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Excitation and charge transfer in low-energy hydrogen-atom collisions with neutral atoms:
Theory, comparisons, and application to Ca
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A theoretical method is presented for the estimation of cross sections and rates for excitation and charge-transfer
processes in low-energy hydrogen-atom collisions with neutral atoms, based on an asymptotic two-electron
model of ionic-covalent interactions in the neutral atom-hydrogen-atom system. The calculation of potentials
and nonadiabatic radial couplings using the method is demonstrated. The potentials are used together with
the multichannel Landau–Zener model to calculate cross sections and rate coefficients. The main feature of
the method is that it employs asymptotically exact atomic wave functions, which can be determined from
known atomic parameters. The method is applied to Li + H, Na + H, and Mg + H collisions, and the results
compare well with existing detailed full-quantum calculations. The method is applied to the astrophysically
important problem of Ca + H collisions, and rate coefficients are calculated for temperatures in the range
1000–20 000 K.
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I. INTRODUCTION

The need for data on inelastic processes due to low-energy
collisions between hydrogen atoms and atoms of astrophysical
interest for nonequilibrium stellar atmosphere modeling has
been a long-standing problem in stellar spectroscopy (see, e.g.,
Refs. [1–4]). Over the last decade or so, significant progress
has been made via detailed full-quantum calculations, i.e.,
quantum scattering calculations based on quantum chemistry
calculations of the relevant molecular structure (see, e.g.,
Refs. [5–9]). These studies have examined the inelastic
processes, excitation and deexcitation

X(j ) + H � X(k) + H, (1)

and charge transfer (ion-pair production and mutual neutral-
ization)

X(j ) + H � X+ + H−, (2)

where X is the atom of interest, and j , k specify different states
of X. So far such theoretical studies have covered only simpler
atoms, Li, Na, and Mg, and there is one experimental result
for Na at intermediate energies [10], which is well reproduced
by theory [5].

It is well known that inelastic transitions in slow collisions
may occur when potential curves approach each other and
the corresponding coupling matrix element is large, and
that such conditions arise in particular at avoided crossings
(pseudocrossings) associated with ionic-covalent interactions
(see. e.g., Ref. [11], §3) . These crossings naturally lead to
the excitation and charge-transfer processes, Eqs. (1) and (2).
The detailed calculations and experimental results mentioned
above have shown this to be a key mechanism for inelastic
processes in low-energy collisions with hydrogen atoms for
the cases studied. Furthermore, charge-transfer processes have
been shown to generally give the largest rates and are thus
very important in astrophysical applications. In applications to
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stellar spectroscopy for Li and Na the charge-transfer process
with the largest rate has been shown to be dominant and
not very sensitive to the precision of the rate coefficient: a
factor-of-two change leads only to changes of order 1% in the
line strengths [12]. In the case of Mg, charge transfer has also
been shown to be very important, along with large rates for
some excitation processes [13].

Because detailed calculations are extremely time con-
suming, a method for estimating the rates of the most
important transitions with sufficient accuracy for astrophysical
application is needed [4], ideally including estimates of
uncertainties. In this work, we construct a theoretical method
for estimating the relevant rates due to the mechanism
described above. The method uses an asymptotic model based
on linear combinations of atomic orbitals (LCAO) for the
molecular structure based on the method of Grice, Adelman,
and Herschbach [14,15] for treating long-range ionic-covalent
interactions. This is then coupled with a multichannel Landau–
Zener model approach to the collision dynamics. The results
are compared with the existing detailed calculations to test the
approach. Calculations are also done by using semi-empirical
and Landau–Herring expressions for the coupling. These
alternate approaches are found to not perform as well as the
theoretical LCAO approach presented here but provide impor-
tant information that may be used to estimate the uncertainties
of such model-based calculations. We note the existence of
some work using the semi-empirical and Landau–Herring
approaches; namely that on alkali metals [16], Al [17,18],
and Si [19].

II. METHOD

Calculation of cross sections and rate coefficients for
inelastic and charge-transfer collision processes requires two
main parts: (a) calculation of potentials and couplings, and
(b) solution of collision dynamics. We describe the method
for calculating potentials and couplings in Sec. II A, and for
performing the collision dynamics calculations to obtain the
cross sections and rate coefficients in Sec. II B.
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A. Potentials and couplings

1. Extended two-electron linear combinations
of atomic orbitals model

The method for calculation of potentials and couplings of
the diatomic system used here is an extension of the asymptotic
ionic-covalent configuration mixing method proposed by
Grice, Adelman, and Herschbach [14,15]; hereafter GAH. The
main point of this method is that it employs asymptotically
exact atomic wave functions, which can be determined from
known atomic parameters. This method was refined by
Anstee [20]1 in the context of using this theory to estimate
the effect of ionic contributions to potentials in collisional
broadening of the spectral lines of alkali metals due to
neutral hydrogen. In particular, Anstee explicitly demonstrated
that many of the integrals required in the matrix element
calculations could be done fully or partially analytically. Here,
the method is refined further. The most important improvement
is that the method is extended to the case where X is a complex
atom (i.e., without a spherically symmetric core and possibly
with equivalent electrons), by accounting for the coupling of
angular momenta of the active electrons to those of the core
electrons in the atom. Furthermore, correctly antisymmetrized
wave functions are used throughout, the calculations consider
all states simultaneously in solving the Schrödinger equation,
and it is demonstrated how nonadiabatic radial couplings can
be calculated.

Following GAH, we consider a diatomic system X + H
with a set of n diabatic states, including a single ionic state
�1 and a set of covalent states �2, . . . ,�n. The corresponding
adiabatic electronic wave functions are given by

�k = c1k�1 +
n∑

j=2

cjk�j , (3)

where the coefficients cik and adiabatic energies Ek are found
by solving the Schrödinger equation, which is written as a
generalized matrix eigenvalue equation

Hc = ESc, (4)

where H is the electronic Hamiltonian and S is the overlap
matrix.

To calculate the matrices H and S, we consider a model for
the X + H quasimolecule with two active electrons, i.e., where
only the electron on the hydrogen atom and the active electron
on the atom of interest X are included explicitly. GAH used
such a model in the context of hydrogen and alkali-hydride
molecules. Here, the more general case of a possible complex
atom X with a nonspherically symmetric core is considered.
The model assumes that the relevant interactions at long
range are dominated by a single active electron or a group
of equivalent electrons. Atom X has a charged core consisting
of the nucleus and all other electrons, and the core is considered
to be in some frozen configuration and represented by some
charge distribution. The geometry for the considered system,
and the definition of nuclear and electronic coordinates, is

1A scanned copy of [20] may be obtained directly by contacting the
author of this paper.
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FIG. 1. Coordinate system for the X + H hydride system in the
covalent configuration. The hydrogen atom is centered on A and the
target atom X is centered on B. The atom X is considered as a charged
core with a single active electron. The two electrons considered
explicitly are labeled 1 and 2. The dashed circles delineate the two
atoms, and their relevant quantum numbers.

shown in Figs. 1 and 2 for the covalent and ionic configurations,
respectively. The total electronic Hamiltonian is

H = −1

2
∇2

1 − 1

2
∇2

2 − 1

r1A
− 1

r2A
+ 1

r12

+V (�r1B) + V (�r2B) + 1

R
, (5)

where V (�r ) represents a core potential, which we write

V (�r ) = −1

r
+ f (�r ), (6)

where f (�r ) is a screening function, which acts only at small
r and goes to zero at large r . The inclusion of this screening
leads to a significant increase in complexity in the calculation
of matrix elements, while it does not have significant effects
at large R. Other approximations, such as our choice of wave
functions, are likely to be more important, and so the screening
effect is neglected [f (�r ) = 0].

For the ionic-covalent configuration mixing problem it is
convenient to partition the Hamiltonian in two ways. The
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FIG. 2. Coordinate system for the X + H hydride system in the
ionic configuration, X+ + H−. The dashed circle encompasses the
H− ion, and the full circle encompasses the bare core of atom X; in
both cases the relevant quantum numbers are specified.
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covalent partitioning corresponding to Fig. 1 is

H = Hcov − 1

r1B
− 1

r2A
+ 1

R
+ 1

r12
, (7)

where

Hcov = −1

2
∇2

1 − 1

2
∇2

2 − 1

r1A
− 1

r2B
, (8)

corresponding to the electronic Hamiltonian of the two atoms
at infinite separation. The ionic partitioning corresponding to
Fig. 2 is

H = Hion − 1

r1B
− 1

r2B
+ 1

R
, (9)

where

Hion = −1

2
∇2

1 − 1

2
∇2

2 − 1

r1A
− 1

r2A
+ 1

r12
, (10)

and is the electronic Hamiltonian of the H− ion, i.e., when
both electrons are located on A. This partitioning allows matrix
elements of Hcov and Hion to be related to atomic energies, such
that only the remaining interaction terms need to be calculated.

The antisymmetrized wave function for the diatom at large
internuclear distance is written in terms of atomic one-electron
wave functions for the active electron on B and the electron on
the ground-state neutral hydrogen atom, which in LS coupling
and neglecting spin-orbit coupling can be written as (see
chapter 5 of Ref. [21] and chapter 3 of Ref. [22])

�j (L,�̃,S,MS) = Â
∑
ScLc

G
SALA

ScLc

∑
MSA

σMLA

[
SA 1/2 S

MSA
σ MS

][
LA 0 L

MLA
0 �̃

]

×
∑

MSc μMLc m

[
Sc 1/2 SA

MSc
μ MSA

][
Lc l LA

MLc
m MLA

]
ψ

(
Lc,MLc

,Sc,MSc

)
ψA

1sσ ψB
jμ. (11)

Note that the symbol �̃ is the projection of the orbital
angular momentum L along the internuclear axis, and the
tilde distinguishes it from the absolute value � = |�̃| usually
used in denoting the molecular term. The function ψA

1sσ is
the hydrogen 1s wave function with spin projection quantum
number σ located on A, and ψB

jμ represents the wave function
of the valence electron located on B, with j being an index
corresponding to the orbital of interest and thus to the quantum
numbers nlm, and μ is the spin projection quantum number.
The function ψ(Lc,MLc

,Sc,MSc
) is the wave function of the

core electrons on B. Â is the antisymmetrization operator
(containing also normalization factors), G is the coefficient
of fractional parentage, and the bracketed symbols are the
Clebsch–Gordon coefficients, such that[

j1 j2 J

m1 m2 M

]
= 〈(j1j2)m1m2|JM〉.

In the ionic state, the two electrons on A, the H− ion, must
form a singlet state, and the wave function is written as

�1(L,�̃,S,MS)

= Â
∑

μ

[
1/2 1/2 0
μ −μ 0

]
δ�̃MLc

δSSc

× δMSMSc
ψ

(
Lc,MLc

,Sc,MSc

)
ψA

1sσ ψA
LRμ. (12)

The function ψA
LRμ is a long-range approximation to the H−

function with spin projection quantum number μ (= −σ ), and
the spatial part is specified below. Note that the quantum
number L is only good asymptotically. In any case, since both
the ground-state hydrogen atom and the H− ion have zero
orbital angular momentum, we have L = Lc for the ionic state
�1, and L = LA for the covalent state �j , and thus it does not
enter the calculations, and is hereafter omitted.

The one-electron functions are written in terms of spatial
and spin functions such that ψnlmσ = ϕnlm(�r )χ 1

2 ,σ , where

χ 1
2 ,σ is the spin function with projection quantum num-

ber σ . We define the hydrogen 1s state spatial function
ϕA

1s(r) = ϕA
0 (r) = e−r/

√
π, noting that the subscript 0 will be

sometimes used as shorthand for 1s. The function ϕA
LR is the

approximate long-range H− spatial function, here following
GAH,

ϕA
LR =

{
Ne−γ r/r, r � r0

0, r < r0,
(13)

where N = 0.223 106, γ = 0.235 588 5, for r in atomic units,
which were adjusted to match the variational wave function
of [23]. Following Ref. [20], we choose r0 = 0.601324404
a.u., which gives a correctly normalized ϕA

LR . Note that the
subscript L will be used as shorthand for LR as required. The
function ϕB

j is the spatial wave function of the active electron
on B,

ϕB
j (�r ) = ϕB

nlm(�r ) = Pnl(r)

r
Ym

l (�r ). (14)

The radial wave functions Pnl(r) are calculated numerically,
and this will be described further below.

Since the ionic function �1 forms a singlet state for the two
electrons forming the H− ion, and the considered Hamiltonian
is purely electrostatic, the Hamiltonian and overlap matrix
elements will only be nonzero between the ionic state and
covalent states of the same symmetry, i.e., with the same
quantum numbers �̃, S,MS . Because the Hamiltonian does
not involve the core electrons, they are purely spectators, the
Hamiltonian and overlap matrix elements will only be nonzero
between the ionic state �1 and covalent states �j that (a)
have the same core, (b) also form a singlet state from the
two active electrons, and (c) have the valence electron on B
with projection of orbital angular momentum quantum number
m = 0. The function �j in Eq. (11) is written with the coupling
order ( �Jc + �Jv) + �J0, where subscript v refers to the valence
electron, which were above labeled j when on B and with
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LR when on A, and recalling that the label 0 is used for the
hydrogen 1s electron on A. This is necessary, since the angular
momentum of the atom X arises from �JA = �Jc + �Jv . However,
for the ionic state, the coupling order �Jc + ( �Jv + �J0) is required
because the valence and hydrogen 1s electrons electrons
couple to give the H− ion. These electrons form a singlet state,
and only components of the covalent state where �Sj + �S0 also
form a singlet state lead to nonzero matrix elements. Thus, we
rewrite the (terms with appropriate symmetry of the) covalent
state with this coupling order via recoupling, and requiring
that �S ′ = �Sv + �S0 forms a singlet state S ′ = 0, and that m = 0,
one obtains

�j (�̃,S,MS)

= Â
∑
ScLc

G
SALA

ScLc

∑
MSA

σMLA

δ�̃MLc
δSSc

δMSMSc

× (−1)3(Sc+ 1
2 +SA)

√
2SA + 1

2(2Sc + 1)

[
Lc l LA

�̃ 0 �̃

]

×ψ
(
Lc,MLc

,Sc,MSc

)
ψA

1sσ ψB
jμ. (15)

Since the core is a spectator only, this means that the re-
quired Hamiltonian and overlap matrix elements can be written
in terms of two-electron matrix elements. It is convenient to
separate out effects of the coupling between the core and the
active electrons. If the core is neglected, using NC (“neglecting
core”) to denote such functions and matrix elements, one
obtains for the ionic state:

�NC
1 = 1

2
√(

1 + S2
0L

)(
ϕA

1sϕ
A
LR + ϕA

LRϕA
1s

)
χ00, (16)

where χ00 is the two-electron spin function for S ′ = 0, M ′
S =

0. For the covalent function, the singlet case is

�NC
j = 1

2
√(

1 + S2
0j

)(
ϕA

1sϕ
B
j + ϕB

j ϕA
1s

)
χ00, (17)

which is the Heitler–London function and is roughly equiv-
alent to the functions of GAH and Anstee, except that
our ionic function is correctly antisymmetrized. In writing
these functions, we have used the convention than for any
pair of orbitals the first orbital refers to the electron with
label 1, and the second orbital refers to the electron with
label 2, e.g., ϕA

1sϕ
B
j = ϕA

1s(r1A)ϕB
j (r2B). S0j = 〈ϕA

1s |ϕB
j 〉, S0L =

〈ϕA
1s |ϕA

LR〉, and SjL = 〈ϕB
j |ϕA

LR〉 are the one-electron overlaps
between the atomic wave functions. Note, the one-electron
and multi-electron overlaps are both denoted by S, but can
be distinguished by the presence of subscripts corresponding
to one-electron functions on A, i.e., 0 and L. The cases of
one-electron overlaps on B, Sjk = 〈ϕB

j |ϕB
k 〉, and multi-electron

overlaps Sjk = 〈�j |�k〉 need not be distinguished, since these
functions are always assumed orthonormal and thus have the
same values.

Diagonal matrix elements are unaffected by the other
electrons and therefore H11 = H NC

11 ,Hjj = H NC
jj , and overlaps

are unity in both cases, S11 = Sjj = 1. The off-diagonal
elements between the ionic and other covalent states provide

the mechanism for coupling, and for a chosen core we obtain

H1j (�̃,S) = δ�̃MLc
δSSc

√
Neq G

SALA

ScLc
(−1)3(Sc+ 1

2 +SA)

×
√

2SA + 1

2(2Sc + 1)

[
Lc l LA

�̃ 0 �̃

]
H NC

1j , (18)

where Neq denotes the number of equivalent valence electrons
on B, and H NC

1j = 〈�NC
1 |H |�NC

j 〉. The label MS has been
dropped, since it does not affect the molecular energy and
leads only to 2S + 1 degenerate states. For brevity we write
this as

H1j (�̃,S) = CH NC
1j , (19)

and similarly

S1j (�̃,S) = CSNC
1j , (20)

where SNC
1j = 〈�NC

1 |�NC
j 〉. For the case of a spherical core

one finds C = 1, and thus attains the case closest to the
work of GAH and Anstee on alkali-hydride and hydrogen
molecules. For a filled valence shell, one obtains C = 1/

√
2.

After deriving this expression, we noted that a more general
expression had been derived by Smirnov [24], available only
in Russian, but which is reproduced as Eqs. (3.26) and (3.27)
of Ref. [25]. Our expression is the specific case of one of the
atoms being a ground-state hydrogen atom. Note that, in some
cases, it may be necessary to deal with multiple open shells
and thus calculate the coefficient of fractional parentage for
mixed configurations. This can be achieved with the formulas
given by Ref. [26].

2. Practical implementation of the model

The task is now to calculate the matrix elements H NC
ij

and SNC
ij using the two-electron wave functions in terms of

one-electron orbitals defined above. The off-diagonal matrix
elements involving only covalent states are always assumed
asymptotically small and thus are set to zero, i.e., Hjk =
0, Sjk = 0. Thus, the matrices are “arrowhead” in form.
The partitioning of the Hamiltonian allows the remaining
matrix elements to be written in terms of atomic energies and
one-electron matrix elements of the interaction terms, and the
results are given in Appendix A 1. The results for the overlaps
are also given there. Expressions for the required one-electron
matrix elements were derived analytically as far as possible
with the aid of Mathematica by Anstee, and can be found in
Ref. [20]; see Appendix A 2 for an overview of the required
matrix elements and a brief discussion. For matrix elements
not involving ϕB

j , the matrix elements can be derived fully
analytically. Those involving ϕB

j require a single numerical
integral over the radial part of the wave function on B, Pnl(r).
The radial wave functions Pnl(r) are calculated numerically
by using the scaled Thomas–Fermi–Dirac method [27]. This
method employs a radially symmetric core potential V (�r ) =
VTFD(r) in the atomic Hamiltonian, semi-empirically scaled
to produce the correct energy eigenvalue, and although the
core is neglected in the total electronic Hamiltonian for the
quasimolecule, this simple model of the core is included here
because it leads to no additional effort compared to Coulomb
wave functions as used by GAH. Note that, in performing
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this calculation, the correct energy eigenvalue is the binding
energy of the active electron considered. This is the difference
between state energy E and the series limit Elim corresponding
to the core configuration (i.e., the appropriate state of X+
corresponding to the core).

Given the matrices H and S corresponding to matrix
elements Hij and Sij , Eq. (4) can then be solved and adiabatic
wave functions and potentials can be obtained; i.e., |�j 〉
via the matrix c, and potentials Ej (R) solved for various
internuclear distances R. Full-quantum dynamical calculations
require not only potential energies, but also nonadiabatic radial
couplings 〈�i | ∂

∂R
|�j 〉. A method for calculating the radial

couplings from this model is described in Appendix B. Note
that radial couplings are not employed in the calculations
done here, but the method is presented because it could
be useful for combining the asymptotic model presented
here with quantum chemistry results in quantum scattering
calculations. Computer codes to generate the wave functions
Pnl(r), compute the matrices, solve Eq. (4), and calculate the
radial couplings have been written in Fortran 95, by using
codes written in Ref. [20] in Fortran 77 for the hydrogen and
alkali-hydride cases as a starting point. Given the matrices
H and S in the diabatic basis, Eq. (4) can be solved with
standard numerical methods; we use DSYGV from LAPACK.
The problem is solved on an adaptive grid of R in order to
sufficiently resolve narrow crossing regions. It was found
in Ref. [15] that the matrices could be truncated to omit
weakly coupled states with only small effects. Thus, GAH
and Anstee considered only two- and three-state treatments,
which can be easily solved analytically via the usual secular
determinantal equation. However, with modern computers and
widely available numerical libraries such as that mentioned
above, we can easily include all states together in a single
calculation.

3. Alternate models: semi-empirical and
Landau–Herring estimates

We also consider alternate methods for estimating the
coupling H NC

1j at avoided crossings, in addition to the
theoretical LCAO model presented here. In particular we
calculate for three models considered by Ref. [28]; namely, a
semi-empirical method, and two models based on the Landau–
Herring method [29–31]. Our implementation of these models
follows Ref. [28], and that paper can be consulted for a
more thorough discussion of the physics. The semi-empirical
expression for the coupling is given by Olson [32], building
on earlier work. The two expressions for the coupling from
the Landau–Herring method are those of Smirnov [33,34]
and Janev [35]. The expressions differ due to the choice of
the hypersurface demarcating the regions of influence of the
two atoms. We used these expressions directly to calculate
the H NC

1j parameter at the avoided-crossing position given
from the asymptotic LCAO model (see below). For ease of
discussion, we will label the four models considered here as
LCAO, Semi-emp, LH-S, and LH-J.

B. Collision dynamics

The collision dynamics are treated by the multichannel
Landau–Zener (LZ) model as presented in Refs. [6,36], which

considers a single ionic state, with label 1, crossing a series
of covalent states, labels 2, . . . ,n. The LZ model provides a
relatively simple way to estimate the transition probability at a
given avoided crossing via a linear two-state description. The
model is described in detail in many places; our discussion
here is based primarily on the formulation of Ref. [22].

The Hamiltonian in an orthonormal diabatic representation
such that

Hdc = Ec (21)

is formulated via a linear two-state model

Hd =
(

Uc − F1(R − Rc) a

a Uc − Fj (R − Rc)

)
, (22)

where Rc is the crossing point, Uc is the potential energy at
the crossing point, and a the coupling, assumed constant. For
the case where the crossing is far from the turning point, and
assuming uniform nuclear motion such that X(t) = R − Rc =
vct where vc is the radial velocity at the crossing point, the
single-passage transition probability is

p1j = exp

(−2πa2

|�F |vc

)
, (23)

where �F = F1 − Fj . Thus, the parameters Rc, a, �F ,
and Uc need to be derived from the molecular structure
calculations. In our case, this can be done in two ways: directly
from the Hamiltonian and overlap matrices in the nonorthog-
onal diabatic representation, or from the potentials in the
adiabatic representation. These two methods are described
below, followed by a discussion of the choice of a final set
of parameters.

1. Diabatic representation

The diabatic representation used in this work is nonorthog-
onal and thus the above cannot be applied directly. However,
the relationship between the two representations is relatively
simple to derive. The Schrödinger equation for the nonorthog-
onal case, Eq. (4), can be rewritten as

S−1Hc = Ec, (24)

and so

H = SHd. (25)

We consider the two-state case, where the matrix elements
pertaining to the ionic state �1 and a given covalent state �j

are extracted from the total matrices. We write the two-state
overlap matrix as

S =
(

1 S1j

S1j 1

)
. (26)

We then obtain

H =
(

aS1j + Uc − F1X a + S1j (Uc − FjX)
a + S1j (Uc − F1X) aS1j + Uc − FjX

)
. (27)

By equating this to the matrix elements of H and solving the
equations we can find expressions for the required LZ model
parameters in terms of these matrix elements obtained in the
nonorthogonal basis. We find

H11 − Hjj = −�F X = −(F1 − Fj )(R − Rc). (28)
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Thus, Rc and �F are the same in both representations.
The coupling in the orthonormal diabatic representation is
given in terms of the matrix elements in the nonorthogonal
representation by

a = (H1j − H11S1j )/
(
1 − S2

1j

)
, (29)

and the equivalent potential energy at the crossing by

Uc = (H11 − H1j S1j )/
(
1 − S2

1j

)
, (30)

which will be required below to calculate the velocity.
Noting that a = �E/2, where �E is the splitting between
adiabatic curves at the avoided crossing (see below), the
expression for the coupling agrees with Eq. (1) of Adelman
and Herschbach [14].

2. Adiabatic representation

The LZ model parameters can also be related to the
adiabatic potentials E via the solution of Eq. (21). The splitting
between the adiabatic potentials is given by the well-known
result (see, e.g., Ref. [22], chapter 8)

�E(X) = (�F 2X2 + 4a2)1/2. (31)

The crossing distance Rc, where X = 0, is the distance with
the minimum splitting �E. The coupling a can be obtained
from the splitting at this point simply via a = �E(Rc)/2.
The slope difference �F can be obtained from fitting to �E

for small X. However, Ref. [37] shows that �F can be more
elegantly written in terms of the splitting �E and its second
derivative �E′′ via

�F =
√

�E�E′′. (32)

3. Calculation of Landau–Zener parameters

It has been shown by Ref. [7] that the off-diagonal coupling
element in a n-state diabatic basis can differ markedly from
that in the two-state basis, particularly for crossings at short
internuclear distances where many diabatic states may interact.
To most correctly capture the dynamics, the LZ parameters
should be as close as possible to the two-state representation,
which can be achieved by deriving the LZ parameters from the
adiabatic potentials. Thus, in the case of crossings at relatively
short internuclear distances, the LZ parameters are best
estimated from the adiabatic potentials. On the other hand,
calculation of the LZ parameters from the adiabatic potentials
has drawbacks for rather narrow crossing regions at large
internuclear distance. The calculation of splittings and the
second derivative may be susceptible to numerical errors due
to limitations of the grids of calculated R. For well-localized
crossings at large distance, differences between the two-state
and n-state representations become small, allowing the LZ
parameters to be safely extracted directly from the diabatic
calculations. This suggests a hybrid approach where LZ
parameters from the adiabatic potentials are used for crossings
at small R and parameters from the diabatic representation at
large R.

Thus, to derive the LZ parameters, they are first calculated
from the diabatic representation. This allows us to use these
parameters for long-range crossings, as well as providing a
first estimate of the ionic crossing location Rc, which is very

easily and uniquely found in the diabatic representation. A
second set of parameters is then derived from the adiabatic
potentials, where the diabatic value of the crossing distance
Rc is used as an initial guess. As adiabatic potentials may
show more than one minimum in the splitting, this helps
to ensure the automated algorithms find the correct avoided
crossing.

We finally adopt the adiabatic parameters for crossings at
R < 50 a.u., while we adopt the diabatic parameters at larger
distances. This switch-over point was determined empirically
from examining differences between the two sets of LZ
parameters in various test calculations, all of which show
the expected differences at small and large R. However, in
the intermediate region, roughly 20 < R < 70 a.u., the two
methods are typically in good agreement.

4. Calculation of cross sections and rate coefficients

The cross section for collision energy E is computed as a
sum over partial waves,

σif (E) = π�
2pstat

i

2μE

∞∑
J=0

Pif (J,E)(2J + 1), (33)

where pstat
i = 1/gi is the statistical probability for population

of the initial channel i, and gi is the statistical weight of the
channel. Pif (J,E) is the multichannel transition probability,
calculated according to expressions given in Refs. [6,36] em-
ploying the individual LZ crossing probabilities p1j calculated
as detailed above, where the velocity is given by

vc =
√

2

μ

(
E + Ui(R = ∞) − Uc − J (J + 1)�2

2μR2
c

)
, (34)

where Ui(R = ∞) is the potential energy of the initial channel
at infinite separation.

To calculate the complete cross section and rate coefficients
for processes of a given atom X, the above method is applied
for all relevant cores and all possible symmetries defined by
quantum numbers �, S. In the case of � states, � = 0, the
reflection symmetry (+/−) must also be considered. As a
starting point for any calculation, a list of states of atom X to
be considered is compiled, along with a list of states of ion
X+, which defines the possible core states to be considered. For
all these states, the required quantum numbers are compiled,
along with the energy of the state Ej , Neq , and which core
corresponds to the given state as well as the series-limit
energy corresponding to this core Elim. Note that a given
state 2S+1L may have more than one possible core in the case
of more than one possible choice of valence electron, or in
the case of equivalent electrons with fractional parents. All
possible molecular terms (2S+1�+/−) are then derived from
the asymptotic atomic states (see, e.g., Refs. [31,38]). One
then calculates for each possible symmetry of the considered
cores, noting that only these symmetries lead to ionic-covalent
coupling. The symmetries derived are used to calculate the
appropriate statistical probabilities for the initial channel pstat

i .
Finally, the results are summed over all possible cores and
symmetries to give the final cross sections, which are then
integrated over Maxwellian velocity distributions to obtain the
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rate coefficients. This will be illustrated in the next section by
application to Ca + H collisions.

The handling of data, including the calculation of relevant
symmetries, and passing to relevant Fortran codes for calcu-
lation of the potentials and dynamics is controlled by a code
written in the Interactive Data Language (IDL).

III. RESULTS

In this section, the results of our calculations with the new
LCAO model are presented, as well as those with the alternate
models. First, in Sec. III A the results of the model approaches
are compared with detailed full-quantum-calculation results.
This allows us to evaluate the success of the model approaches.
Second, in Sec. III B the results for Ca + H are presented,
including a detailed description of the input data, which
demonstrates how the method is used in practice.

A. Comparison with full-quantum calculations involving
simple atoms: Li, Na, Mg

As mentioned in the introduction, full-quantum calcula-
tions, i.e., quantum scattering calculations based on quantum
chemistry calculations of the relevant molecular structure,
have been performed for Li + H [6,12], Na + H [7,39], and
Mg + H [8,9,40]. These calculations are based on data for the
Li + H [41–43], Na + H [44], and Mg + H [45] molecules
from quantum-chemistry-type calculations, including poten-
tials and couplings. The quantum scattering calculations,
at least for the low-lying states, are done by the t-matrix
reprojection method [46–50], which solves the so-called
electron translation problem [51]. For more details of the
calculations the relevant papers should be consulted.

To test the asymptotic method presented here, the
results of calculations for Li + H, Na + H, and Mg +
H calculations are compared with these three sets of
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FIG. 3. Comparisons of calculations in the LCAO asymptotic model for Li + H, Na + H, and Mg + H with results from full-quantum-
scattering calculations and the quantum chemistry data they are based on. The first, second, and third columns are for the Li + H, Na + H,
and Mg + H systems, respectively. The top row shows the adiabatic potentials for the LiH (1�+), NaH (1�+), and MgH (2�+) systems; the
quantum chemistry potentials are from Refs. [6,41] for LiH, from Ref. [44] for NaH, and from Ref. [8] for MgH. The middle row shows the
coupling H12; in the quantum chemistry calculations these are derived from the adiabatic potentials via the two-state Landau–Zener model
(except for the long-range crossing data for Li + H, which are extrapolations of the data from shorter range, see Ref. [6]). The bottom row
shows the ratio of rate coefficients at 6000 K, as a function of the full-quantum data; the full-quantum-scattering results are from Refs. [6,12] for
Li + H, from Refs. [7,39] for Na + H, and from Refs. [9,40] for Mg + H. The error bars show the “fluctuations,” analogous to the uncertainty,
calculated from the variation of alternate calculations as discussed in the text.
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TABLE I. Goodness-of-fit measures χ 2 and χ 2
w for the four models compared with the existing full-quantum calculations for hydrogen-

collision processes with Li, Na, and Mg.

Li + H Na + H Mg + H

Model χ 2 χ 2
w χ 2 χ 2

w χ 2 χ 2
w

LCAO 2.96 × 10−15 1.35 × 10−29 2.46 × 10−15 1.34 × 10−29 3.02 × 10−15 4.83 × 10−30

Semi-emp 7.77 × 10−15 3.72 × 10−29 7.05 × 10−15 4.10 × 10−29 3.53 × 10−15 8.25 × 10−30

LH-S 1.92 × 10−14 4.26 × 10−29 2.24 × 10−14 4.37 × 10−29 3.48 × 10−15 9.14 × 10−30

LH-J 1.63 × 10−14 3.96 × 10−29 1.25 × 10−14 2.47 × 10−29 3.47 × 10−15 9.14 × 10−30

full-quantum-calculation results. Figure 3 presents compar-
isons at three stages in the calculations: (i) the potentials, (ii)
the LZ parameters, and (iii) the final rate coefficients. First,
it is seen that the LCAO asymptotic method reproduces the
relevant features of the interactions potentials at long range,
i.e., the avoided crossings, quite well (and even some of the
general behavior at shorter range). Second, the most important
derived LZ parameters, the crossing point Rc, and the coupling
at the crossing point H12, are rather well reproduced compared
to those derived from the quantum chemistry potentials. There
are some discrepancies for crossings at rather long range
in Li + H; however, it should be noted that these are only
extrapolations of the data from shorter range; see Ref. [6]. The
crossing at ∼50 a.u. in Na + H also shows some discrepancy,
but this is most likely a deficiency in the resolution in R

of the quantum chemistry calculations, making it difficult to
precisely calculate the LZ parameters from the potentials. It is
a significant advantage of the asymptotic approach that it can
be easily calculated with any required resolution in R, up to the
numerical precision of the codes. Finally, the rate coefficients
compare rather well, at least for the most important processes
with large rate coefficients. We note that for some processes the
discrepancies are rather large, e.g., overestimated by a factor
of 106 for processes involving the 2s state of Li. However,
these processes have extremely small rate coefficients, of order
10−20cm3/s, and even if they were a factor of 106 larger,
they would still be insignificant compared to the dominant
processes with rate coefficients of order 10−8cm3/s.

In order to get an objective, quantitative measure of
the success of the LCAO asymptotic model and the other
model approaches to estimate the rate coefficients (Semi-emp,
LH-S, LH-J), two statistical goodness-of-fit measures are
calculated comparing to the existing full-quantum-scattering
calculations. The first is the usual χ2 statistic, calculated by

χ2 =
∑

(〈σv〉model − 〈σv〉full-quantum)2, (35)

where the summation is over all transitions for which there
are data in the full-quantum calculations. The second accounts
for the fact that large rates are likely to be more important in
applications, and each term is weighted by the full-quantum
rate coefficient,

χ2
w =

∑
〈σv〉full-quantum(〈σv〉model − 〈σv〉full-quantum)2. (36)

The results for these two goodness-of-fit measures are given for
all four models in Table I. Clearly, the LCAO model performs
best in all three cases, irrespective of whether χ2 or χ2

w is
used, and thus is our preferred model. Generally, the Semi-emp

model performs next best, followed by LH-J, and finally LH-S.
In Ref. [28] Semi-emp, LH-J, and LH-S model results were
compared with data obtained ab initio quantum-mechanically
on H+ + H−, and concluded that the LH-J expressions gave the
most reliable results. We note that comparison of the results
of the preferred model LCAO with the other three models
provides interesting information on the sensitivity of the results
to modeling. For all calculations, we calculate the results with
all four models, as well as the LCAO model using the final
adopted LZ parameters as well as the diabatic and adiabatic
ones, and then extract the maximum and minimum values
obtained for a given process. In the lower panels of Fig. 3, these
maximum and minimum values are plotted as error bars on the
LCAO results. It is not to be implied that these give an accurate
measure of the uncertainty in the calculations, but these results
do allow an estimate of how much rate coefficients might vary,
similar to the “fluctuation factor” presented in Ref. [39] and
which is somewhat analogous to an estimate of the uncertainty.
It is seen that, in almost all cases in Fig. 3, these minimum and
maximum values, which we will call “fluctuations,” bound the
full-quantum result, and perhaps overestimate the uncertainty.

Finally, although not used in our dynamical calculations,
it is of interest to compare the radial coupling results. As
mentioned, radial coupling results from the asymptotic model
could conceivably be used in a hybrid approach combined
with quantum chemistry results for low-lying states. Figure 4
compares the results for Li + H for some couplings between
low-lying states with the quantum chemistry results from
Ref. [6] based on quantum chemistry calculations of Ref. [41],
which are improvements on earlier work [42,43]. The results
are encouraging, with the forms, magnitudes, and widths of the
couplings at the ionic crossings reproduced to within roughly
a factor of two. Comparisons for Na + H and Mg + H are
similar.

B. Calculations for Ca

Calcium is an element of significant astrophysical impor-
tance, and at this time there are no calculations of Ca + H
inelastic processes suitable for non-LTE modeling of the Ca
spectrum in cool stars.2 It is an obvious candidate for a first
application of the method presented here. In Table II, the
input data for the calculations are presented, with the majority

2Just prior to submission, a paper on this subject appeared [52].
Comparison with the calculations presented here should be the subject
of future work.
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TABLE II. Input data for Ca + H calculations. The zero point in the case of Ca I states is its ground state, and the zero point for states
involved in ionic configurations is the Ca II ground state. In the case of covalent configurations, the hydrogen-atom ground state, H(1s), is
implied and, for clarity, is not written.

E Elim

Configuration LA 2SA + 1 n l [cm−1] [cm−1] Neq Core Lc 2Sc + 1 G
SALA

ScLc

4s2 1S 0 1 4 0 0 49305 2 Ca+ 4s 0 2 1.000
4s4p 3P o 1 3 4 1 15158 49305 1 Ca+ 4s 0 2 1.000
4p4s 3P o 1 3 4 0 15158 74498 1 Ca+ 4p 1 2 1.000
3d4s 3D 2 3 4 0 20335 62956 1 Ca+ 3d 2 2 1.000
4s3d 3D 2 3 3 2 20335 49305 1 Ca+ 4s 0 2 1.000
3d4s 1D 2 1 4 0 21849 62956 1 Ca+ 3d 2 2 1.000
4s3d 1D 2 1 3 2 21849 49305 1 Ca+ 4s 0 2 1.000
4s4p 1P o 1 1 4 1 23652 49305 1 Ca+ 4s 0 2 1.000
4p4s 1P o 1 1 4 0 23652 74498 1 Ca+ 4p 1 2 1.000
4s5s 3S 0 3 5 0 31539 49305 1 Ca+ 4s 0 2 1.000
4s5s 1S 0 1 5 0 33317 49305 1 Ca+ 4s 0 2 1.000
3d4p 3F o 3 3 4 1 35730 62956 1 Ca+ 3d 2 2 1.000
4p3d 3F o 3 3 3 2 35730 74498 1 Ca+ 4p 1 2 1.000
3d4p 1Do 2 1 4 1 35835 62956 1 Ca+ 3d 2 2 1.000
4p3d 1Do 2 1 3 2 35835 74498 1 Ca+ 4p 1 2 1.000
4s5p 3P o 1 3 5 1 36547 49305 1 Ca+ 4s 0 2 1.000
4s5p 1P o 1 1 5 1 36731 49305 1 Ca+ 4s 0 2 1.000
4s4d 1D 2 1 4 2 37298 49305 1 Ca+ 4s 0 2 1.000
4s4d 3D 2 3 4 2 37748 49305 1 Ca+ 4s 0 2 1.000
3d4p 3Do 2 3 4 1 38192 62956 1 Ca+ 3d 2 2 1.000
4p3d 3Do 2 3 3 2 38192 74498 1 Ca+ 4p 1 2 1.000
4p2 3P 1 3 4 1 38417 74498 2 Ca+ 4p 1 2 1.000
3d4p 3P o 1 3 4 1 39333 62956 1 Ca+ 3d 2 2 1.000
4p3d 3P o 1 3 3 2 39333 74498 1 Ca+ 4p 1 2 1.000
4s6s 3S 0 3 6 0 40474 49305 1 Ca+ 4s 0 2 1.000
Ca+(4s) + H− 0 2 0 0 0 0 0 Ca+ 4s 0 2 0.000
Ca+(3d) + H− 2 2 0 0 13650 0 0 Ca+ 3d 2 2 0.000
Ca+(4p) + H− 1 2 0 0 25192 0 0 Ca+ 4p 1 2 0.000
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FIG. 4. Comparison of radial couplings for the LiH(1�+) quasimolecule. The nonadiabatic radial coupling matrix elements between the
states X, A, C, D 1�+ (labelled 1, 2, 3, 4 here) are compared with data from Ref. [6] based on quantum chemistry calculations of Ref. [41],
which are improvements on earlier work [42,43].
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TABLE III. Possible symmetries for Ca + H molecular states arising from various asymptotic atomic states, and the total statistical weights.
The symmetries leading to covalent-ionic interactions among the considered states, and thus which need to be calculated, are shown at the
bottom along with their statistical weights. In the case of covalent configurations, the hydrogen-atom ground state, H(1s), is implied and, for
clarity, is not written.

Label Configuration gtotal Terms

1 4s2 1S 2 2�+

2 4s4p 3P o 18 2�+, 2�, 4�+, 4�

3 3d4s 3D 30 2�+, 2�, 2�, 4�+, 4�, 4�

4 3d4s 1D 10 2�+, 2�, 2�

5 4s4p 1P o 6 2�+, 2�

6 4s5s 3S 6 2�+, 4�+

7 4s5s 1S 2 2�+

8 3d4p 3F o 42 2�+, 2�, 2�, 2�, 4�+, 4�, 4�, 4�

9 3d4p 1Do 10 2�−, 2�, 2�

10 4s5p 3P o 18 2�+, 2�, 4�+, 4�

11 4s5p 1P o 6 2�+, 2�

12 4s4d 1D 10 2�+, 2�, 2�

13 4s4d 3D 30 2�+, 2�, 2�, 4�+, 4�, 4�

14 3d4p 3Do 30 2�−, 2�, 2�, 4�−, 4�, 4�

15 4p2 3P 18 2�−, 2�, 4�−, 4�

16 3d4p 3P o 18 2�+, 2�, 4�+, 4�

17 4s6s 3S 6 2�+, 4�+

18 Ca+(4s) + H− 2 2�+

19 Ca+(3d) + H− 10 2�+, 2�, 2�

20 Ca+(4p) + H− 6 2�+, 2�

Number of symmetries to calculate: 3 2�+, 2�, 2�

g: 2, 4, 4

extracted from the NIST atomic spectra database [53–55].
The coefficients of fractional parentage are always unity in
this case. Three core states of Ca+ are considered, as these can
potentially lead to ionic crossings of Ca+ + H− configurations
with covalent configurations of Ca + H corresponding to

low-lying states of Ca at intermediate-to-large internuclear
distance, and thus processes with significant cross sections.
More excited cores lead only to crossings at very short
internuclear distance, and thus cannot lead to large cross
sections. Table III lists the possible symmetries arising for this
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FIG. 5. The potentials energies for Ca + H. The top row is 2�+, with cores Ca+(4s), Ca+(3d), and Ca+(4p). The bottom row are 2�, with
cores Ca+(3d), Ca+(4p), and 2�, with core Ca+(3d).
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FIG. 6. The LZ parameters for Ca + H. The top row is 2�+, with cores Ca+(4s), Ca+(3d), and Ca+(4p). The bottom row are 2�, with
cores Ca+(3d), Ca+(4p), and 2�, with core Ca+(3d).

system, including the three that need to be calculated in the
asymptotic model for the three considered cores, along with
the relevant statistical weights. The resulting potential-energy
curves for the six symmetry-core combinations that need to be
calculated are shown in Fig. 5, and the derived LZ parameters
Rc and H12 in Fig. 6. Figure 6 shows LZ parameters calculated
both from the adiabatic and diabatic data, in addition to the
adopted values. The main differences occur in cases where
states lie very close to each other, thus creating a series of
very narrow crossings, such as in the case of 2� with core
Ca+(4p). The differences are at worst an order of magnitude in

H12, which is significant. In such cases, an argument could be
made that the diabatic values are to be preferred. However, we
note that the two-state LZ model is not strictly appropriate in
such a case, and that a calculation using the LCAO diabatic LZ
parameter data are among the calculations used to determine
the fluctuations and will therefore influence these values if the
impact of assuming the adiabatic values would be large.

The rate coefficients are calculated for temperatures in the
range 1000–20 000 K, with steps of 1000 K, for the various
models. The LCAO model results, as well as the minimum
and maximum values from alternate models, the fluctuations,

FIG. 7. Graphical representation of the rate coefficient matrix 〈σv〉 (in cm3/s) for inelastic Ca + H and Ca+ + H− collisions at temperature
T = 6000 K. Results are from the LCAO asymptotic model. The logarithms in the legend are to base 10.
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FIG. 8. The rate coefficients 〈σv〉 for Ca + H collision processes
at 6000 K, plotted against the asymptotic energy difference �E

between initial and final molecular states. The data are shown for
endothermic processes, i.e., excitation and ion-pair production. The
legend labels the initial state of the transition, and processes leading
to a final ionic state (ion-pair production) are circled. The points show
the results of the LCAO asymptotic model, with the bars showing the
fluctuations.

are published electronically as supplemental material [59].
Example results at 6000 K, corresponding to a typical
spectrum-forming region in a solar-type star, are shown in
Figs. 7 and 8. The first thing to notice from the figures, is
that, as has been found in Li + H, Na + H, and Mg + H,
that the largest rate coefficients for processes involving
the ground-state core Ca+(4s) correspond to charge-transfer
processes and excitation between neighboring states involving
moderately excited states near the first-excited S state; here
in particular 4s4p 1Po, 4s5s 3S, and 4s5s 1S. The reasons
that the first excited S state generally provides the largest
rate coefficients are that the first-excited states lead to ionic
crossings at intermediate internuclear distances where the
transition probability becomes optimal, and that S states lead
to the largest statistical weights for the initial channels [40].
We also note that the charge-transfer processes involving the
Ca+(3d) core and the 3d4p 3Do, and 3d4p 3Po states are
also significant. Figure 8 also demonstrates that the processes
with the largest rate coefficients, as for Li + H, Na + H, and
Mg + H, tend to have the smallest fluctuations, often around
one order of magnitude. Other processes can have very large
fluctuations of many orders of magnitude, but the maximum
values are not large enough that the process is likely to be
important in applications.

IV. CONCLUSIONS

An asymptotic two-electron LCAO method for the treat-
ment of ionic-covalent interactions has been developed, based
on earlier work by GAH and Anstee. The method presented
here makes several improvements, including the extension to
complex atoms and the use of fully antisymmetrized wave
functions. When coupled with standard multichannel Landau–

Zener formulas for treatment of the dynamics, the method
allows rates to be estimated for excitation and charge-transfer
processes in low-energy hydrogen-atom collisions with neutral
atoms. The results for Li + H, Na + H, and Mg + H compare
well with the existing detailed full-quantum studies. The
LCAO method clearly outperforms alternate models based on
semi-empirical or Landau–Herring estimates of couplings. The
alternate model calculations are useful, however, to provide a
measure of the sensitivity of the calculations to the couplings,
and are thus used to calculate fluctuations, which are analogous
to an estimate of the uncertainty. In this paper we have chosen
to focus on comparison with the full-quantum calculations
for Li + H, Na + H, and Mg + H collisions, because they
provide the most robust test of the method. In the near future
we plan to calculate data for Al + H and Si + H, and thus to
compare with semi-empirical model calculations [17–19]. The
calculation of adiabatic radial couplings using the method was
also demonstrated and may be useful for hybrid calculations
combining model and full-quantum approaches.

The method has been used to calculate data for the
astrophysically important case of Ca + H collisions. As found
in Li + H, Na + H, and Mg + H, the largest rate coefficients
for processes involving the ground-state core correspond to
charge-transfer processes and excitation between neighboring
states involving moderately excited states near the first excited
S state. In Ca + H, charge-transfer processes involving an
excited core configuration and more excited states have also
been found to be important. Processes with the largest rate
coefficients tend to have the smallest fluctuations, often around
one order of magnitude. Other processes can have very large
fluctuations, but the maximum values are not large compared
to the rate coefficients for the most efficient processes, and
are thus unlikely to be astrophysically important. This can
be checked in astrophysical modeling by allowing rate coeffi-
cients to vary according to the fluctuations. Such calculations
should be used to assess if the process and its estimated
uncertainty could possibly be important, and thus if more
accurate calculations are required. The described method
will be applied in the near future to various other cases of
astrophysical interest for which data do not exist, e.g., Fe + H,
K + H, and Ti + H. We note that the described method cannot
be applied directly to open-shell elements such as oxygen. The
large ionization potential means that configurations involving
excited states of hydrogen must be included.
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APPENDIX A: MATRIX ELEMENTS

1. Two-electron matrix elements

Here we derive expressions for the matrix elements of
the Hamiltonian, in terms of component matrix elements and
overlap matrix elements, which will be derived below. We
need four different matrix elements H NC

11 , H NC
1j , H NC

jj , and
H NC

jk . In deriving the matrix elements we make use of the
appropriate partitioning of H , which leads to simplifications
via H ion|ϕA

1sϕ
A
LR〉 = Eion|ϕA

1sϕ
A
LR〉, where Eion is the asymp-

totic ion-pair energy, and H cov|ϕA
1sϕ

B
j 〉 = Ej |ϕA

1sϕ
B
j 〉, where

Ej is the asymptotic energy of the covalent state where the
hydrogen atom on A is in the 1s state and atom X on B is in
state j .

Our expressions differ somewhat from those of GAH and
of Ref. [20]. First, in both cases, differences occur due to
the fact that we have employed a correctly antisymmetrized
ionic wave function, Eq. (16). The new expressions are not
significantly more difficult to compute than those derived by
Ref. [20]. Second, as done by Ref. [20], we have retained
many terms that go asymptotically to zero and consequently
that were neglected by GAH. Once again, we have not
found that retaining these terms increases the difficulty of
the calculations significantly, and so we choose to retain
them.

The required matrix elements of the Hamiltonian are written
as follows: First, the diagonal element involving the ionic
state,

H NC
11 = 〈

�NC
1

∣∣H ∣∣�NC
1

〉
= 1

2
(
1 + S2

0L

){〈
ϕA

1sϕ
A
LR

∣∣H ∣∣ϕA
1sϕ

A
LR

〉 + 〈
ϕA

1sϕ
A
LR

∣∣H ∣∣ϕA
LRϕA

1s

〉 + 〈
ϕA

LRϕA
1s

∣∣H ∣∣ϕA
1sϕ

A
LR

〉 + 〈
ϕA

LRϕA
1s

∣∣H ∣∣ϕA
LRϕA

1s

〉}

=
(

Eion + 1

R

)
− 1(

1 + S2
0L

){〈
ϕA

1s

∣∣ 1

rB

∣∣ϕA
1s

〉 + 〈
ϕA

LR

∣∣ 1

rB

∣∣ϕA
LR

〉 + 2
〈
ϕA

1s

∣∣ 1

rB

∣∣ϕA
LR

〉
S0L

}
. (A1)

At long range as rB → R for matrix elements on A and S0L → 0, we recover the expression of GAH

H NC
11 ∼ Eion − 1

R
. (A2)

Second, the off-diagonal element involving an ionic and a covalent state

H NC
1j = 〈

�NC
1

∣∣H ∣∣�NC
j

〉
= 1

2
√(

1 + S2
0j

)(
1 + S2

0L

){〈
ϕA

1sϕ
A
LR

∣∣H ∣∣ϕA
1sϕ

B
j

〉 + 〈
ϕA

1sϕ
A
LR

∣∣H ∣∣ϕB
j ϕA

1s

〉 + 〈
ϕA

LRϕA
1s

∣∣H ∣∣ϕA
1sϕ

B
j

〉 + 〈
ϕA

LRϕA
1s

∣∣H ∣∣ϕB
j ϕA

1s

〉}

=
(

Eion + 1

R

)
SNC

1j − 1

2
√(

1 + S2
0j

)(
1 + S2

0L

)
{〈

ϕA
1s

∣∣ 1

rB

∣∣ϕA
1s

〉
SjL + 〈

ϕA
LR

∣∣ 1

rB

∣∣ϕB
j

〉 + 〈
ϕA

1s

∣∣ 1

rB

∣∣ϕB
j

〉
S0L + 〈

ϕA
LR

∣∣ 1

rB

∣∣ϕA
1s

〉
S0j

}
.

(A3)

Third, the diagonal element involving a covalent state,

H NC
jj = 〈

�NC
j

∣∣H ∣∣�NC
j

〉
= Ej + 〈covalent interaction〉
≈ Ej , (A4)

the approximation being valid at long range. Finally, the off-
diagonal matrix elements involving two covalent states

H NC
jk = 〈

�NC
j

∣∣H ∣∣�NC
k

〉 ≈ 1
2 (Ej + Ek)SNC

jk , (A5)

the approximation being valid at long range. For an orthonor-
mal set of functions SNC

jk = 0, and so these matrix elements
are assumed to be zero.

We choose the zero-point energy to be the asymptotic
energy corresponding to both atoms in their ground states,
and thus

Ej = E0 + EX
j = EX

j , (A6)

where E0 is the ground-state energy of the hydrogen atom on
A, and EX

j is the energy of atomic state of atom X correspond-

ing to ϕB
j with respect to its ground state. Additionally, the

ion-pair limit can be written

Eion = EX+ − EH−
, (A7)

where EX+
is the series limit for the atom X under consider-

ation [i.e., for a given core configuration X+(nl)] relative to
the ground state of X and is equivalent to Elim discussed in the
main text. In the case that the considered core configuration
corresponds to that of the ground state, this corresponds to the
ionization energy. EH−

is the electron affinity of hydrogen.
The two-electron overlap integrals SNC

1j are needed both in
the calculation of the Hamiltonian above [Eq. (A3)] and for the
calculation of the overlap matrix needed for Eq. (4). These can
be written in terms of one-electron overlap integrals, which
will be given in Appendix A 2. The overlap between the ionic
and covalent states is given by

SNC
1k = 〈

�NC
1

∣∣�NC
k

〉 = SkL + S01S0k√(
1 + S2

01

)(
1 + S2

0k

) . (A8)
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Note that the overlap between covalent states is given
by

SNC
jk = 〈

�NC
j

∣∣�NC
k

〉 = Sjk + S0j S0k√(
1 + S2

0j

)(
1 + S2

0k

) . (A9)

For an orthonormal basis the one-electron overlap Sjk = δjk ,
and the remaining terms are asymptotically very small. We
therefore assume SNC

jk ≈ δjk .

2. One-electron matrix elements

The two-electron Hamiltonian matrix elements and overlap
matrix elements require the calculation of various one-electron
matrix elements and overlaps. Four different one-electron
overlaps are required, S0L, S0j , SjL, and Sjk . There are four
different one-electron overlaps potentially required:

(1) S0L = 〈ϕA
1s |ϕA

LR〉.
(2) S0j = 〈ϕA

1s |ϕB
j 〉.

(3) SjL = 〈ϕB
k |ϕA

LR〉.
(4) Sjk = 〈ϕB

j |ϕB
k 〉.

The first overlap involves two orbitals on atom A, and the
last overlap involves two orbitals on atom B, and thus both
are independent of R. In Ref. [20], Anstee derived the analytic
expression for overlap 1 depending on the parameters r0 and
γ in the function ϕA

LR , which for our choices gives a value of
0.859. The remaining three overlap integrals involve ϕB

j . The
two-electron overlap between covalent states SNC

jk is assumed
to go asymptotically to zero, and thus Sjk is not required,
although it would be zero anyway if the set of functions ϕB

j

is orthogonal; but this is not necessarily guaranteed for our
method. The remaining two, S0j and SjL, can be integrated
analytically as far as possible, but require a final numerical
integration over the radial part of the wave function Pnl(rB).
Note that these overlaps are only nonzero if m = 0. For the
m = 0 case, angular parts of the wave function depend on the
l quantum number, and different expressions are derived for
different l. In Ref. [20], Anstee derived expressions for l = 0
and l = 1. Test calculations adopting l = 0 expressions for
all values of l indicate that accounting for l correctly is not
greatly important. We adopt the expression for l = 1 for all
cases where l �= 0.

There are five component matrix elements required are
(1) 〈ϕA

1s | 1
rB

|ϕA
1s〉,

(2) 〈ϕA
LR| 1

rB
|ϕA

LR〉,
(3) 〈ϕA

1s | 1
rB

|ϕA
LR〉,

(4) 〈ϕA
LR| 1

rB
|ϕB

j 〉,
(5) 〈ϕA

1s | 1
rB

|ϕB
j 〉.

For matrix elements 1–3, analytic expressions have been
derived by Ref. [20]. Elements 4 and 5 are calculated
numerically, similar to the corresponding overlaps SjL and
S0j , with an extra 1/rB factor in the numerical integral.

APPENDIX B: RADIAL COUPLINGS

The method for calculating the nonadiabatic radial cou-
plings from the two-electron LCAO model is now described.
It should be emphasized that the described approach is approx-
imate, and in particular the choice of coordinate system for the

electrons can play an important role in the correct calculation
and use of radial couplings [46,56]. In particular, to avoid
problems, Jacobi coordinates should be preferred. However,
such effects are expected to be smaller than those due to other
approximations in the model. In any case, the approximate ra-
dial coupling in this model may be calculated directly in terms
of numerical derivatives of existing matrices. Our method is
similar to that of Ref. [43], who used two methods to calculate
radial couplings: direct differentiation of the coefficient matrix
c, and the Hellmann–Feynman relation [57,58]. We note that
the expressions derived by Ref. [43] are only applicable in the
case of a strict diabatization: the diabatic states are orthonormal
(i.e., the overlap matrix is the identity matrix, S = I ) and that
the radial couplings in the diabatic representation are zero
(i.e., 〈�i | ∂

∂R
|�j 〉 = 0). These conditions are not fulfilled in

the asymptotic model used here, and so we derive appropriate
expressions for the direct differentiation case in the asymptotic
model.

We write the adiabatic radial couplings in terms of the
diabatic radial couplings via the c coefficients

〈�i | ∂

∂R
|�j 〉 =

∑
k

∑
l

c∗
ki〈�k| ∂

∂R
|�l〉clj

=
∑

k

∑
l

cki〈�k| ∂

∂R
|�l〉clj . (B1)

Using the product rule,

〈�i | ∂

∂R
|�j 〉 =

∑
k

∑
l

cki〈�k|
[
|�l〉∂clj

∂R
+ ∂|�l〉

∂R
clj

]

=
∑

k

∑
l

cki

[
Skl

∂clj

∂R
+ clj 〈�k| ∂

∂R
|�l〉

]
.

(B2)

In the limit that S = I and that 〈�i |∂/∂R|�j 〉 = 0, i.e., strict
diabatization, we recover the expression of Ref. [43],

〈�i | ∂

∂R
|�j 〉 =

∑
k

cki

∂ckj

∂R
, (B3)

or in matrix notation

〈�i | ∂

∂R
|�j 〉 =

〈
c†

∂c
∂R

〉
ij

. (B4)

These conditions are not applicable for our basis set; in
particular there are significant overlaps and couplings between
ionic and covalent states, and thus we must calculate Eq. (B2).
It is helpful to consider the product rule

∂

∂R
〈�k|�l〉 =

(
∂

∂R
〈�k|

)
|�l〉 + 〈�k| ∂

∂R
|�l〉

= 〈�l| ∂

∂R
|�k〉 + 〈�k| ∂

∂R
|�l〉, (B5)

which thus relates the couplings to the derivative of the overlap
matrix elements. In the case that the basis is the adiabatic one,
the overlap matrix on the left-hand side becomes the identity
matrix and one recovers the expected properties of the radial
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coupling matrix in the adiabatic basis:

〈�i | ∂

∂R
|�i〉 = 0, (B6)

and

〈�i | ∂

∂R
|�j 〉 = −〈�j | ∂

∂R
|�i〉. (B7)

In the diabatic basis used here the overlap matrix has nonzero
off-diagonal elements. In the case that one of the states is the
ionic state |�1〉, and taking the origin of electronic coordinates
on the hydrogen atom on A, since this state has no dependence
on R, we obtain

〈�k| ∂

∂R
|�1〉 = 0, 〈�1| ∂

∂R
|�k〉 = ∂S1k

∂R
. (B8)

Taking instead the origin of electronic coordinates on B, we
obtain the asymptotic results

〈�k| ∂

∂R
|�1〉 ≈ ∂S1k

∂R
, 〈�1| ∂

∂R
|�k〉 ≈ 0. (B9)

In the case where both states are covalent, Eq. (B5) suggests
the diabatic couplings are of order

〈�k| ∂

∂R
|�l〉 ∼ 〈�l| ∂

∂R
|�k〉 ∼ 1

2

∂Slk

∂R
, (B10)

and will be very small at large R, noting Slk ≈ 0 asymptoti-
cally. The coefficients for such terms, cikclj , will also be very
small asymptotically, and thus these terms may be neglected.
In this approximation, taking the case of origin of electronic
coordinates on B, we obtain

〈�i | ∂

∂R
|�j 〉 ≈

∑
k

∑
l

cikSkl

∂clj

∂R
+

∑
k

cikc1j

∂S1k

∂R
. (B11)

Calculations show the approximation in Eqs. (B10) and (B11)
works well in the sense that it produces a radial coupling
matrix in the adiabatic basis with the expected antisymmetric
properties, Eqs. (B6) and (B7), to quite high precision at the
internuclear distances of interest.
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