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This paper generalizes the Siegert pseudostate (SPS) formulation of scattering theory to arbitrary finite-
range potentials without any symmetry in the three-dimensional (3D) case. The orthogonality and completeness
properties of 3D SPSs are established. The SPS expansions for scattering states, outgoing-wave Green’s function,
scattering matrix, and scattering amplitude, that is, all major objects of scattering theory, are derived. The theory
is illustrated by calculations for several model potentials. The results enable one to apply 3D SPSs as a purely
discrete basis capable of representing both discrete and continuous spectra in solving various stationary and
time-dependent quantum-mechanical problems.
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I. INTRODUCTION

Stationary scattering theory is usually formulated in terms
of the bound and scattering states of a system under con-
sideration represented by the discrete and continuous real-
energy eigenstates of its Hamiltonian, respectively [1,2]. All
physical observables can be expressed in terms of these
states. Moreover, the set of these states possesses well-known
orthogonality and completeness properties and can be used as
a basis for expanding the solutions to more general problems,
where the system interacts with some external forces. This
approach, however, is not the only one possible. In 1939, in
search of a formal derivation of the Breit-Wigner dispersion
formula [3] from the Schrödinger equation, Siegert introduced
[4] states that now bear his name. Siegert states (SSs) are also
the eigenstates of the Hamiltonian, but satisfying a different
boundary condition in the asymptotic region—the outgoing-
wave boundary condition introduced in quantum mechanics
by Gamow [5]. The Schrödinger equation supplemented by
the requirement of regularity of the wave function and the
outgoing-wave boundary condition constitute an eigenvalue
problem (EVP) that has a purely discrete set of the generally
complex-energy solutions. This EVP was first formulated for
the generic problem of s-wave scattering by a central potential
in Ref. [4], and its solutions are called the SSs. The set of
SSs also possesses certain orthogonality and completeness
properties. In particular, the bound states belong to the set
and the scattering states can be expressed in terms of the SSs.
This opens the way for an alternative formulation of scattering
theory in terms of a purely discrete set of SSs.

There exists a vast literature on the theory of SSs and their
applications in various physical problems. We mention only
several pioneering studies [6–32] where the main results of the
theory were obtained. This includes establishing the orthogo-
nality and normalization condition for SSs [13,14,16–19,22–
25,28,30], their completeness properties [18,19,25,27,30,31],
expansions for the scattering states [10,28,30] and Green’s
function [20,22,25,27,29,30] in terms of SSs, expansions
for the scattering matrix in the sum [7,15,29,30,32] and
product [6,8] forms, the development of perturbation theory
[7,14,16,21,22,25], and some generalizations to two-channel
[11] and multichannel [12] problems. Summaries of the results
can be found in Refs. [2,33–35]. In the majority of these studies

the analysis is based on the argument of analyticity introduced
in Ref. [7]: under certain conditions satisfied by the potential,
the main objects of scattering theory, that is, scattering states,
Green’s function, and scattering matrix, are meromorphic
functions of the particle’s momentum having poles at the SS
momentum eigenvalues, and then their expansions in terms
of SSs follow from the Mittag-Leffler theorem [36]. The
mathematically rigorous derivation and justification of the
expansions is feasible only on the basis of ordinary differential
equations; partial differential equations are hardly tractable
in this sense. Therefore the majority of the results (with
two important exceptions in Refs. [23,25] whose conditions
of validity, however, are not established) are restricted to
partial-wave scattering by central potentials and deduced
from the analytic properties of the radial functions. These
properties are very sensitive to the asymptotic behavior of the
potential [9]. The conditions required for the SS expansions
to hold are satisfied only for potentials decaying faster than
any exponential function [8], which physically amounts to
finite-range potentials. This is the main limitation of the theory
of SSs.

A different approach to the theory of SSs was initiated in
Ref. [37] where Siegert pseudostates (SPSs) were introduced.
The SPSs are defined as a finite-basis representation of SSs
for finite-range potentials. In a finite-basis representation the
differential equations of the theory of SSs and scattering theory
turn into algebraic equations. This approach has two important
advantages. First, the algebraic equations are much simpler for
the analysis than the differential equations, so the derivation of
the results is greatly facilitated. The analysis yields relations
expressing basic properties of SPSs and SPS expansions for
the main objects of scattering theory that hold exactly for
arbitrary dimension of the basis. In other words, they hold
within the SPS formulation, which justifies the title of this and
the previous papers of the series [38–40]. As the dimension
of the basis grows and it becomes complete, these relations
turn into the corresponding relations in terms of SSs. Second,
the algebraic equations can be straightforwardly implemented
in numerical calculations, which makes the theory applicable
to practical problems. The theory of SPSs was thoroughly
developed first for s-wave scattering by a central potential [38]
and then generalized to s-wave scattering in the two-channel
case [39] and partial-wave scattering with arbitrary angular
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momentum [40]. In the first two cases perturbation theory
was developed [41]. These studies reproduced all the known
results of the theory of SSs and established a number of
relations having no analogs in the previous literature, which
proves the first of the above-mentioned advantages. The
efficiency of the SPS approach in applications was demon-
strated by calculations for a number of stationary [37–52] and
time-dependent [53–62] problems. In particular, the approach
was shown to compare favorably with other precision methods
for calculating resonances in three-body Coulomb systems
[37,42,44,46], to enable different computational techniques in
studies of molecular dynamics [43,45,48–52] and laser-atom
interaction [57,58,60–62], and to provide a framework for
the asymptotic solution of the long-standing problem of
nonadiabatic transitions to continuum [59].

In the present work the theory of SPSs [38–40] is general-
ized to arbitrary finite-range potentials without any symmetry
in the three-dimensional (3D) case. The generalization is based
on a partial-wave expansion of the 3D functions involved.
In contrast to the spherically symmetric case treated in
Refs. [38,40], now the different partial-wave components are
coupled. It is remarkable that this coupling does not prevent
the development of the theory.

The paper is organized as follows. In Sec. II, we define
SPSs and establish their basic properties. In Sec. III, we derive
the SPS expansions for the main objects of scattering theory.
In Sec. IV, we illustrate the theory by calculations for several
model potentials. Section V concludes the paper.

II. SIEGERT PSEUDOSTATES AND THEIR PROPERTIES

In this section, we specify the definition of SPSs for general
potentials in the 3D case and establish their basic properties.

A. Siegert states

The stationary Schrödinger equation for a particle interact-
ing with a potential V (r) can be written in the form (a system
of units in which Planck’s constant and a particle’s mass are
equal to unity is used throughout)[

−1

2

∂2

∂r2
+ l2

2r2
+ V (r) − E

]
φ(r) = 0, (1)

where l is the angular momentum operator and φ(r) is the
particle’s wave function multiplied by r . As in Refs. [38,40],
we assume that the potential has a finite range,

V (r)|r>a = 0, (2)

or decays sufficiently rapidly as r grows, so that cutting off
its tail beyond r = a does not produce any appreciable effect
on the observables. However, in contrast to the spherically
symmetric case treated in Refs. [38,40], here we consider
arbitrary potentials without any symmetry. Following Siegert
[4], the SSs are defined as the regular solutions to Eq. (1)
satisfying the outgoing-wave boundary condition

φ(r)|r→∞ ∝ eikr , (3)

where k is the momentum related to the energy E in Eq. (1)
by

E = 1
2k2. (4)

We consider generally complex values of k, including the case
Im k < 0 when the exponent in Eq. (3) diverges at r → ∞. A
rigorist may argue that in this case the asymptotic condition (3)
does not exclude an admixture of decaying solutions ∝e−ikr .
This difficulty can be eliminated for potentials satisfying
Eq. (2). To this end, we expand φ(r) in a complete set of
the eigenfunctions of l2. The standard spherical harmonics
Ylm(θ,ϕ) are not suitable for this purpose. They are complex
and orthogonal with respect to Hermitian inner product
involving complex conjugation, while complex conjugation
is never used in the theory of SSs, since this operation is not
analytic. Let us introduce the functions

Xlm(θ,ϕ) = Yl0(θ,ϕ), m = 0, (5a)

= 1√
2

[Yl|m|(θ,ϕ) + Y ∗
l|m|(θ,ϕ)], m > 0, (5b)

= 1

i
√

2
[Yl|m|(θ,ϕ) − Y ∗

l|m|(θ,ϕ)], m < 0. (5c)

We assume that Yl0(θ,ϕ) is real, which is the case for
commonly used phase conventions [63,64]. Then functions
Xlm(θ,ϕ) provide a real orthonormal angular basis satisfying

I∞(r̂,r̂′) = δ(r̂ − r̂′), (6)

where

IL(r̂,r̂′) =
L∑
ν

Xν(r̂)Xν(r̂′). (7)

Here and in the following, we use the shorthand notation

r̂ = r/r = (θ,ϕ), d r̂ = sin θdθdϕ, (8a)

ν = (l,m),
L∑
ν

=
L∑

l=0

l∑
m=−l

, (8b)

and, similarly, r̂′ = r′/r ′, ν ′ = (l′,m′), etc. The solutions to
Eq. (1) can be expanded as

φ(r) =
∞∑
ν

φν(r)Xν(r̂). (9)

Substituting this into Eq. (1), one obtains a set of coupled
equations for the radial functions,

(Tl − E)φν(r) +
∞∑
ν ′

Vνν ′ (r)φν ′(r) = 0, (10)

where

Tl = −1

2

d2

dr2
+ l(l + 1)

2r2
, (11a)

Vνν ′ (r) =
∫

Xν(r̂)V (r)Xν ′(r̂) d r̂. (11b)

The regularity boundary condition for Eqs. (10) is

φν(0) = 0. (12)

Taking into account Eq. (2), Eqs. (10) become decoupled in
the outer region r > a. Then the outgoing-wave boundary
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condition (3) can be specified as [40]

φν(r)|r�a = φν(a)
el(kr)

el(ka)
, (13)

or, equivalently,⎛
⎝ d

dr
− ik + 1

r

l∑
p=1

zlp

ikr + zlp

⎞
⎠φν(r)

∣∣∣∣∣∣
r�a

= 0. (14)

Here the function el(z) is defined by[
d2

dz2
− l(l + 1)

z2
+ 1

]
el(z) = 0, (15a)

el(z)|z→∞ = eiz, (15b)

and given by [65]

el(z) = eiz θl(−iz)

(−iz)l
, θl(z) =

l∏
p=1

(z − zlp), (16)

where θl(z), l = 0,1, . . . , are the reverse Bessel polynomials
[67] and zlp, p = 1, . . . ,l are the zeros of θl(z). Equations (10),
(12), and (14) can be satisfied simultaneously only for a
discrete set of generally complex values of k, so we deal
with an EVP. The SSs are the solutions to this EVP. The
momentum eigenvalues and partial-wave radial eigenfunctions
are denoted by kn and φνn(r), where n enumerates the
SSs. The corresponding energy eigenvalues En and full 3D
eigenfunctions φn(r) are then given by Eqs. (4) and (9).

Due to the condition (2), Eqs. (10) in the outer region r > a

can be treated analytically, which enables one to exclude this
region from consideration by incorporating the outgoing-wave
boundary condition (14) into the equations. This can be done
by means of the Bloch operator [68]. Let us introduce the
function and derivative value operators at r = a,

F = δ(r − a), D = δ(r − a)
d

dr
. (17)

Then Eqs. (10) can be presented in the form⎡
⎣T̃l − 1

2

⎛
⎝ik − 1

a

l∑
p=1

zlp

ika + zlp

⎞
⎠F − k2

2

⎤
⎦φν(r)

+
∞∑
ν ′

Vνν ′ (r)φν ′(r) = 0, (18)

where

T̃l = Tl + 1
2D. (19)

It is sufficient to consider Eqs. (18) in the inner region r � a,
the solutions automatically satisfy Eq. (14). This form of the
SS EVP is most convenient for the following.

B. Siegert pseudostates

Let H denote the Hilbert space of functions of r for which
radial functions in the partial-wave expansion of the form (9)
are square integrable in the interval 0 � r � a and satisfy
Eq. (12). The SSs belong to H. Let fi(r), i = 1,2, . . . be a set

of real functions satisfying

fi(0) = 0, (20a)∫ a

0
fi(r)fi ′(r) dr = δii ′ , (20b)

I∞(r,r ′) = δ(r − r ′), 0 � r, r ′ � a, (20c)

where

IN (r,r ′) =
N∑

i=1

fi(r)fi(r
′). (21)

The products of fi(r) and Xν(r̂) provide a real orthonormal
basis in H. To define SPSs, we employ finite basis sets,

fi(r), i = 1,2, . . . ,N, (22a)

Xν(r̂), ν = (0,0), (1, − 1), . . . ,(L,L), (22b)

where all
∑L

ν 1 = (L + 1)2 angular functions with l � L

are included [see the notation (8b)]. The products of these
functions span a subspace HNL ∈ H of dimension N (L +
1)2. The unity operator in this subspace is represented by
IN (r,r ′)IL(r̂,r̂′). The SPSs are a representation of the SSs in
HNL. Retaining in the sum over ν ′ in Eqs. (18) only terms with
l′ � L and seeking the solution in the form

φν(r) =
N∑

i=1

ciνfi(r), 0 � r � a, (23)

we arrive at the algebraic EVP,⎡
⎣T̃l − 1

2

⎛
⎝λ − 1

a

l∑
p=1

zlp

λa + zlp

⎞
⎠F + λ2

2
I

⎤
⎦cν +

L∑
ν ′

Vνν ′cν ′

= 0. (24)

Here

λ = ik, (25)

cν is a column vector of length N composed of the coefficients
ciν in Eq. (23), T̃l , Vνν ′ , and F are real symmetric matrices of
dimension N × N representing the operators T̃l , Vνν ′ (r), and
F , respectively, and having the elements

T̃ii ′,l =
∫ a

0
fi(r)T̃lfi ′ (r) dr = 1

2

∫ a

0

dfi(r)

dr

dfi ′ (r)

dr
dr

+
∫ a

0
fi(r)

l(l + 1)

2r2
fi ′ (r) dr, (26a)

Vii ′,νν ′ =
∫ a

0
fi(r)Vνν ′(r)fi ′(r) dr, (26b)

Fii ′ =
∫ a

0
fi(r)Ffi ′(r) dr = fi(a)fi ′ (a), (26c)

and I is an N × N unit matrix representing the operator (21).
Throughout the paper, 0 denotes a generally rectangular zero
matrix of appropriate dimension, e.g., a zero vector of length
N in Eq. (24). Let f be a vector with the elements

fi = fi(a), i = 1,2, . . . ,N. (27)
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Then, using Eq. (23), the partial-wave surface amplitude is
given by

φν(a) = fT cν = cT
ν f, (28)

and Eq. (26c) can be written as

F = ffT , (29)

where T stands for transpose. Equation (24) is a representation
of the SS EVP (18) in the finite basis (22). The SPSs are the
solutions to Eq. (24). The SPS eigenvalues and eigenvectors in
the finite-basis representation are denoted by λn and cνn. The
SPSs belong to HNL. Since the basis (22) becomes complete
in H as N and L grow, the SPSs converge to the SSs in
the limit N → ∞ and L → ∞. However, we emphasize that
for any finite N and L the SPSs and SSs are distinct. The
SPSs depend on N and L and hence present a more general
set. All the relations below in this section are derived in the
finite-basis representation for SPSs, expressed in terms of λn

and cνn, and hold for any N and L. The final formulas are
given also in the coordinate representation. In this case, we
use the same notation kn and φνn(r) for SPSs as for SSs; this
does not lead to ambiguities since it is always clear which set is
meant. The transformation between the two representations is
defined by Eqs. (23) and (25); in the outer region, the functions
φνn(r) are given by Eq. (13). Setting in the final formulas
N → ∞ and L → ∞, one obtains corresponding relations in
the basis-independent form in terms of SSs.

We mention that the matrices Vνν ′ with ν 	= ν ′ couple the
different partial waves in Eq. (24). For spherically symmetric
potentials these matrices vanish, the different ν become
decoupled, and then the set of the 3D SPSs splits into
independent subsets of partial-wave SPSs studied in Ref. [40].

C. Distribution of the eigenvalues

Some general properties of the distribution of the SPS
eigenvalues λn in complex λ plane can be deduced from
Eq. (24) without solving the equation. First, using the
properties of matrices T̃l , Vνν ′ , and F and the fact that the
set of the zeros zlp for a given l coincides with the complex
conjugate set [67], it can be seen that if λ is an eigenvalue
of Eq. (24) then λ∗ also is an eigenvalue. This means that
the eigenvalues λn are either pure real or occur in complex
conjugate pairs λn and λ∗

n. Second, multiplying Eq. (24) from
the left by c∗T

ν , summing up over ν, and taking the imaginary
part of the result, we obtain

Im(λ)
L∑
ν

[
2 Re(λ)c∗T

ν cν − ωl(−λa)|fT cν |2
] = 0, (30)

where ω0(z) = 1 and

ωl(z) = 1 +
l∑

p=1

zlp

(z − zlp)(z∗ − zlp)
, l � 1. (31)

For any l, this function is real for all complex z and takes
positive values in the half plane Re z > 0 [40]. Then it follows
from Eq. (30) that the eigenvalues λn are either pure real or
lie in the half plane Re λ > 0. Summarizing and translating
the conclusions to complex k plane, we obtain that the SPS
momentum eigenvalues kn are either pure imaginary or occur

in pairs kn and −k∗
n lying in the lower half plane. As seen from

Eq. (13), the position of kn determines the character of the
asymptotic behavior of φνn(r). Thus SPSs can be divided into
four groups:

bound: Re kn = 0, Im kn > 0,

antibound: Re kn = 0, Im kn < 0,

outgoing: Re kn > 0, Im kn < 0,

incoming: Re kn < 0, Im kn < 0.

(32)

Since the argumentation does not depend on N and L, the
conclusions hold also for the SS eigenvalues kn. We note that
Eq. (24) may have nontrivial solutions with Re λ = Im k = 0
and Im λ 	= 0, provided that fT cν = φν(a) = 0 for all ν, which
complies with Eq. (30). Such SPSs correspond to bound states
embedded into the continuum.

D. Linearization

The SPS EVP (24) is nonlinear with respect to the
eigenvalue λ. The nonlinearity not only prevents solving this
equation by standard methods of linear algebra, but even makes
it not obvious how many solutions exist. Here we linearize
Eq. (24) by extending the dimension of the corresponding
Hilbert space. The idea of this step was employed in the theory
of SSs in Ref. [26]. The linearization procedure described
below generalizes a similar construction used in Refs. [38,40]
and is essential for the theory of SPSs.

Let HN be a functional space spanned by the radial basis
(22a). It is isomorphic to the N -dimensional space of partial-
wave vectors cν . For simplicity, we do not distinguish the
two spaces and write cν ∈ HN . The solutions to Eq. (24) are
vectors of length N (L + 1)2 combining all cν in the order listed
in Eq. (22b), ⎛

⎝ c00

. . .

cLL

⎞
⎠ ∈ HNL =

L∏
ν

HN . (33)

The space HNL is a direct product of (L + 1)2 copies of
HN , one for each of the angular basis functions. However,
for constructing the SPSs it is convenient to combine the
partial-wave components in a different way. Let us introduce
the quantities [40]

ξνp = − zlpfT cν

λa + zlp

, p = 1, . . . ,l, (34)

and extended partial-wave vectors of length 2N + l,

Cν =

⎛
⎜⎜⎜⎝

cν

λcν

ξν1

. . .

ξνl

⎞
⎟⎟⎟⎠ ∈ H(l)

N = H2
N × Cl . (35)

The extended partial-wave space H(l)
N is a direct product of

two copies of HN , one for each of the vectors cν and λcν ,
and l copies of the set of complex numbers C corresponding
to ξνp. We also introduce square matrices of dimension
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(2N + l) × (2N + l),

Sνν =

⎛
⎜⎜⎜⎝

0 I 0 . . . 0
−2(T̃l + Vνν) F f/a . . . f/a

−zl1fT /a 0 −zl1/a . . . 0
. . . . . . . . . . . . . . .

−zllfT /a 0 0 . . . −zll/a

⎞
⎟⎟⎟⎠,

(36a)

and rectangular matrices of dimension (2N + l) × (2N + l′),

Sνν ′ =

⎛
⎜⎜⎜⎝

0 0 0 . . . 0
−2Vνν ′ 0 0 . . . 0

0 0 0 . . . 0
. . . . . . . . . . . . . . .

0 0 0 . . . 0

⎞
⎟⎟⎟⎠, ν 	= ν ′. (36b)

The structure of these matrices is determined by that of the
vector (35), namely: the first two blocks in the first two rows
are square matrices of dimension N × N ; the further blocks in
the same rows are columns of length N ; the first two blocks in
the following rows are rows of length N ; finally, the remaining
block in Eq. (36a) is a diagonal matrix of dimension l × l

and the corresponding block in Eq. (36b) is a zero matrix of
dimension l × l′. We next introduce a vector combining the
different partial-wave vectors (35) ordered following the list
(22b),

C =
⎛
⎝C00

. . .

CLL

⎞
⎠ ∈ HSPS

NL =
L∏
ν

H(l)
N , (37)

and a matrix consisting of the blocks (36a) and (36b) ordered
in the same way,

S =
⎛
⎝S00,00 . . . S00,LL

. . . . . . . . .

SLL,00 . . . SLL,LL

⎞
⎠. (38)

Using this notation, we can rewrite the SPS EVP (24) in the
form

(S − λ)C = 0. (39)

This is a linear EVP with respect to the eigenvalue λ. The price
for the linearization is the extension of the Hilbert space from
HNL of dimension N (L + 1)2 to HSPS

NL of dimension

NSPS =
L∑
ν

(2N + l) = 2N (L + 1)2 + 1

6
L(L + 1)(4L + 5).

(40)
This is the dimension of the EVP (39). Thus, there exists NSPS

solutions of Eq. (39) which we also call SPSs and denote by

λn, Cn, n = 1,2, . . . ,NSPS. (41)

The eigenvalues λn coincide with the eigenvalues of Eq. (24);
the eigenvectors Cn are determined by λn and the eigenvectors
cνn of Eq. (24) according to Eqs. (34), (35), and (37); the
corresponding quantities (34) are denoted by ξνpn.

Equation (39) is suitable for calculating SPSs by means of
standard linear algebra routines. However, for establishing the
properties of SPSs it is convenient to transform this equation
to a symmetric form. Let us introduce a partial-wave weight

matrix having the same structure as Sνν in Eq. (36a),

Wl =

⎛
⎜⎜⎜⎝

−F I 0 . . . 0
I 0 0 . . . 0
0 0 −1/zl1 . . . 0
. . . . . . . . . . . . . . .

0 0 0 . . . −1/zll

⎞
⎟⎟⎟⎠. (42)

Let W be a matrix having the same structure as S in Eq. (38)
with the blocks defined by

Wνν = Wl , (43a)

Wνν ′ = 0, ν 	= ν ′. (43b)

The matrix W is complex (because the zeros zlp are generally
complex) and symmetric. We introduce one more matrix of
the same structure,

S̃ = WS, (44)

with the blocks

S̃νν = WlSνν =

⎛
⎜⎜⎜⎝

−2(T̃l + Vνν) 0 f/a . . . f/a
0 I 0 . . . 0

fT /a 0 1/a . . . 0
. . . . . . . . . . . . . . .

fT /a 0 0 . . . 1/a

⎞
⎟⎟⎟⎠,

(45a)

S̃νν ′ = WlSνν ′=

⎛
⎜⎜⎜⎝

−2Vνν ′ 0 0 . . . 0
0 0 0 . . . 0
0 0 0 . . . 0
. . . . . . . . . . . . . . .

0 0 0 . . . 0

⎞
⎟⎟⎟⎠, ν 	= ν ′.

(45b)

This matrix is real and symmetric. Multiplying Eq. (39) from
the left by W, we obtain

(S̃ − λW)C = 0. (46)

This is a generalized EVP with symmetric matrices. The or-
thogonality and completeness properties of SPSs immediately
follow from this equation.

E. Orthogonality and normalization condition

Assuming that all SPS eigenvalues λn are distinct, the
solutions to Eq. (46) are orthogonal with respect to the inner
product

CT
nWCn′ = 2λnδnn′ , (47)

where the coefficient on the right-hand side is chosen to obtain
the usual normalization condition for bound states [see Eq. (51)
below]. Substituting here Eqs. (35), (37), and (43), we obtain

L∑
ν

⎛
⎝cT

νncνn′− 1

λn + λn′

⎡
⎣cT

νnFcνn′+
l∑

p=1

ξνpnξνpn′

zlp

⎤
⎦

⎞
⎠ = δnn′ .

(48)
Equation (47) shows that vectors Cn belonging to the extended
space HSPS

NL are orthogonal with the weight W, in the usual
sense of the word in linear algebra, while projecting this
equation to the original space HNL results in an unusual
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orthonormalization condition (48) for cνn. In the coordinate representation Eq. (48) reads

L∑
ν

⎛
⎝∫ a

0
φνn(r)φνn′(r) dr + i

φνn(a)φνn′(a)

kn + kn′

⎡
⎣1 +

l∑
p=1

zlp

(ikna + zlp)(ikn′a + zlp)

⎤
⎦

⎞
⎠ = δnn′ . (49)

Using Eq. (14), this condition can be rewritten as∫ (∫ a

0
φn(r)φn′(r) dr + φn′(r)∂φn(r)/∂r − φn(r)∂φn′(r)/∂r

k2
n − k2

n′

∣∣∣∣
r=a

)
d r̂ = δnn′ . (50)

Using Eq. (13), it can be shown that if both n and n′ correspond
to bound SPSs then Eq. (50) reduces to∫

φn(r)φn′(r) drd r̂ = δnn′ , (51)

which coincides with the usual orthonormalization condition
for bound states. Equations (50) and (51) do not contain N and
L, and hence apply also to SSs.

The derivation of the normalization condition for SSs was a
profound problem in the development of the theory, because all
but bound SS eigenfunctions exponentially diverge at r → ∞;
see Eq. (3). The different authors [13,14,16,17,19,23] used
different procedures to regularize the normalization integral.
In the most general form the orthonormalization condition
for SSs was obtained from Hilbert’s identity in Ref. [23].
For finite-range potentials satisfying Eq. (2) this condition
coincides with Eq. (50).

F. Completeness relations

The solutions to Eq. (46) form a complete set in HSPS
NL .

Taking into account Eq. (47), this fact is expressed by
NSPS∑
n=1

CnCT
n

2λn

= W−1, (52)

where W−1 is the inverse of W. This matrix has the same
block-diagonal structure as W in Eqs. (43) with the diagonal
blocks given by

(W−1)νν = W−1
l =

⎛
⎜⎜⎜⎝

0 I 0 . . . 0
I F 0 . . . 0
0 0 −zl1 . . . 0
. . . . . . . . . . . . . . .

0 0 0 . . . −zll

⎞
⎟⎟⎟⎠.

(53)
Thus Eq. (52) amounts to the relations

NSPS∑
n=1

cνncT
ν ′n

λn

= 0, (54a)

NSPS∑
n=1

cνncT
ν ′n = 2Iδνν ′ , (54b)

NSPS∑
n=1

λncνncT
ν ′n = 2Fδνν ′ , (54c)

NSPS∑
n=1

ξνpncν ′n

λn

= 0, (54d)

NSPS∑
n=1

ξνpncν ′n = 0, (54e)

NSPS∑
n=1

ξνpnξν ′p′n

λn

= −2zlpδpp′δνν ′ . (54f)

We again see that vectors Cn form a complete set in the
extended space HSPS

NL , in the usual sense of the word, while
their projections cνn to the original space HNL satisfy unusual
completeness relations (54). In the coordinate representation,
these relations read

NSPS∑
n=1

φn(r)φn(r′)
ikn

= 0, (55a)

NSPS∑
n=1

φn(r)φn(r′) = 2IN (r,r ′)IL(r̂,r̂′), (55b)

NSPS∑
n=1

iknφn(r)φn(r′) = 2IN (r,a)IN (r ′,a)IL(r̂,r̂′), (55c)

NSPS∑
n=1

φνn(a)φν ′n(r)

ikn(ikna + zlp)
= 0, (55d)

NSPS∑
n=1

φνn(a)φν ′n(r)

ikna + zlp

= 0, (55e)

NSPS∑
n=1

φνn(a)φν ′n(a)

ikn(ikna + zlp)(ikna + zl′p′ )
= − 2

zlp

δpp′δνν ′ , (55f)

where 0 � r,r ′ � a. Equations (54) and (55) express the com-
pleteness properties of SPSs. The corresponding properties of
SSs follow from Eqs. (55) in the limit N → ∞ and L → ∞,
which amounts to extending the summations to infinity and
substituting Eqs. (6) and (20c).

The completeness properties of SSs was another profound
problem. Indeed, Eq. (55a) shows that the set of SSs is
overcomplete in H, which hindered the derivation of the
SS expansions for various objects in scattering theory. The
properties analogous to Eqs. (55a) and (55b) were first
established for a δ-function potential and l = 0 in Ref. [27]
and then proved for a more general class of central potentials
and arbitrary l in Ref. [31]. The properties analogous to
Eqs. (55c)–(55f) were established for central potentials and
arbitrary l within the SPS formulation in Ref. [40]. The
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present analysis generalizes all these properties to arbitrary
finite-range potentials.

G. Spectral matrix and its properties

Let M(λ) denote the matrix of dimension N (L + 1)2 ×
N (L + 1)2 multiplying the vector (33) in Eq. (24). This matrix
consists of partial-wave blocks Mνν ′(λ) of dimension N × N

given by

Mνν ′ (λ) =
⎡
⎣T̃l − 1

2

⎛
⎝λ − 1

a

l∑
p=1

zlp

λa + zlp

⎞
⎠F + λ2

2
I

⎤
⎦δνν ′

+ Vνν ′ . (56)

We call M(λ) the spectral matrix because its determinant turns
to zero whenever λ coincides with one of the SPS eigenvalues
λn. To calculate the determinant, we note that matrix (29)
has rank 1, and hence it can be reduced by an orthogonal
transformation of the radial basis (22a) to the diagonal form
with only one nonzero element. The determinant of M(λ) is
not affected by the transformation, of course. Multiplying the
columns of M(λ) containing the nonzero element of F by
θl(−λa), we obtain a matrix whose elements are polynomials
in λ. Calculating the coefficient of the highest power of λ in
the determinant of this matrix, we find

det [M(λ)] =
L∏
ν

(−a)l

2Nθl(−λa)
×

NSPS∏
n=1

(λ − λn). (57)

The inverse matrix M−1(λ) can be expressed in the form of a
spectral resolution in terms of the eigenvalues and eigenvectors
of Eq. (24). Its partial-wave blocs are given by

(M−1)νν ′(λ) =
NSPS∑
n=1

cνncT
ν ′n

λn(λ − λn)
. (58)

The validity of this formula can be verified using Eqs. (24) and
(54).

For the following, we need some additional properties of
M(λ). From Eq. (56) using a property of the reverse Bessel
polynomials [40] we obtain

Mνν ′(λ) − Mνν ′ (−λ) = − λ(iλa)2l

θl(λa)θl(−λa)
Fδνν ′ . (59)

This means the equality of two matrices of the same dimension
as M(λ) whose partial-wave blocks stand on the left- and
right-hand sides of Eq. (59). Let �(λ) denote a diago-
nal matrix consisting of the partial-wave blocks �νν ′(λ) =
(iλa)−lθl(λa)Iδνν ′ , and M̃(λ) = �(−λ)M(λ). Multiplying the
equality from the left by �(λ) and from the right by M̃−1(λ) =
M−1(λ)�−1(−λ), we obtain

(−1)l
[

θl(λa)

θl(−λa)
Iδνν ′ + λ(−iλa)l+l′

θl(−λa)θl′(−λa)
F(M−1)νν ′ (λ)

]

= [M̃(−λ)M̃−1(λ)]νν ′ . (60)

Two important identities follow from this equation. Let us
multiply Eq. (60) from the left by a row fT and from the right
by a vector f and divide by a number fT f,

(−1)l S̃νν ′ (λ) = (fT f)−1fT [M̃(−λ)M̃−1(λ)]νν ′f, (61)

where

S̃νν ′ (λ) = θl(λa)

θl(−λa)
δνν ′ + λ(−iλa)l+l′

θl(−λa)θl′(−λa)
fT (M−1)νν ′(λ)f.

(62)
Equation (61) means the equality of two matrices of dimension
(L + 1)2 × (L + 1)2. The matrices depend on λ, and the
equality remains valid under changing the sign of λ. We
multiply the matrices from the right by themselves taken at
−λ. It can be seen that f is an eigenvector of the partial-wave
block standing on the left-hand side of Eq. (60), and hence the
same holds for the right-hand side. From this we obtain

L∑
ν ′′

fT [M̃(−λ)M̃−1(λ)]νν ′′ffT [M̃(λ)M̃−1(−λ)]ν ′′ν ′f=(fT f)2δνν ′

(63)
and the first identity

L∑
ν ′′

(−1)l S̃νν ′′ (λ)(−1)l
′′
S̃ν ′′ν ′(−λ) = δνν ′ . (64)

From Eq. (60) using (57) we find

det

[
θl(λa)

θl(−λa)
Iδνν ′ + λ(−iλa)l+l′

θl(−λa)θl′(−λa)
F(M−1)νν ′ (λ)

]

=
NSPS∏
n=1

λn + λ

λn − λ
. (65)

The matrix in the square brackets has dimension N (L + 1)2 ×
N (L + 1)2. Using Sylvester’s determinant theorem [69], the
left-hand side of this equation can be rewritten in terms of the
determinant of a matrix of dimension (L + 1)2 × (L + 1)2,
which yields the second identity

det[S̃νν ′ (λ)] =
NSPS∏
n=1

λn + λ

λn − λ
. (66)

III. STATIONARY SCATTERING THEORY

In this section, we derive the SPS expansions for all major
objects of stationary scattering theory, thus reformulating the
theory in terms of SPSs.

A. Bound states and resonances

The bound states are the regular solutions of Eq. (1)
decaying at r → ∞. They are represented by the bound SPSs,
see Eq. (32), and determined in terms of the corresponding
eigenvectors cνn and eigenvalues λn = ikn by the partial-wave
expansion (9) truncated to a finite L, Eq. (23) in the inner
region, and Eqs. (13) and (28) in the outer region.

Depending on the shape of the potential in Eq. (1), there may
exist resonances. Such states are represented by the outgoing
SPSs whose momentum and energy eigenvalues satisfy

| Im kn| 
 Re kn, (67a)

En = En − i

2
�n, �n 
 En, (67b)

where En and �n are the energy and width of the resonance,
respectively. A resonance is an asymptotic notion, that is, it
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can be rigorously defined only in the presence of some small
parameter that justifies the above inequalities, as is the case,
e.g., for shape resonances in the semiclassical approximation.
When the parameter tends to zero, Im kn and �n also tend to
zero and the resonance turns into a bound state embedded into
the continuum. As was mentioned in Sec. II C, for such a state
fT cνn = φνn(a) = 0 for all ν, and then from Eq. (48) we obtain∑L

ν cT
νncνn = 1. If the parameter is small but not exactly zero,

then φνn(a) is not exactly zero either. By expanding Eq. (30)
in this case we obtain

�n =
L∑
ν

�νn, (68)

where

�νn = Re(kn) ωl(−ikna)|φνn(a)|2 (69)

is the partial width for decay into channel ν. We emphasize that
these equations hold only asymptotically in the limit �n → 0,
when the resonance becomes well defined.

As the dimensions N and L of the basis grow, the SPSs
representing bound states and resonances converge to the
corresponding SSs. They converge also with respect to the
cutoff radius a in Eq. (2), provided that the potential decays
sufficiently rapidly as r → ∞. Only these SPSs are physically
meaningful individually. All the other SPSs essentially depend
on a and serve to form a complete set for expanding the
continuum. These convergence properties are discussed in
more detail in Sec. IV.

B. Outgoing-wave Green’s function

The outgoing-wave Green’s function multiplied by r and r ′
satisfies[

−1

2

∂2

∂r2
+ l2

2r2
+ V (r)−E

]
G(r,r′; k) = δ(r − r ′)δ(r̂ − r̂′).

(70)
Similarly to Eqs. (9) and (10), we seek the solution in the form

G(r,r′; k) =
∞∑
νν ′

Gνν ′ (r,r ′; k)Xν(r̂)Xν ′(r̂′), (71)

and obtain a set of coupled equations for the radial functions,

(Tl−E)Gνν ′ (r,r ′; k)+
∞∑
ν ′′

Vνν ′′ (r)Gν ′′ν ′(r,r ′; k) = δ(r−r ′)δνν ′ .

(72)

The regularity and outgoing-wave boundary conditions can be
formulated similarly to Eqs. (12) and (14), respectively,

Gνν ′ (0,r ′; k) = 0, (73a)⎛
⎝ d

dr
− ik + 1

r

l∑
p=1

zlp

ikr + zlp

⎞
⎠Gνν ′ (r,r ′; k)

∣∣∣∣∣∣
r�a, r ′<r

= 0.

(73b)

Retaining in the sum over ν ′′ in Eq. (72) only terms with l′′ � L

and substituting

Gνν ′ (r,r ′; k) =
N∑

i,i ′=1

Giν,i ′ν ′(λ)fi(r)fi ′(r
′), 0 � r,r ′ � a,

(74)

we obtain an algebraic representation of Eqs. (70) and (73) in
the finite basis (22),⎡

⎣T̃l − 1

2

⎛
⎝λ − 1

a

l∑
p=1

zlp

λa + zlp

⎞
⎠F + λ2

2
I

⎤
⎦Gνν ′(λ)

+
L∑
ν ′′

Vνν ′′Gν ′′ν ′(λ) = Iδνν ′ , (75)

where Gνν ′ (λ) is a matrix of dimension N × N composed of
the coefficients Giν,i ′ν ′ (λ) in Eq. (74). Taking into account
Eqs. (56) and (58), the solution to Eq. (75) is given by

Gνν ′ (λ) =
NSPS∑
n=1

cνncT
ν ′n

λn(λ − λn)
. (76)

In the coordinate representation we obtain

Gνν ′ (r,r ′; k) =
NSPS∑
n=1

φνn(r)φν ′n(r ′)
kn(kn − k)

, 0 � r,r ′ � a. (77)

In the outer region from Eq. (73b) we have

Gνν ′ (r,r ′; k)|r�a, r ′<r = Gνν ′ (a,r ′; k)
el(kr)

el(ka)
. (78)

These equations together with the symmetry property
Gνν ′ (r,r ′; k) = Gν ′ν(r ′,r; k) define the radial functions for all
r and r ′. In the 3D form Eq. (77) reads

G(r,r′; k) =
NSPS∑
n=1

φn(r)φn(r′)
kn(kn − k)

, 0 � r,r ′ � a. (79)

This is the SPS expansion for the outgoing-wave Green’s func-
tion. As N → ∞ and L → ∞, it turns into the corresponding
expansion in terms of SSs. The SS analog of Eq. (79) was
first given in Ref. [25] and later justified rigorously for central
potentials in Refs. [27,29,30].

C. Partial-wave scattering states and scattering matrix

Let us introduce a matrix ϕνν ′ (r,k) satisfying

(Tl − E)ϕνν ′ (r,k) +
∞∑
ν ′′

Vνν ′′ (r)ϕν ′′ν ′(r,k) = 0, (80a)

ϕνν ′ (0,k) = 0, (80b)

ϕνν ′ (r,k)|r�a = eiπl/2el(−kr)δνν ′ − e−iπl/2el(kr)Sνν ′(k).

(80c)

The columns of ϕνν ′ (r,k) are the regular solutions of
Eq. (10) having an incoming wave with the amplitude eiπl′/2

only in channel ν ′ and outgoing waves with amplitudes
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−e−iπl/2Sνν ′ (k) in all channels ν; see Eq. (15b). Thus ν

enumerates the partial-wave components of a solution and ν ′
enumerates the different solutions. These solutions are called
the partial-wave scattering states and Sνν ′ (k) is the scattering
matrix. We also introduce the matrix Jost solutions F±,νν ′ (r,k)
of Eq. (80a) satisfying the boundary condition

F±,νν ′ (r,k)|r�a = e∓iπl/2el(±kr)δνν ′ . (81)

These solutions taken at an arbitrary k are not regular, i.e.,
do not satisfy Eq. (80b). To simplify the notation, let us
temporarily drop the subscripts of the matrices introduced.
The solution of Eqs. (80) can be expressed in terms of the Jost
solutions,

ϕ(r,k) = F−(r,k) − F+(r,k)S(k), 0 � r < ∞. (82)

The Jost solutions satisfy the identities [2,39]

F+(r,k)FT
− (r,k) − F−(r,k)FT

+ (r,k) = 0 (83)

and
dF+(r,k)

dr
F T

− (r,k) − dF−(r,k)

dr
F T

+ (r,k) = 2ik, (84)

where, again, T stands for transpose. Using these equations, it
can be shown [39] that the Green’s matrix G(r,r ′; k) composed
of the radial functions in Eq. (71) is given by

G(r,r ′; k) = i

k
[θ (r ′ − r)ϕ(r,k)FT

+ (r ′,k)

+ θ (r − r ′)F+(r,k)ϕT (r ′,k)]. (85)

Setting here r ′ = a and taking into account that F+(a,k) is
diagonal, we find

ϕ(r,k) = −ikG(r,a; k)F−1
+ (a,k), 0 � r � a. (86)

Substituting Eqs. (77) and (81) and restoring the subscripts,
we obtain

ϕνν ′ (r,k) = −ike−ika (ka)l
′

θl′ (−ika)

NSPS∑
n=1

φνn(r)φν ′n(a)

kn(kn − k)
,

0 � r � a. (87)

This is the SPS expansion for the partial-wave scattering states.
From Eqs. (82) and (86), requiring continuity of ϕ(r,k) at
r = a, we find

S(k) = F−1
+ (a,k)[F−(a,k) + ikG(a,a; k)F−1

+ (a,k)]. (88)

Restoring the subscripts, we obtain

Sνν ′ (k) = e−2ika

[
θl(ika)

θl(−ika)
δνν ′ + ik(ka)l+l′

θl(−ika)θl′ (−ika)

×
NSPS∑
n=1

φνn(a)φν ′n(a)

kn(kn − k)

]
. (89)

This is the SPS expansion for the scattering matrix. Following
Refs. [38,40], we call it the sum formula. Note that this matrix
is explicitly symmetric,

Sνν ′ (k) = Sν ′ν(k), (90)

as it should be. It can be seen that the matrix in the square
brackets in Eq. (89) is the coordinate representation of the

matrix (62). Then, using Eq. (64), we obtain that for any
complex k the scattering matrix satisfies

L∑
ν ′′

(−1)lSνν ′′ (k)(−1)l
′′
Sν ′′ν ′(−k) = δνν ′ . (91)

For real k, we have from Eq. (89)

Sνν ′ (−k) = (−1)l+l′S∗
νν ′ (k), (92)

and Eq. (91) takes the form

L∑
ν ′′

Sνν ′′ (k)S∗
ν ′′ν ′(k) = δνν ′ . (93)

This together with Eq. (90) means unitarity of the scattering
matrix. We emphasize that all the important properties of the
scattering matrix expressed by Eqs. (90)–(93) hold exactly
for any N and L, i.e., they hold within the SPS formulation.
Translating Eq. (66) to the coordinate representation and
comparing with Eq. (89) we obtain

det [Sνν ′ (k)] = e−2ika(L+1)2
NSPS∏
n=1

kn + k

kn − k
. (94)

This is the SPS expansion for the determinant of the scattering
matrix. Following Refs. [38,40], we call it the product formula.
Let us introduce the eigenphase shift sum δ(k) defined by [2]

det [Sνν ′(k)] = exp[2iδ(k)], (95)

and the scattering length α = −δ(k)/k|k→0. From Eq. (94) we
obtain

α = (L + 1)2a +
NSPS∑
n=1

i

kn

. (96)

Although kn are complex, the properties of their distribution
discussed in Sec. II C ensure that α is real.

As N → ∞ and L → ∞, Eqs. (87), (89), (94), and (96)
turn into the corresponding expansions in terms of SSs. The
SS analog of Eq. (87) was obtained for s-wave scattering
by a central potential in Ref. [10] and later rederived by a
different method in Ref. [28]. It was generalized to arbitrary
partial waves within the SPS formulation in Ref. [40]. Many
authors [7,15,29,30,32] attempted to derive the SS analog of
the sum formula (89). However, the resulting formulas always
contained some undefined quantities such as an entire function,
some residues, or matrix elements, which make them useless
for practical applications. As far as we know, in the closed
form free from uncertainties the SS analog of Eq. (89) was
obtained within the SPS formulation first for s-wave [38]
and then for arbitrary partial wave [40]. The SS analog of
the product formula (94) was given without due proof for
s-wave scattering in Ref. [6] and later derived rigorously for
potentials decaying faster than any exponential function using
Hadamard’s form of the Weierstrass expansion theorem [36]
in Ref. [8]. It was generalized to arbitrary partial waves within
the SPS formulation in Ref. [40]. Importantly, all these studies
considered central potentials. Equations (87), (89), (94), and
(96) and their SS analogs emerging in the limit N → ∞ and
L → ∞ apply to potentials without any symmetry and, as
such, do not have counterparts in the literature.
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TABLE I. Effective masses mx and my defining the potential (103) (in all cases mz = 1 and γ = 0.1), ground-state energies E, and
scattering lengths α (in atomic units) for the four models considered in the present calculations. The sets (a,N,L) give the minimum values of
the parameters for which the results converged.

Ground-state energy Scattering length

Model mx my E (a,N,L) α (a,N,L)

A 1 1 −0.407 058 030 6 (14,15,0) 21.562 842 (240,45,0)
B 0.5 0.5 −0.221 414 845 8 (17,35,10) −16.558 611 (300,100,20)
C 2 2 −0.686 396 950 2 (11,35,10) 30.357 074 (320,110,20)
D 2 0.5 −0.385 615 488 9 (15,40,14) 18.459 755 (300,100,24)

D. Scattering amplitude and cross sections

To define scattering observables, we need to introduce
scattering states with definite asymptotic momentum k [1,2].
Such states multiplied by r satisfy

[
−1

2

∂2

∂r2
+ l2

2r2
+ V (r) − E

]
ψ(r,k) = 0, (97a)

ψ(r,k)|r→∞ = reik·r + f (k,r̂)eikr , (97b)

where f (k,r̂) is the scattering amplitude. It can be shown by
standard methods [1,2] that

ψ(r,k) = 2iπ

k

∞∑
ν,ν ′

eiπl′/2ϕνν ′ (r,k)Xν(r̂)Xν ′(k̂) (98)

and

f (k,r̂) =
∞∑
ν,ν ′

eiπ(l′−l)/2fνν ′ (k)Xν(r̂)Xν ′(k̂), (99)

where

fνν ′ (k) = 2iπ

k
[δνν ′ − Sνν ′ (k)]. (100)

The differential scattering cross section is given by

dσ (k)

d r̂
= |f (k,r̂)|2, (101)

and the total cross section is

σ (k) =
∫

|f (k,r̂)|2d r̂

=
∞∑

νν ′ν ′′
eiπ(l′−l′′)/2fνν ′ (k)f ∗

νν ′′(k)Xν ′(k̂)Xν ′′ (k̂). (102)

Truncating these partial-wave expansions to finite L and
substituting Eqs. (87) and (89), one obtains the corresponding
expansions in terms of SPSs. These are the working formulas
to calculate scattering observables in the SPS formulation.

From fνν ′ (k) = fν ′ν(k) we obtain the reciprocity property of
the scattering amplitude f (k,r̂) = f (−kr̂,−k̂). From unitarity
of the scattering matrix we obtain the optical theorem σ (k) =
(4π/k) Im f (k,k̂). We also have σ (k)|k→0 = 4πα2. Let us
emphasize again that all these properties hold exactly for any
N and L, i.e., they hold within the SPS formulation.

IV. ILLUSTRATIVE CALCULATIONS

To illustrate the theory by calculations, we consider an
anisotropic Yukawa potential

V (r) = −e−γR(r)

R(r)
, R(r) =

√
x2

mx

+ y2

my

+ z2

mz

. (103)

This potential describes the interaction of an electron with
an ion in an anisotropic crystal. Indeed, let R = (X,Y,Z) be
the coordinate of the electron relative to the ion and mx , my ,
and mz be its effective masses for the motion in X, Y , and
Z, respectively. Introducing the mass-scaled coordinates r =
(x,y,z) = (

√
mx X,

√
my Y,

√
mz Z), the Schrödinger equation

takes the form (1) with the potential given by Eq. (103). The
exponential factor in Eq. (103) accounts for screening of the
ion by other electrons. We mention that similar anisotropic
Yukawa potentials are used to model the interaction between
molecules in liquid crystals [70] and between colloidal
platelets [71]. In the following we set γ = 0.1 and mz = 1;
the anisotropy of the potential is controlled by varying mx

and my . We consider four models to be called A, B, C, and
D corresponding to the four combinations of the effective
masses listed in Table I. These models exemplify spherically
symmetric (A), prolate (B) and oblate (C) axially symmetric,
and anisotropic (D) potentials. Although the parameters of the
models may be not very realistic, they are suitable for the
present illustrative purposes.

Our computational procedure generalizes the one used in
Refs. [38–40] to account for the angular degrees of freedom.
For the radial basis (22a) we employ a discrete variable rep-
resentation basis constructed from the Legendre polynomials,
as described in Ref. [38]. This basis satisfies Eqs. (20). The
radial matrix elements (26a) and (26b) are calculated using
the corresponding Gauss-Legendre quadrature. The angular
basis (22b) is defined by Eqs. (5). The angular matrix elements
(11b) are accurately calculated using appropriate Gauss-Jacobi
quadratures in θ and the Gauss-Chebyshev quadrature of the
first kind in ϕ. The SPS EVP (39) is solved using LAPACK
routines [72], and this is the most time-consuming part of the
calculations. Since the computational time grows as the cube
of the dimension of the matrix S in Eq. (39), to accelerate
the calculations we arrange the matrix in a block-diagonal
form reflecting the symmetry of the potential, and then treat
each block separately. Thus, in the spherically symmetric case
(model A) both angular momentum quantum numbers l and m

are conserved, and hence the blocks are labeled by ν = (l,m);
in this case, each block reduces to the problem treated in
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FIG. 1. SPS eigenvalues for a spherically symmetric potential
(103), model A. In this case l and m are exact quantum numbers and
each eigenvalue is (2l + 1)-fold degenerate in m. The eigenvalues
corresponding to different l are shown by different symbols. “gs”
indicates the ground state; see Table I. “r” indicates a resonance; see
Table II and Fig. 5. The results are obtained with a = 50 and N = 20.

Ref. [40]. In the axially symmetric case (models B and C) only
the azimuthal quantum number m is conserved, so the blocks
are labeled by m. Even in the most general anisotropic case
(model D) the present potential (103) does not change under
reflections x → −x, y → −y, and z → −z, so the solutions

FIG. 2. SPS eigenvalues for a prolate axially symmetric potential
(103), model B. In this case m is an exact quantum number and
each eigenvalue for |m| > 0 is doubly degenerate in the sign of m.
The eigenvalues corresponding to different m are shown in different
panels. “gs” indicates the ground state; see Table I. “r” indicates a
resonance; see Table II and Fig. 5. The results are obtained with
a = 50, N = 20, and L = 10.

FIG. 3. Same as in Fig. 2, but for an oblate axially symmetric
potential (103), model C. “gs” indicates the ground state; see Table I.
“r1” and “r2” indicate two resonances; see Table II and Fig. 5. The
results are obtained with a = 50, N = 20, and L = 10.

of Eq. (39) can be divided into eight symmetry types according
to their parities with respect to these reflections. After the SPS
eigenvalues kn = −iλn and surface amplitudes φνn(a) = fT cνn

are obtained by solving Eq. (39), the scattering matrix (89) and
all the other scattering characteristics can be easily calculated
for any k in an interval of convergence determined by the basis.
The whole computational scheme depends on three parame-
ters: N and L, defining the dimensions of the radial and angular
bases, and the cutoff radius a in Eq. (2). Convergence of the
results with respect to these parameters is discussed below.

The distributions of the SPS eigenvalues kn in the complex
k plane for the four models under consideration are shown
in Figs. 1–4. The eigenvalues for the spherically symmetric
model A, Fig. 1, are labeled by l; for a given l, each eigenvalue
is (2l + 1)-fold degenerate in m [73]. The eigenvalues for
axially symmetric models B and C, Figs. 2 and 3, are labeled
by m; for a given m 	= 0, each eigenvalue is doubly degenerate
in the sign of m. The SPSs for the anisotropic model D can be
characterized by their total parity with respect to the inversion
r → −r; the eigenvalues for the even and odd states are shown
separately in Fig. 4.

The eigenvalues as functions of N , L, and a behave as
follows. For any given a, each eigenvalue converges as N and
L grow, which simply results from completeness of the radial
and angular bases. Thus, the distributions shown in Figs. 1–4
are converged with respect to N . However, even though each
eigenvalue converges also with respect to L, the distributions
do not. This is because new eigenvalues, representing states
whose partial-wave expansion is localized at larger l, continue
to appear in the regions of the complex k plane shown in
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FIG. 4. SPS eigenvalues for an anisotropic potential (103), model
D. In this case each state has a definite parity with respect to the
inversion r → −r. The eigenvalues corresponding to even and odd
states are shown in different panels. “gs” indicates the ground state,
see Table I. “r1” and “r2” indicate two resonances; see Table II and
Fig. 5. The results are obtained with a = 50, N = 20, and L = 10.

the figures as L grows. The convergence properties of the
basis-independent eigenvalues (i.e., already converged in N

and L) with respect to a depend on the type of the state.
Bound-state eigenvalues confidently converge as a grows, and
hence can be calculated with high precision. We illustrate
this for the ground state indicated in the figures by “gs”.
The energies of this state for the four models are given in
Table I together with the minimum values of the parameters
ensuring convergence of all significant digits quoted. All the
other SPSs lying in the lower half of the complex k plane
generally do not converge with respect to a. As a grows, they
continue to move, forming sequences lying on some lines,
so that their distribution along the lines becomes denser. Yet
some of these SPSs may behave differently from the others,
namely, although their positions continue to vary as a grows,
they stay in a vicinity of some fixed point. It can be said that
they converge in a, but with a limited accuracy. Such SPSs
represent resonances. Several resonances are indicated in the
figures; their energies and widths together with the minimum
parameters ensuring convergence within the specified accuracy
are given in Table II. Note that resonances converge at much

larger a than bound states. For the present purely attractive
potential (103) the resonances are supported by centrifugal
barriers. One can see that narrow resonances satisfying con-
ditions (67) converge to higher accuracy. But there also exist
broad resonances with � � E , whose eigenvalues converge
less convincingly. All these resonances, however, are visible
in scattering characteristics (see below). Summarizing, only
SPSs representing bound states and resonances, that is states
observable individually, converge (resonances—to a certain
extent only) with respect to all three parameters N , L, and a.
All the other SPSs essentially depend on the cutoff radius a;
they do not have physical meaning individually, but constitute a
complete set. As will be shown shortly, scattering observables
expanded in terms of this set do converge with respect to a, and
this is important. All this is quite similar to the convergence
properties of SPSs discussed and illustrated in Refs. [38–40].

We next discuss calculations of scattering length using
Eq. (96). This requires to know only the SPS eigenvalues kn.
The results for the four models are given in Table I. While
the individual eigenvalues generally do not converge with
respect to a, their combination in Eq. (96) defining a physically
meaningful quantity related to observables converges to high
precision. Rather large values of a required for the convergence
can be explained on the example of the spherically symmetric
model A. In this case, the error in the value of α incurred
by cutting off the tail of the potential extending beyond
r = a can be estimated using perturbation theory as δα =
2
∫ ∞
a

V (r)r2 dr ≈ −2ae−γ a/γ . For a = 240 we obtain |δα| ≈
2 × 10−7, which is consistent with the accuracy of α given in
Table I. From the properties of kn discussed in Sec. II C one can
see that the first term in Eq. (96) and bound-state SPSs in the
sum give positive contributions to α, while all the other SPSs
together give a negative contribution. The total result can be
either positive or negative, depending on the magnitudes of the
contributions; our models illustrate both possibilities. If there
exists a bound, antibound, or resonance state with a very small
|kn|, the corresponding term dominates in Eq. (96), and then
α can be approximately expressed in terms of kn for this state
[1,2]. This, however, is not the case for the present models.

We now turn to scattering calculations. We restrict our
consideration to low-energy scattering in the interval 0 � k �
0.3 shown in Figs. 1–4. One reason is that in this interval the
dependence of the scattering cross section on k is dominated
by the resonances discussed above, so we can clearly relate
scattering observables to individual SPSs. Another technical
reason is that the number of partial waves required for con-
vergence rapidly grows with k, which makes the calculations
difficult. The results reported below are obtained with N ∼ 50,

TABLE II. Energies E and widths � (in atomic units) of resonances indicated in Figs. 1–4. The sets (a,N,L) give the minimum values of
the parameters for which the results converged. x[y] = x × 10y .

Model Resonance E � (a,N,L)

A r 0.151 017 960 9[−2] 0.670 188 120 7[−3] (250,50,2)
B r 0.447 03[−3] 0.148 670[−2] (250,60,20)
C r1 0.190 625 5[−3] 0.595 970 1[−3] (300,70,20)
C r2 0.180 077 752[−2] 0.437 675 76[−3] (300,70,20)
D r1 0.18[−3] 0.66[−3] (200,40,20)
D r2 0.226[−2] 0.199[−2] (200,40,20)
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FIG. 5. Eigenphase shift sum δ(k) (solid black lines, left axis) and
its derivative dδ(k)/dk (dashed blue lines, right axis) as functions of
k. Panels A–D correspond to the four models whose SPS eigenvalues
are shown in Figs. 1–4, respectively. The vertical dotted lines show the
positions of resonances indicated in the figures and listed in Table II.

L ∼ 20, and a ∼ 100 and are converged with respect to all
these parameters.

We begin with the eigenphase shift sum defined by Eq. (95).
It is calculated using Eq. (94), which again requires to know
only the SPS eigenvalues kn. The uncertainty in the definition
of δ(k) is eliminated by the condition δ(0) = 0. The results
are shown by solid black lines in Fig. 5. It is well known that
for spherically symmetric potentials partial-wave phase shifts
rapidly grow by π as k passes through a narrow resonance
[1,2]. As can be seen from Eq. (94), for general potentials the
eigenphase shift sum behaves similarly. However, one should
remember about possible degeneracy of the SPS eigenvalues
for potentials with a symmetry. Thus, in the spherically
symmetric case a resonance in a partial wave l results in the
growth of δ(k) by (2l + 1)π . The resonance with l = 2 in
model A indicated in Fig. 1 by “r” is seen as a steplike structure
of δ(k) in Fig. 5; the height of the step is somewhat less than
5π , because the resonance is not narrow enough. In the axially
symmetric case δ(k) should grow through a resonance with
m 	= 0 by 2π . Indeed, the resonance with m = 3 in model C
indicated in Fig. 3 by “r2” can be seen as a step of appropriate
height in the behavior of δ(k) in Fig. 5. To make the resonances
more visible, we have added to Fig. 5 plots of the derivative
dδ(k)/dk shown by dashed blue lines. All resonances listed

FIG. 6. Total scattering cross sections σ (k) as functions of k for
the incident momentum k directed along the Ox, Oy, and Oz axes.
Panels A–D correspond to the four models whose SPS eigenvalues are
shown in Figs. 1–4, respectively. The vertical dotted lines show the
positions of resonances indicated in the figures and listed in Table II.
Solid circles at k = 0 show the values of 4πα2 with the scattering
lengths from Table I.

in Table II, including the broad ones with � � E , are clearly
seen in these plots at expected positions.

The total scattering cross sections calculated using
Eqs. (89), (100), and (102) are shown in Fig. 6. These
calculations require to know both the SPS eigenvalues kn and
surface amplitudes φνn(a). For model A the cross section does
not depend on the direction of the incident momentum k, and
we assume that it is directed along the Oz axis. For models
B and C the cross section does not depend on the direction of
the component of k lying in the xy plane. We consider two
cases with k directed along the Ox and Oz axes. Finally, for
model D we consider three cases with k directed along the
Ox, Oy, and Oz axes. All resonances listed in Table II are
seen in the figure. The resonance “r” in model B corresponds
to m = 0; see Fig. 2. It reveals itself in the cross section for
k ‖ Oz, but is not seen in the cross section for k ‖ Ox. This
is explained as follows. As was mentioned above, each SPS
for the present potential (103) is characterized by a signature
(πx,πy,πz), where πx = ± is the parity with respect to
the reflection x → −x, and similarly for y and z. The
resonance in question has signature (+, + ,−). This means that
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FIG. 7. Differential scattering cross sections for models A, B, and
C for the incident momentum k directed along the Oz axis at k = 0.1.

its wave function is odd with respect to the reflection z → −z

and turns to zero at the xy plane, and hence this SPS does
not contribute to the sum in Eq. (102) for k ‖ Ox. The same
holds for the resonance “r1” in model C; see Fig. 3. The second
resonance “r2” in model C corresponds to m = 3 and does not
contribute to Eq. (102) for k ‖ Oz. It is doubly degenerate and
occurs with signatures (−, + ,+) and (+, − ,+); the first of
these SPSs contributes to Eq. (102) for k ‖ Ox. The resonance
“r1” in model D has signature (−, + ,+); it contributes to
Eq. (102) for k ‖ Ox, but does not contribute for the two
other directions of k. The second resonance “r2” in model D
has signature (+, + ,+) and contributes to Eq. (102) for all
directions of k. However, it is too broad and overlaps with other
broad resonances, see Fig. 4, so its trace can be seen in Fig. 6
only for k ‖ Oy. The solid circles show the values of 4πα2

FIG. 8. Differential scattering cross sections dσ/d r̂ (in atomic
units) for models B and C for the incident momentum k directed
along the Ox axis at k = 0.1.

FIG. 9. Differential scattering cross sections dσ/d r̂ (in atomic
units) for model D for the incident momentum k directed along the
Ox, Oy, and Oz axes at k = 0.1.

calculated using scattering lengths given in Table I. These
results are in good agreement with the values of σ (k = 0)
obtained from Eq. (102), which confirms consistency of the
calculations.

We finally illustrate the calculation of the differential
scattering cross section (101) using Eq. (99). We consider
the same directions of the incident momentum k for each
model as shown in Fig. 6. In all the cases, the cross section
is calculated at k = 0.1. For models A, B, and C in the case
k ‖ Oz the value of dσ/d r̂ depends only on the polar angle θ .
These results are shown in Fig. 7. For models B and C in the
case k ‖ Ox the cross section depends on both angles θ and
ϕ defining the direction of the scattered momentum kr̂ and is
symmetric with respect to the lines θ = π/2 and ϕ = π . These
results are shown in Fig. 8. For model D in the case k ‖ Ox

the cross section is again symmetric with respect to the lines
θ = π/2 and ϕ = π , for k ‖ Oy it is symmetric with respect to
the lines θ = π/2 and ϕ = π/2 (ϕ is defined modulo 2π ), and
for k ‖ Oz it is symmetric with respect to the lines ϕ = π/2
and ϕ = π . The results for model D are shown in Fig. 9. We
have verified that the optical theorem is fulfilled, which again
confirms consistency of the whole approach.

V. CONCLUSIONS

The SPS formulation of scattering theory, originally de-
veloped for s-wave scattering by a central potential [38] and
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then generalized to arbitrary angular momenta [40], is further
generalized to arbitrary finite-range potentials without any
symmetry in the 3D case. The SPS EVP (24) is linearized
by extending the corresponding Hilbert space from HNL

[Eq. (33)] to HSPS
NL [Eq. (37)] and presented in the form (39).

This enabled us to establish the fundamental orthogonality
[Eqs. (47)–(50)] and completeness [Eq. (52), (54), and (55)]
properties of 3D SPSs. On the basis of these relations,
we have derived the SPS expansions for the outgoing-wave
Green’s function (79), partial-wave scattering states (87),
scattering matrix (89), its determinant (94), and scattering
length (96). The scattering amplitude (99) and scattering
cross sections (101) and (102) are then given in terms of the
scattering matrix by standard formulas [1,2]. This completes
the SPS formulation of scattering theory for the present case.
The theory is illustrated by calculations of bound states,
resonances, scattering length, eigenphase shift sum, total,
and differential scattering cross sections for several model
potentials. The results confirm the power of SPSs as a universal

tool for treating the whole spectrum of scattering phenomena,
as was anticipated in Ref. [37].

The main virtue of the SPSs formulation is that it provides a
mathematically rigorous and at the same time practical way to
represent discrete and continuous spectra on an equal footing
by a purely discrete set of states. An additional advantage
stems from the fact that bound states and resonances, that
is, all physically meaningful states observable individually,
are included into the set. The efficiency of this approach was
demonstrated by its applications in solving various stationary
[37,42–52] and time-dependent [53–62] quantum-mechanical
problems. The present work lays the foundation for extensions
of the approach to more challenging problems.
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