
spin for states | ↑〉(N) (| ↓〉(N)). Without loss of generality,
we assume �g > 0 and thus δ > 0. In such a system the
interatomic interaction Û can be expressed as [5–7]

Û = U (+)(r)|+〉〈+| + U (−)(r)|−〉〈−|, (4)

where states |+〉 and |−〉 are defined as

|±〉 ≡ 1

2

[|g〉(E)
1 |e〉(E)

2 ± |e〉(E)
1 |g〉(E)

2

]

⊗[| ↑〉(N)
1 | ↓〉(N)

2 ∓ | ↓〉(N)
1 | ↑〉(N)

2

]

= 1√
2

(|c〉 ∓ |o〉), (5)

respectively, and U (±)(r) is the potential curve with respect to
state |±〉.

It is clear that the free Hamiltonian Ĥ0, which governs the
physics in the long-distance region where the two atoms are
far away from each other, is diagonal in the basis |o〉 and |c〉.
On the other hand, the interaction potential Û , which is very
important when the interatom distance is short, is diagonal in
other bases |+〉 and |−〉. In the conventional treatment [2],
we always take the same bases in the short-distance region as
in the long-distance region, so that the kinetic energy takes
the same form in each region. Therefore, we define the OC
and CC as the scattering channels corresponding to |o〉 and
|c〉, respectively. In these bases, the interaction potential is
nondiagonal and can be reexpressed as

Û =
∑

i,j=o,c

Uij (r)|i〉〈j |, (6)

where

Uoo(r) = Ucc(r) = 1
2 [U (+)(r) + U (−)(r)] (7)

and

Uoc(r) = Uco(r) = 1
2 [U (−)(r) − U (+)(r)]. (8)

Here Uoo(r) and Ucc(r) can be viewed as the intrachannel
potential for the OC and the CC, respectively, while Uoc(r) and
Uco(r) can be viewed as the interchannel coupling between the
OC and the CC.

We consider the scattering of two atoms in the OC and
focus on the threshold scattering limit E → 0, where E is
the scattering energy. In this limit the scattering wave function
|�(r)〉 satisfies the equation H |�(r)〉 = 0 and has the behavior

|�(r → ∞)〉 ∝
(

1

r
− 1

as

)
|o〉 (9)

in the long-range limit r → ∞. Here as is the scattering length.
Due to the coupling Uoc(r) between the OC and the CC,

in our system the scattering length as is a function of gap δ

between the thresholds of these two channels. In some systems,
as diverges when this threshold gap is tuned to some particular
value. That is the OFR.

In this paper we consider the systems where the CC-OC
threshold gap δ is much smaller than the characteristic energy
E∗ of the interaction potential, i.e., the systems with

δ � E∗. (10)

Here the characteristic energy E∗ is defined as

E∗ = 1

r2∗
, (11)

where r∗ is the characteristic length of the interaction potential
U (±)(r) and satisfies U (±)(r � r∗) ≈ 0. For a realistic ultracold
gas of alkaline-earth-metal–like atoms, r∗ can be chosen as the
van der Waals radius RvdW, which is related to the asymptotic
behavior of interaction by

U (±)(r → ∞) = − (2RvdW)4

r6
. (12)
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(a) (b)

FIG. 2. Schematic diagram of the Feshbach resonances. Here r is
the interatomic distance, the black solid lines are the potential curves
of the OC and the CC, and the black dotted lines is the threshold of the
OC. (a) The Feshbach resonance induced by the coupling between the
OC and an isolated bound state (red dashed line) of the CC. (b) The
Feshbach resonance induced by the coupling between the OC and the
scattering states (blue dash-dotted lines) of the CC. In this case all
the bound states (red dashed line) of the CC are far off resonant from
the threshold of the OC.

III. OFR INDUCED BY COUPLINGS OF TYPES (A) AND (B)

In this section, using a simple square-well model [14–16],
we illustrate that the OFR in the systems under condition (10)
can be induced by the coupling between the OC and either the
scattering states of the CC [Fig. 2(b)] [11,12] or an isolated
bound state of the CC [Fig. 2(a)], i.e., the couplings of either
type (A) or type (B) we introduced in Sec. I.

In our model U (+)(r) and U (−)(r) in Eq. (4) are square-well
potentials which satisfy (Fig. 3)

U (±)(r) =
{−u(±), r < b,

0, r > b,
(13)

where b is the range of the square-well potential. For
simplicity, here we only consider the potentials U (±)(r) with
at most two bound states. In this model we have r∗ = b and
thus E∗ = b−2.

In this section we calculate the scattering length as between
two atoms in the OC with both the exact numerical calculation
and the single-pole approximation for the above square-
well potential. In Appendix A we show the details of the
approach of the exact numerical calculation. In the single-pole
approximation, only the contribution from a single bound state

r

U (+)(r)

r = 0

0

rr = 0

0

U (−)(r)

−u(+)

−u(−)

FIG. 3. The square-well model for the potentials U (+)(r) and
U (−)(r).

of the CC, whose energy is closest to the threshold of the OC, is
taken into account. The contributions from all the other bound
states as well as the scattering states of the CC are neglected in
this approximation. Under this approximation, the scattering
length as is given by [3]

as = abg + 2π2|w|2
|εb| − δ − ε0

, (14)

with

ε0 =
∫

drdr′φb(r)∗Uco(r)Gbg(r,r′)Uoc(r ′)φb(r′) (15)

and

w =
∫

drφb(r)∗Uco(r)ψbg(r). (16)

Here φb(r) and |εb| are the wave function and the binding
energy of the isolated bound state of the CC, respectively, abg

and ψbg(r) are the scattering length and the threshold scattering
wave function of the OC in the case without interchannel
coupling, respectively, and

Gbg(r,r′) = 1

−[ − ∇2
r + Uoo(r)

]δ(r − r′) (17)

is the Green’s function for the OC in that case. It is clear that
when the result from this single-pole approximation is close
to the exact result, we can claim that the OFR is mainly due to
the coupling between the OC and the isolated bound state φb.

In Figs. 4(a)–4(c) we illustrate our results for three typical
cases.

Case (a). There is no bound state in CC, and thus, the
OFR is induced by the scattering states of CC. In Fig. 4(a)
we consider the system with a(+) = 1000b (u(+) ≈ 2.47b−2)
and a(−) = 0.5b (u(−) ≈ −3.67b−2). Notice that here U (−)(r)
is a repulsive square-well potential. According to the exact
numerical calculation, the OFR can occur when δ ≈ 4 ×
10−6b−2. Nevertheless, in this system the potentials Ucc(r) =
Uoo(r) = [U (+)(r) + U (−)(r)]/2 for the OC and the CC are
pure repulsive potentials. Thus, there is no bound state in
the CC. Therefore, this OFR is completely induced by the
coupling between the OC and the scattering states of the CC.
The two-body physics of Feshbach resonance induced by this
kind of coupling has been studied by Avishai et al. [11,12], and
can be understood as a kind of shape resonance of the effective
interaction in the OC. Acton et al. also discussed this kind of
Feshbach resonance in the study of the many-body problem
of Fermion-mediated BCS-BEC crossover [17]. In Appendix
B we provide a brief explanation for this kind of Feshbach
resonance.

Case (b). There are bound states of the CC, while the OFR
is induced by the scattering states of the CC. In Fig. 4(b)
we consider the system with a(+) = 0.15b (u(+) ≈ 19.8b−2)
and a(−) = 1000b (u(−) ≈ 22.2b−2). According to the exact
numerical calculation, the OFR of this system occurs when
δ ≈ 0.4 × 10−5b−2, and the width of this OFR is of the order
of 10−5b−2. Moreover, in this system the binding energy
|εb| of the shallowest bound state of the CC is as large as
14.5b−2. Therefore, when the OFR occurs, this bound state is
far off resonant from the OC. Thus, the OFR in this system is
mainly due to the coupling between the OC and the scattering
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FIG. 4. The scattering length as of the square-well model. We
show the results given by exact numerical calculation (red circles)
and the two-channel Huang-Yang pseudopotential (blue solid lines).
In (a) and (c) we also show the single-pole approximation (black
squares). Here we consider the cases with (a) a(+) = 1000b (u(+) ≈
2.47b−2) and a(−) = 0.5b (u(−) ≈ −3.67b−2), (b) a(+) = 0.15b

(u(+) ≈ 19.8b−2) and a(−) = 1000b (u(−) ≈ 22.2b−2), and (c) a(+) =
870b (u(+) ≈ 2.4697b−2) and a(−) = 910b (u(−) ≈ 2.4696b−2).

states of the CC. This conclusion is further confirmed by our
calculation with the single-pole approximation, which shows
that the scattering length as given by this approximation is
significantly different from the exact result and does not have
any resonance behavior.

Case (c). The OFR is induced by the coupling between
the OC and an isolated bound state of the CC. In Fig. 4(c)
we consider the system with a(+) = 870b (u(+) ≈ 2.47b−2)
and a(−) = 910b (u(−) ≈ 2.4696b−2). It is clear that for this
system the results given by the single-pole approximation and
the exact numerical calculation are quantitatively consistent
with each other in the region around the OFR point. Thus, the
OFR in this system is mainly due to the coupling between the
OC and the isolated bound state of the CC.

Our results for the above cases show that the OFR with a
small CC-OC threshold gap can be induced by coupling of
either type (A) or type (B) defined in Sec. I. Here we point
out that cases in Figs. 4(a) and 4(b) are essentially the same
category; that is, in the region of the actual OFR there is no
bound state of the CC, and the OFR is induced by coupling of
type (B), i.e., the coupling between the OC and the scattering
states of the CC.

We further emphasize that, as shown in Figs. 4(a)–4(c), in
the simple square-well model the OFR is usually induced by
coupling of type (A) or type (B) when the scattering lengths
a(+) and a(−) are very close or significantly different from
each other, respectively. Nevertheless, in ultracold gases of
alkaline-earth-metal–like atoms, e.g., ultracold gases of 173Yb
atoms, the realistic interatomic interaction potential curve is
much more complicated than the square-well model. For these
ultracold gases, to know which type of coupling induces the
OFR, one requires not only the values of a(±) but also the
short-range details of the potential curves U (±)(r).

IV. TWO-CHANNEL HUANG-YANG PSEUDOPOTENTIAL

In the section above we illustrate that the OFR of systems
under condition (10) can be induced by coupling of two
different types. In this section we show that in each of these two
cases, the two-channel Huang-Yang pseudopotential [4,13]
is always applicable for the approximate calculation of the
low-energy scattering amplitude.

To this end, we consider the two-atom scattering wave
function |ψ(r)〉 of our system, which can be expanded as

|ψ(r)〉 = ψ+(r)|+〉 + ψ−(r)|−〉. (18)

This wave function satisfies the Schrödinger equation

Ĥ |ψ(r)〉 = E|ψ(r)〉, (19)

with E being the scattering energy, as well as the outgoing
boundary condition. As in the above discussions, we consider
systems under condition (10). We further focus on the
low-energy scattering processes where the scattering energy
is much smaller than the characteristic energy E∗ of the
interaction potential, i.e.,

E � E∗. (20)

It is clear that conditions (10) and (20) imply 1/
√

E � r∗
and 1/

√
δ � r∗, where r∗ is the characteristic length of the

interaction potential U (±)(r), as defined in Sec. II.
When δ = 0, the low-energy scattering wave function

|ψ(r)〉 has the short-range behavior

ψ±(r) ∝
(

1

r
− 1

a
(±)
s

)
, r∗ � r � 1√

E
, (21)
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where a(±)
s is the s-wave scattering length with respect to the

potential U (±)(r).
Furthermore, when δ is finite, the behavior of the wave

function in the region r � 1/
√

δ is almost unchanged.
Therefore, under conditions (10) and (20) we have

ψ±(r) ∝
(

1

r
− 1

a
(±)
s

)
, r∗ � r � Min

(
1√
E

,
1√
δ

)
. (22)

Due to this fact, in our calculation we can approximately
replace the real interaction potential U (±)(r) with the Bethe-
Peierls boundary condition [18]

lim
r→0

ψ±(r) ∝
(

1

r
− 1

a
(±)
s

)
(23)

or the two-channel Huang-Yang pseudopotential [4,13]

ÛHY = 4π
[
a(+)

s |+〉〈+| + a(−)
s |−〉〈−|]δ(r)

(
∂

∂r
r

)
, (24)

which is mathematically equivalent to boundary condition
(23). Thus, we know that for our system two-channel Huang-
Yang pseudopotential ÛHY can always be used for the ap-
proximate calculation of the low-energy two-body problems,
regardless of whether OFR is induced by coupling of type (A)
or (B).

To illustrate this result, we calculate the scattering length
of two atoms incident from the OC with the two-channel
Huang-Yang pseudopotential ÛHY. To this end we consider
the threshold scattering with E = 0. In this case the scattering
wave function given by ÛHY can be expressed as

|ψ(r)〉 = 1

(2π )
3
2

[(
1 − a(HY)

s

r

)
|o〉 + B

e−√
δr

r
|c〉

]
, (25)

where the scattering length a(HY)
s is the scattering length given

by ÛHY. The values of a(HY)
s and the factor B can be obtained

via the Schrödinger equation

(Ĥ0 + ÛHY)|ψ(r)〉 = 0. (26)

With straightforward calculation, we can obtain

a(HY)
s = −as0 + √

δ
(
a2

s0 − a2
s1

)
as0

√
δ − 1

, (27)

where as0 and as1 are defined as

as0 = 1
2 [a(+)

s + a(−)
s ], as1 = 1

2 [a(−)
s − a(+)

s ]. (28)

In Figs. 4(a)–4(c) we compare a(HY)
s with the scattering

length given by the exact numerical calculation. Notice that
according to the exact numerical calculation, for these cases
when the OFR occurs, the low-energy condition (10) is
satisfied very well (δ ∼ 10−6b−2 − 10−5b−2). As shown in
Figs. 4(a)–4(c), in all of these cases a(HY)

s is very close to
the result from the exact numerical calculation, regardless of
whether the OFR is induced by the coupling between the bound
or scattering states of the CC.

We also do a calculation for the 173Yb atoms with
our square-well model and the two-channel Huang-Yang
pseudopotential. In our calculation we take b = RvdW =
84.84a0 [7], a(+) = 1900a0 ≈ 22.4b (u(+) ≈ 2.56b−2), and
a(−) = 200a0 ≈ 2.34b (u(−) ≈ 3.76b−2) [9,10]. We illustrate

δ(in units of b−2)
0 0.005 0.01 0.015

a
s
/b

-50

-30

-10

10

30

50
HY potential
numerical calculation

FIG. 5. The scattering length as of the square-well model. We
show the results given by exact numerical calculation (red circles)
with the approach in Appendix A and the two-channel Huang-Yang
pseudopotential (blue solid lines). Here we consider the cases with
a(+) = 22.4b (u(+) ≈ 2.56b−2) and a(−) = 2.34b (u(−) ≈ 3.76b−2).

our results in Fig. 5. It is shown that although we can
still approximately derive the scattering length as with the
Huang-Yang pseudopotential ÛHY, there is a relative error of
10% in this approximation. This fact can be understood by the
following analysis. For 173Yb atoms, the OFR occurs when
δ ∼ 10−2b−2. Thus, in this system the low-energy condition
(10) is not satisfied as perfectly as in the examples in Figs. 4(a)–
4(c). As a result, the relative error of the pseudopotential
approximation is larger. Our result implies that to obtain a
more accurate theoretical result for 173Yb atoms, we need
to include more details about the interaction U (±)(r) in our
calculation.

V. DISCUSSION

In this paper we show that the OFR in systems where the
CC-OC threshold gap δ is much smaller than the characteristic
energy E∗ can be induced by the coupling between the OC
and either an isolated bound state or the scattering states of the
CC. In any case, the two-channel Huang-Yang pseudopotential
ÛHY can always be used as a good approximation for the
interatomic interaction potential in the region δ � E∗. We
illustrate these conclusions with a simple square-well model.

According to Eq. (27), the scattering length a(HY)
s given by

the Huang-Yang pseudopotential diverges when

δ = 1

a2
s0

, (29)

with as0 defined in Eq. (28). Therefore, the OFR can occur
in systems with δ � E∗ only when 1/a2

s0 � E∗; that is, as0

should be much larger than the characteristic length r∗ of the
interaction potential. According to Eqs. (11) and (28), this
condition yields that either of the two scattering lengths a(+)

s
and a(−)

s for channels |+〉 and |−〉 should be positive and
much larger than r∗. Therefore, when an OFR occurs under
the condition δ � E∗, there must be a shallow bound state in
channel |+〉 or |−〉, although there may not be a shallow bound
state in the CC |c〉.
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Here we also would like to make a comment about the
scattering length of the CC itself. Naively, by projecting the
two-channel Huang-Yang pseudopotential ÛHY on the CC, one
can obtain

〈c|ÛHY|c〉 = 4πas0δ(r)

(
∂

∂r
r

)
. (30)

Thus, it seems that the scattering length of the CC is just
as0 = (a(+)

s + a(−)
s )/2. However, this conclusion is incorrect.

The real interaction potential of the CC is

〈c|U |c〉 = Ucc(r) = 1
2 [U (+)(r) + U (−)(r)]. (31)

It is clear that the scattering length of this real potential,
which can be denoted as asc, is determined by not only
the scattering length a(±)

s of the potential curves U (±)(r)
but also the short-range details U (±)(r). The value of asc

can be either significantly different from as0 or close to as0.
Accordingly, although the complete two-channel Huang-Yang
pseudopotential ÛHY is always applicable in a two-channel
problem under conditions (10) and (20), that does not mean
that we can directly use the projection 〈c|ÛHY|c〉 to study the
single-channel physics for the CC itself.

As shown above, the OFR can occur in the region δ � E∗
in a system with as0 > 0 and 1/a2

s0 � E∗. In such a system,
if the value of the scattering length asc of the CC is close to
the value of as0, then there exists a shallow bound state in
the CC with binding energy close to 1/a2

s0. When the OFR
occurs, i.e., δ ≈ 1/a2

s0, this bound state is near resonant to the
threshold of the OC and thus makes a significant contribution
to the OFR. On the other hand, if the value of asc is negative
or much smaller than as0, then when the OFR occurs, all the
bound states of the CC are far off resonant from the threshold
of the OC. In that system the OFR may be mainly induced
by the coupling between the OC and the scattering states of
the CC.

It is also pointed out that, in principle, the Feshbach
resonance induced by the coupling between the OC and the
scattering states of the CC can also occur in systems where
the CC-OC threshold gap is comparable to or larger than the
characteristic energy [11,12]. However, in these systems that
kind of Feshbach resonance usually requires extremely strong
CC-OC coupling [11,12], which is very difficult to generate
in the realistic systems. Therefore, the Feshbach resonances
in realistic ultracold gases with a large CC-OC threshold gap,
e.g., the MFR of ultracold alkali atoms, are usually induced
by the coupling between the OC and one or several isolated
bound states of the CC.

ACKNOWLEDGMENTS

We thank Y. Avishai, J. Levinsen, M. Parish, and H.
Zhai for helpful discussions. We also thank H. Zhai for
reading the manuscript. This work has been supported by
the National Natural Science Foundation of China under
Grants No. 11222430 and No. 11434011 and NKBRSF of
China under Grant No. 2012CB922104. This work is also
supported by the Fundamental Research Funds for the Central
Universities and the Research Funds of Renmin University of
China 16XNLQ03.

APPENDIX A: EXACT CALCULATION OF as FOR THE
TWO-CHANNEL SQUARE-WELL MODEL

In this appendix we show our approach for the exact
calculation of the scattering length as for the two-channel
square-well model. In this model the total Hamiltonian Ĥ for
the two-atom relative motion can be expressed as in Eq. (3),
with the interaction potential Û being given by Eqs. (6), (7),
(8), and Eq. (13). As shown in the main text, we consider the
scattering of two atoms in the OC |o〉 with zero scattering
energy. Thus, the scattering wave function |�(r)〉 satisfies the
Schrödinger equation

Ĥ |�(r)〉 = 0. (A1)

It is clear that in the region r > b, with b being the
width of the square well, the Hamiltonian Ĥ can be
written as

Ĥ = −∇2
r + δ|c〉〈c|. (A2)

Thus, in this region the solution of Eq. (A1) can be expressed
as

|�(r > b)〉 = 1

r

[
φ(out)

o (r)|o〉 + φ(out)
c (r)|c〉], (A3)

where

φ(out)
o (r) = r − as, (A4)

φ(out)
c (r) = fce

−√
δr , (A5)

with as being the scattering length and fc being a constant
coefficient which can be obtained later.

On the other hand, according to Eqs. (6), (7), (8),
and (13), in the region r < b the Hamiltonian Ĥ can be
written as

Ĥ = −∇2
r − B̂, (A6)

where

B̂ =
∑

i,j=o,c

Bij |i〉〈j | (A7)

is an r-independent operator with matrix elements

Bcc = −δ + 1
2 [u(+) + u(−)], (A8)

Boo = 1
2 [u(+) + u(−)], (A9)

Boc = Bco = 1
2 [u(−) − u(+)]. (A10)

Here u(+) and u(−) are defined in Eq. (13) of the main text. We
can further derive the eigenvalue λi (i = 1,2) and eigenstate
|λi〉 of operator B̂, which satisfies

B̂|λi〉 = λi |λi〉 (i = 1,2). (A11)

The direct calculation yields

λ1 = (Boo + Bcc) + √
(Boo − Bcc)2 + 4B2

oc

2
, (A12)

λ2 = (Boo + Bcc) − √
(Boo − Bcc)2 + 4B2

oc

2
, (A13)
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and

|λ1〉 = α|c〉 + β|o〉, (A14)

|λ2〉 = −β|c〉 + α|o〉, (A15)

with

α = λ1 − Boo√
(λ1 − Boo)2 + B2

oc

, (A16)

β = Boc√
(λ1 − Boo)2 + B2

oc

. (A17)

Therefore, the solution of the Schrödinger equation (A1) in
the region r < b can be written as

|�(r < b〉 = 1

r
[A1 sin(

√
λ1r)|λ1〉 + A2 sin(

√
λ2r)|λ2〉],

(A18)

with A1,2 being constant coefficients. Here for z < 0 we define√
z = i

√|z|. Using Eqs. (A12)–(A15), we can rewrite this
result as

|�(r < b〉 = 1

r

[
φ(in)

o (r)|o〉 + φ(in)
c (r)|c〉], (A19)

where

φ(in)
o (r) = A1β sin(

√
λ1r) + A2α sin(

√
λ2r), (A20)

φ(in)
c (r) = A1α sin(

√
λ1r) − A2β sin(

√
λ2r). (A21)

So far we have obtained the forms (A3) and (A19) for
the scattering wave function in the regions r > b and r < b,
respectively. Since the scattering wave function |�(r)〉 and its
first-order derivative should be continuous at the point r = b,
we have the equations

φ(in)
o (r = b) = φ(out)

o (r = b), (A22)

φ(in)
c (r = b) = φ(out)

c (r = b), (A23)

d

dr
φ(in)

o (r)

∣∣∣∣
r=b

= d

dr
φ(out)

o (r)

∣∣∣∣
r=b

, (A24)

d

dr
φ(in)

c (r)

∣∣∣∣
r=b

= d

dr
φ(out)

c (r)

∣∣∣∣
r=b

, (A25)

with φ(out)
o,c (r) being defined in Eqs. (A4) and (A5) and φ(in)

o,c (r)
being defined in Eqs. (A20) and (A21). By solving Eqs. (A22)–
(A25), we can obtain the values of the scattering length as as
well as the coefficients fc and A1,2.

We numerically solve Eqs. (A22)–(A25) for the cases
discussed in Sec. III and Sec. IV of the main text and obtain
the exact values of the scattering length as for these cases.
These results are illustrated by the red circles of Figs. 4(a)–4(c)
and 5.

APPENDIX B: FESHBACH RESONANCE INDUCED BY
THE SCATTERING STATES OF THE CC

In this appendix we show that the Feshbach resonance
induced by the coupling between the OC and the scattering

states of the CC can be understood as a shape resonance of
the effective interaction in the OC. For convenience, here
we also consider the OFR system discussed in the main
text. Nevertheless, our result is applicable to the general
two-channel scattering problems of two atoms.

As shown in Sec. II, the Hamiltonian of our system can be
expressed as

Ĥ = ( − ∇2
r + δ

)|c〉〈c| + ( − ∇2
r

)|o〉〈o| + Û

≡ Ĥ0 + Û , (B1)

where the interaction potential Û can be written as Û =∑
i,j=o,c Uij (r)|i〉〈j |, with Uoo(r) and Ucc(r) being the intra-

channel interaction potential of the OC and CC, respectively,
and Uoc(r) = Uco(r)∗ being the interchannel coupling.

In our system the scattering wave function can be expressed
as

|ψ(r)〉 = ψ (o)(r)|o〉 + ψ (c)(r)|c〉 (B2)

and satisfies the Schrödinger equation

Ĥ |ψ(r)〉 = E|ψ(r)〉, (B3)

with E being the scattering energy. Furthermore, when E = 0,
we have

lim
r→∞ ψ (o)(r) ∝

(
1 − as

r

)
, (B4)

where as is the scattering length of two atoms incident from the
OC. Therefore, to obtain the scattering length as, we should
first calculate the component ψ (o)(r) of the scattering wave
function for the case with E = 0. In this case, Eq. (B3) can be
rewritten as

−∇2
r ψ (c)(r) + δψ (c)(r) + Ucc(r)ψ (c)(r) + Uco(r)ψ (o)(r)

= 0, (B5)

− ∇2
r ψ (o)(r) + Uoo(r)ψ (o)(r) + Uoc(r)ψ (c)(r) = 0. (B6)

Using these two equations, we can obtain the effective
interaction potential of the OC via the projection operator
technique. To this end we first solve Eq. (B5) and obtain

ψ (c)(r) =
∫

dr′g(δ,r,r′)Uco(r ′)ψ (o)(r′), (B7)

where g(δ,r,r′) is the Green’s function of the CC and is defined
as

g(δ,r,r′) = 1

−[ − ∇2
r + Ucc(r) + δ

]δ(r − r′). (B8)

We assume all the bound states of the CC are far off resonant
from the threshold of the OC. Thus, in the calculation of
g(δ,r,r′) we can neglect the contributions from the bound
states of the CC. Then we obtain

g(δ,r,r′) ≈
∫

dk
ψ∗

k (r)ψk(r′)
−δ − k2

, (B9)

where ψk(r) is the scattering state of the CC with incident
momentum k. Substituting Eq. (B7) into Eq. (B6), we obtain
the equation for ψ (o)(r):

−∇2
r ψ (o)(r) + Veff(δ)ψ (o)(r) = 0. (B10)

042708-7



YANTING CHENG, REN ZHANG, AND PENG ZHANG PHYSICAL REVIEW A 93, 042708 (2016)

Here Veff(δ) is the effective interaction of the OC. It is
nondiagonal in the r representation, and satisfies

Veff(δ)ψ (o)(r) = Uoc(r)
∫

dr′g(δ,r,r′)Uco(r ′)ψ (o)(r′)

+Uoo(r)ψ (o)(r), (B11)

with g(δ,r,r′) given by Eq. (B9).
Equations (B10) and (B4) show that we can obtain the

wave function ψ (o)(r) and the scattering length as of our

two-channel scattering problem by solving the single-channel
scattering problem with effective interaction Veff(δ), which
changes with the CC-OC threshold gap δ. Although in Veff(δ)
we have ignored all the contributions from the bound states of
the CC, it is still possible that a shape resonance for Veff(δ) can
appear when δ is tuned to a particular value δ0 (δ0 > 0). In this
case, we would have as = ∞. It is clear that this resonance is
nothing but the Feshbach resonance induced by the coupling
between the OC and the scattering states of the CC.

[1] H. Feshbach, Ann. Phys. (N.Y.) 5, 357 (1958).
[2] C. Chin, R. Grimm, P. Julienne, and E. Tiesinga, Rev. Mod.

Phys. 82, 1225 (2010).
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