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Feshbach resonances and weakly bound molecular states of boson-boson
and boson-fermion NaK pairs

Alexandra Viel* and Andrea Simoni†

Institut de Physique de Rennes, UMR 6251, CNRS & Université de Rennes 1, F-35042 Rennes, France
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We conduct a theoretical study of magnetically induced Feshbach resonances and near-threshold bound states
in isotopic NaK pairs. Our calculations accurately reproduce Feshbach spectroscopy data on Na40K and explain
the origin of the observed multiplets in the p wave [Phys. Rev. A 85, 051602(R) (2012)]. We apply the model to
predict scattering and bound state threshold properties of the boson-boson Na39K and Na41K systems. We find
that the Na39K isotopic pair presents broad magnetic Feshbach resonances and favorable ground-state features for
producing nonreactive polar molecules by two-photon association. Broad s-wave resonances are also predicted
for Na41K collisions.
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I. INTRODUCTION

Ultracold gases are extraordinary systems to investigate
fundamental quantum phenomena in a highly controllable
environment, leading to a wealth of spectacular experimental
and theoretical results. More than a decade ago, the experi-
mental production of ultracold mixtures of alkali-metal gases
added a new twist to the cold-atom field, paving the way
toward the study of few- and many-body phenomena absent
in a pure homonuclear gas. Some examples include recent
experiments with polaronic impurities [1–3], the formation
of chemically reactive [4] or nonreactive [5] ultracold polar
molecules, and theoretical studies of phase diagrams [6] and
pairing in imbalanced Fermi systems [7,8].

In this context, magnetic Feshbach resonances (FRs) proved
to be a powerful and versatile tool to widely tune few-body
interactions [9], allowing one to explore in a controlled way
regimes from the noninteracting ideal behavior to strongly
interacting systems. A FR also offers the possibility to asso-
ciate pairs of atoms in weakly bound molecular states using
time-dependent magnetic fields [10]. Such molecules have an
intrinsic interest due to their long-range nature. Moreover,
depending on their spin and spatial structure, they can be used
as a convenient initial state for producing polar molecules in
the ground state via stimulated Raman processes [4,5].

Applications based on resonances require an accurate char-
acterization of the scattering dynamics and of the properties
of bound states near the dissociation threshold. Fortunately,
theory can predict from a small amount of experimental
data the location and the width of magnetic resonances
and the relevant molecular state properties. In fact, to date
highly quantitative models exist for most alkali-metal isotopic
pairs [9]. In this work, we focus on NaK mixtures, a system
composed of two species that can be individually cooled to
ultracold temperatures.

Experiments with Na and the fermionic isotope 40K
are currently being performed at MIT, where heteronuclear
FR spectra have been discovered and interpreted based on
simplified asymptotic models [11]. Magnetic association [12]
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and, more recently, transfer to the ro-vibrational ground state
of the dimer have also been demonstrated [13]. Accurate Born-
Oppenheimer potentials for the ground and excited states have
been built and used to study the adiabatic transfer of a Feshbach
molecule to the ground rovibrational state [14]. However, a
comprehensive account of scattering and bound-state features
for this boson-fermion mixture in the electronic ground state
is still lacking. In addition, near-threshold properties for the
boson-boson pairs Na39K and Na41K are still unknown. The
aim of this work, therefore, is on the one hand to provide a
more complete picture of the Feshbach physics of Na40K, and
on the other hand to provide theoretical predictions for the two
purely bosonic pairs, for which experiments are underway in
a few groups worldwide. We study both scattering and bound
states for an extensive set of hyperfine states, and we discuss
the experimental implications of our results for interaction
control and molecule production.

The paper is organized as follows. Section II introduces
our theoretical approach and the Born-Oppenheimer poten-
tial optimization procedure based on known experimental
data. Section III presents results and discussions for the
boson-fermion and the boson-boson pairs. Some experimental
implications of our results are discussed. A conclusion in
Sec. IV ends this work.

II. METHODS

A. Computational approach

We solve the time-independent Schrödinger equation for
bound and scattering states in the well-known framework of
the close-coupling approach to molecular dynamics. Briefly,
in our approach a basis of Hund’s case (b) molecular states
is used to expand the total wave function at each value of the
interatomic distance R. In Hund’s case (b) the spin state of the
dimer is represented as |SMSIMI 〉, with �S and �I the electronic
and nuclear spin angular momentum, respectively [15]. The
description of the diatomic is completed by assigning the � and
m quantum numbers relative to the orbital angular momentum
�� of the atoms about their center of mass. In this basis, the
electrostatic Born-Oppenheimer potentials are represented by
diagonal matrices with entries the singlet X 1�+ and triplet
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a 3�+ molecular symmetry adiabatic potential energy curves
(see below).

The other interactions relevant for the ultracold regime
included in this work are the atomic hyperfine interaction
Hhf = ∑

k=a,b Ak�sk · �ık , the anisotropic spin-spin coupling
Hss = α2R−3[�sa · �sb − 3(�sa · R̂)(�sb · R̂)], and the Zeeman in-
teraction energy with the external magnetic field HZ =
μB

∑
k=a,b(gs�sk + gi�ık) · �B. Here �sk and �ık are the electron

and nuclear spin of the individual atoms, Ak is the respective
ground-state atomic hyperfine constant for atoms a and b, gs

and gi are the electron and nuclear gyromagnetic ratios, and α

and μB are the fine-structure constant and the Bohr magneton,
respectively. Such atomic interactions can be expressed in the
molecular Hund’s case (b) computational basis using standard
methods of angular momentum algebra (see, e.g., [16]).

Bound-state calculations are performed using a variable
grid approach allowing one to represent over a sufficiently
small number of points the rapid oscillations at short range
and the long-range tail of the dimer wave function [17].
For scattering calculations, we use the variable-step Gordon
propagation or the renormalized Numerov algorithm to effi-
ciently solve the coupled-channel Schrödinger equation [18].
Once the solution has been built in the computational basis, a
frame transformation is applied to express the solution in an
asymptotically diagonal representation before using a standard
matching procedure to extract the reactance matrix K [18].

B. Optimization of the molecular potential

We adopt for this work the X 1�+ and the a 3�+ electronic
ground-state potential of the NaK molecule proposed in
Ref. [19]. A minor modification is made to ensure a continuous
and continuously differentiable expression by fine-tuning the
parameters given in [19]. First, starting from the asymptotic
long-range ULR(R) expressions, we numerically enforce con-
tinuity at the switching points Ri and R0. In addition, smooth
damping functions are preferred to the published abrupt change
of the potential between the short-range repulsive part, the
inner well, and the long-range part. The resulting continuously
differentiable expression is given by

V (R) = USR(R){1 − tanh[β(R − Ri)]}
× {1 − tanh[β(R − R0)]}/4

+U (R){1 + tanh[β(R − Ri)]}
× {1 − tanh[β(R − R0)]}/4

+ULR(R){1 + tanh[β(R − Ri)]}
× {1 + tanh[β(R − R0)]}/4, (1)

where the parametrized functions USR(R), U (R), and ULR(R)
and the switching points Ri and R0 are taken from the work
of Tiemann and co-workers [19]. Note that there is a typo in
Table I of Ref. [19], i.e., 106 should be replaced by 108 for
the B constant value. A value of 80a−1

0 has been found to be
suitable for the control parameter β of the damping function
for the two electronic states. With an infinite β value, the
original potential curves are recovered.

We are now in the position to perform close-coupling
calculations for different initial channels. We will conven-

TABLE I. Singlet and triplet scattering lengths aS,T obtained
according to our optimized potentials for different NaK isotopic pairs.

Isotope aS(a0) aT(a0)

Na39K 255 −84
Na40K 63 −838
Na41K −3.65 267

tionally label each asymptotic channel by specifying the
separated-atom NaK state |fa,mfa

〉 + |fb,mfb
〉 with �fk =

�sk + �ık (k = a,b) to which the latter adiabatically correlate
as B tends to zero. FRs have been observed experimentally in
the collision between Na in |1,1〉 and 40K in |9/2,mf 〉, with
mfb

= −9/2, −7/2, −5/2, and −3/2 [11]. We compute the
s-wave scattering length a in the relevant channels and search
for resonances as poles of a as a function of magnetic field.
We also search for p-wave resonances by locating maxima in
the partial p-wave elastic cross sections at a fixed collision
energy of 1 μK. The observed resonance locations are not
reproduced accurately by the original potentials. However, a
simple modification consisting in introducing the correction
terms

V (i)
corr(R) = s(i)/ cosh

[
R − R(i)

e

R
(i)
0

]2

for i = 1,3 (2)

near the bottom of the X 1�+ and a 3�+ electronic potentials
enables us to model the experimentally measured spectra.
More specifically, using R(1)

e = 6.61a0, R(3)
e = 10.29a0, and

R
(1,3)
0 = 1.5a0, a Levenberg-Marquardt algorithm is applied

to determine two optimal s(i) parameters,

s(1) = −0.37247 × 10−4Eh, (3a)

s(3) = −0.16385 × 10−5Eh. (3b)

In the fitting procedure, we included three s-wave reso-
nances at 78.3, 88.2, and 81.6 G and an average position
of the p-wave resonances appearing as a multiplet around
19.19 G [11]. For the p-wave calculation, we initially neglect
the spin-coupling term responsible for the multiplet structure,
thus avoiding possible incorrect labeling of the closely spaced
p-wave resonances.

After optimization, the resonance positions are theoretically
reproduced with a reduced χ2 = 0.57. On a more physical
basis, the artificial control parameters are usually translated in
corresponding singlet and triplet scattering lengths aS,T (see
Table I). Our optimized boson-fermion model can also be used
for predicting the properties of boson-boson isotopes. Within
the Born-Oppenheimer approximation, which is expected to
be accurate for all but the lightest species [20], it is sufficient
to change the value of the reduced mass in the Hamiltonian
to compute aS,T. Note, however, that if the number of bound
states in our nominal potentials turn out to be incorrect, the
predicted aS,T (and hence the results of the coupled model)
will be systematically shifted.

We begin our analysis with a detailed discussion of the
resonances for the Na40K boson-fermion mixture in Sec. III A.
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TABLE II. List of the s-wave FR for Na40K. Our theoretical resonance positions Bres are compared with the experimental data Bexp from
Ref. [11]. The locations where the scattering length vanishes, BZC, the effective range on resonance, r res

eff , the resonance strength parameter, sres,
and the fitting parameters, abg, ε, and �, defined in Eq. (4) are reported in columns 4–9. See the text for more details.

Na40K channel Bexp (G) Bres (G) BZC (G) r res
eff (a0) sres abg(a0) ε (G−1) � (G)

|1,1〉 +|9/2, − 9/2〉 78.3 77.78 72.23 − 0.668 0.682 −619.3 −1.2×10−3 − 5.5
88.2 88.68 79.82 137.0 9.92 − 8.8

|1,1〉 +|9/2, − 7/2〉 81.6 81.42 81.18 − 8.39×104 0.0120 −552.7 −1.1×10−3 − 0.23
89.8 89.82 83.61 − 48.4 0.517 − 6.2

108.6 108.91 96.86 141.0 12.3 − 16.0

|1,1〉 +|9/2, − 5/2〉 96.5 96.39 95.75 − 4.84×104 0.0205 −496.4 −1.0×10−3 − 0.6
106.9 106.54 98.83 − 90.9 0.426 − 7.5
138 136.82 110.53 142.0 14.58 − 26.2

|1,1〉 +|9/2, − 3/2〉 116.9 117.19 115.62 − 3.46×104 0.0283 −443.1 −8.5×10−4 − 1.2
129.5 130.36 119.85 − 120.0 0.379 − 9.8
175 177.44 135.35 143.0 17.3 − 41.7

III. RESULTS

A. Na40K

We now perform extensive close-coupling calculations
with the optimized potentials described in Sec. II B.
Table II summarizes our findings for the s-wave for magnetic
fields up to 1000 G for different hyperfine levels. We report
in the table the positions of the poles Bres observed in the
calculated s-wave scattering length a as well as the nearby
zero-crossing field BZC where a vanishes. The experimental
data of Ref. [11] are also reproduced in the table.

The good quality of the theoretical model after optimization
is confirmed by the very good agreement (below 0.5 G)
illustrated in the table for all narrow features experimentally
observed in different hyperfine combinations. A larger dis-
crepancy of ∼ 1 G is found on broader resonances, which
may, however, be more difficult to locate experimentally with
accuracy. No additional s-wave features are found with respect
to the experiment.

To extract the magnetic width �, the scattering length a(B)
obtained for each incoming channel is fitted according to a
formula appropriate for overlapping resonances [21],

a(B) = abg(1 + εB)
N∏
i

(
1 − �i

B − Bres,i

)
, (4)

in which a linear variation of abg as a function of the
magnetic field is assumed. Equation (4) reduces to the well-
known standard expression a(B) = abg[1 − �/(B − Bres)] if
resonances are isolated and the background scattering length
is locally constant. The fitting of the scattering length with
Eq. (4) has been carried out for magnetic fields spanning a
±4� region around each resonance. For overlapping cases,
the largest � was taken to define the fitting interval. We only
report in the table the corresponding �i , abg, and ε parameters
for which Eq. (4) reproduces the numerical data to an accuracy
better than 5% in either the relative error or in the absolute error
measured in units of the van der Waals radius,

RvdW = 1

2

(
2μC6

�2

)1/4

. (5)

The latter quantity (≈53a0 for NaK) represents the natural
value of a for scattering in a van der Waals potential [9].

In addition, for each resonance we extract the effective
range reff defined through the low-energy expansion of the
elastic reactance matrix element,

k

K(E,B)
= − 1

a(B)
+ 1

2
reff(B)k2, (6)

computed at the resonance value r res
eff ≡ reff(Bres) by a linear

fit of k/K(E,Bres) as a function of collision energy E =
�

2k2/(2μ) in an appropriate energy domain. We introduce
a corresponding intrinsic resonance length R∗ to characterize
the resonance strength defined as

reff = −2R∗ + 2

3π

2

(
1

4

)
RvdW. (7)

In the case of isolated resonances, the resonance length can
be expressed in terms of scattering background and resonance
parameters and of the magnetic moment difference δμ between
the open and the closed channel as R∗ = �

2/(2μabgδμ�) [9].
As remarked in the Supplemental Material of Ref. [22], Eq. (7)
also holds for overlapping resonances to the extent that they
are not directly interacting. According to the relative value
of the length R∗ being much larger (much smaller) than the
van der Waals length, resonances are classified as being open
channel (closed channel) dominated. The resonance strength
parameter defined as

sres = 0.956RvdW

R∗ (8)

and listed in Table II is therefore a useful dimensionless
indicator of the resonance character [9].

It is interesting to compare the present close-coupling data
with the results of an asymptotic bound-state model used for
interpretation in Ref. [11] (not shown in the table). Considering
the simplicity of the latter, the agreement is good as far as the
resonance position and the width of the largest features is
concerned. The most serious discrepancy concerns the width
of the narrow s-wave resonances, which are underestimated by
more than one order of magnitude by the asymptotic model.
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Feshbach molecules formed by magnetic association can
be a good starting point to form molecules in the absolute
rovibrational ground state using two-photon transfer schemes.
A first constraint to be taken into account to achieve such
a transfer is that according to electric dipole selection rules,
only Feshbach molecular states of significant singlet character
can be coupled to ground-state singlet molecules if singlet
excited states are used as a bridge. If the initial Feshbach
molecule turns out to have mostly triplet character, one can use
excited electronic states of mixed singlet-triplet character as a
bridge, an approach suggested for NaK in [14] and successfully
adopted recently to form Na40K in the absolute ground state
by a STIRAP two-photon process [13,23]. Moreover, the radial
overlap between the excited intermediate state and both the
initial and the target ground-state molecule must be significant.
To gain more insight into the resonance nature and to get a hint
at the expected efficiency of two-photon processes, we perform
bound-state coupled-channel calculations. A detailed analysis
having already been performed in [14] for Na40K, here we just
stress the main elements for the sake of comparison with the
following analysis of the boson-boson pairs.

We depict in Fig. 1, for example, the scattering length
and the evolution of the molecular levels near the broadest
resonance in the hyperfine absolute ground state, which
has been successfully used as starting point for STIRAP

association [13]. The corresponding average electronic spin
〈�S2〉 is also shown as a function of internuclear distance
by a color code in the lower panel. The nearly pure triplet
character of this molecular state is in principle unfavorable for
the production of ground-state singlet molecules through the
excited singlet manifold. Inspection of the lower panel of Fig. 1
might suggest working closer to resonance to increase the
single character as the molecular state mixes with the scattering
continuum. However, as already noted in Ref. [14], such
admixture comes at the price of a delocalization of the wave
function at larger distances, and thus a decreased overlap with
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FIG. 1. Scattering length a as a function of the magnetic field
B for Na|1,1〉 + 40K |9/2, − 9/2〉 s-wave collisions (top panel).
Corresponding molecular energy levels as a function of B are shown
in the lower panel. The density code denotes the average spin 〈�S2〉 of
the molecule.
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FIG. 2. Elastic rate computed at a collision energy of 1 μK as
a function of the magnetic field B for Na|1,1〉 + 40K |9/2, − 9/2〉
p-wave collisions (top panel). Corresponding molecular energy levels
as a function of B are shown in the lower panel. Curves are resolved
according to the projection M of total angular momentum.

the intermediate excited state. Such strong triplet character
is a common feature of the molecular states associated with
all of the broadest resonances in Table II, which is in fact
to a good approximation a common molecular state in the
triplet potential with a different projection mf of the total
hyperfine angular momentum �f = �S + �I . In conclusion, use
of bridge spin-orbit coupled states to help enhance the transfer
efficiency seems necessary for the boson-fermion pair [14].
We will show below that the situation is significantly different
for the boson-boson mixtures.

In addition to the observed s- and p-wave features,
additional p-wave resonances are also predicted by our model.
We compute the elastic collision rate up to B = 1000 G and
present a restricted magnetic-field range in the upper panel
of Fig. 2. The lower panel depicts the energy levels of the
molecular states responsible for each resonance. Resonance
features are detected by local maxima in the elastic collision
rate as well as in the inelastic probabilities. The positions
of these maxima agree to better than 0.02 G for all except
the two features around 21.9 G in the |1,1〉 + |9/2, − 7/2〉
channel, for which the differences are 0.05 G. It turns out
to be easier to extract the location of the resonances from
the inelastic probabilities. These positions are summarized in
Table III together with the position of the local maxima in the
elastic collision rate when no inelastic processes are present.

The p-wave multiplets observed in Ref. [11] and repro-
duced in Table III are surprising at first glance since the
spin-spin interaction typically gives rise to doublets [24].
The nature and multiplicity of such a magnetic spectrum
can be rationalized starting from a picture in which the
spin interaction is at first neglected. In this situation, the
total internal spin projection mf = mfa

+ mfb
is an exactly

conserved quantum number. Let us consider for definiteness
the case of two free atoms with mf = −7/2. Moreover, let
us restrict ourselves to � = 1, since the � > 1 contributions
are vanishingly small at the present very low collision
energies due to centrifugal repulsion. The projection M of
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TABLE III. Theoretical magnetic-field locations Bres of p-wave
FR for Na40K for projection of total angular momentum M in
different hyperfine atomic channels. Calculations are performed at
a collision energy of 1 μK. Available experimental values Bexp are
also reported [11].

Na40K channel M Bres (G) Bexp(G)

|1,1〉 + |9/2, − 9/2〉 −9/2 6.51 6.35
−5/2 6.57 6.41
−7/2 6.63 6.47
−7/2 6.85 6.68
−5/2 6.86
−5/2 7.21
−7/2 18.01
−9/2 18.36
−5/2 19.32 19.12
−9/2 19.39 19.18
−7/2 19.47 19.27
−5/2 20.72
−7/2 20.82
−5/2 22.43

|1,1〉 + |9/2, − 7/2〉 −5/2 7.55
−7/2 7.62 7.32
−7/2 7.88
−5/2 7.90 7.54
−3/2 7.90
−3/2 8.27
−5/2 8.33
−3/2 8.87
−7/2 20.09
−5/2 21.76
−7/2 21.91
−5/2 23.49 23.19
−3/2 23.53
−7/2 23.60 23.29
−3/2 25.33
−5/2 25.61
−3/2 28.01

|1,1〉 + |9/2, − 5/2〉 −5/2 8.87
−5/2 9.34 9.23
−3/2 9.33
−3/2 9.82 9.60
−5/2 9.88
−1/2 9.89
−1/2 10.46
−3/2 10.61
−1/2 11.50
−5/2 24.80
−5/2 27.20
−3/2 27.28
−3/2 29.61 29.19
−1/2 29.88 29.45
−5/2 29.93 29.52
−1/2 32.57
−3/2 33.04
−1/2 36.97

|1,1〉 + |9/2, − 3/2〉 −3/2 11.35
−1/2 11.95
−3/2 12.12
−1/2 13.04 12.51
−3/2 13.20

1/2 13.20 12.68

TABLE III. (Continued.)

Na40K channel M Bres (G) Bexp(G)

1/2 14.30
−1/2 14.55

1/2 16.31
−3/2 32.00
−3/2 35.74
−1/2 36.10
−1/2 39.87 39.39

1/2 40.37 39.86
−3/2 40.42

1/2 45.18
−1/2 45.85

1/2 53.21

the total angular momentum, which is strictly conserved, can
then only take values −9/2, −7/2, and −5/2. Within this
restricted model and fixing f = 7/2, one can build six molec-
ular states with projections {mf m} = {−7/2; 0, ± 1},{−5/2;
0, − 1},{−3/2; −1} that are degenerate, since both �f and ��
are strictly conserved in the absence of anisotropic spin-spin
and of the Zeeman interaction [16].

If B = 0 and the spin-spin interaction does not van-
ish, conservation of total angular momentum �F = �f + ��
guarantees that the six molecular states will give rise to
one triply degenerate level with F = 9/2 corresponding
to M = −9/2, − 7/2, − 5/2, one doubly degenerate level
with F = 7/2 and with M = −7/2, − 5/2, and one singly
degenerate level with F = 5/2 and with M = −5/2. The
energy differences between the three groups is small due to the
weakness of the spin-spin interaction. However, the mixing of
the different {mf ,m} within each block of given M can be
strong. In fact, as shown in Fig. 3, even in zero field the values
of mf , and hence of m, are undefined with the exception of the
bound level with M = −9/2, which being essentially isolated
retains to high accuracy its mf = −7/2 and m = −1 character.
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FIG. 3. Average value of the z projection of the total internal spin
�f = �fa + �fb as a function of B for � = 1 bound states with total

angular momentum projection M . The right panel presents a blowup
for magnetic fields in the 6.4–7.2 G range.
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Total rotational invariance and thus degeneracy with respect to
M is broken by the magnetic field, which introduces a coupling
between states with different quantum number F in subspaces
of given M . As the magnetic field increases, the computed
averaged projection 〈fz〉 in the �B direction converges for each
of the six molecular states toward the large B limit, that is,
three levels with mf = −7/2, two with mf = −5/2, and one
with mf = −3/2.

This limit is, however, not fully reached when the bound-
state energies cross threshold giving rise to resonance. We
conclude that for the magnetic-field values of relevance for the
resonances, the spin-spin perturbation is comparable with the
Zeeman splitting. A treatment of the spin-spin interaction to
first-order perturbation theory in subspaces spanned by states
of given mf and m = 0, ± 1 is thus not appropriate in the
present case. As a consequence, one cannot reach the usual
conclusion that states with the same |m| are degenerate, such
approximate degeneracy being lifted by the perturbing effect
of nearby states with different mf .

Generalizing the argument above to other hyperfine com-
binations, we expect a multiplet of six resonances at low
B followed by a multiplet with eight resonances for the
|1,1〉 + |9/2, − 9/2〉 channel. The |1,1〉 + |9/2, − 7/2〉 chan-
nel presents an eightfold multiplet at lower B and a ninefold
multiplet for larger B values. The two remaining channels,
|1,1〉 + |9/2, − 5/2〉 and |1,1〉 + |9/2, − 3/2〉, present two
ninefold multiplets each. Some resonances are only weakly
coupled and do not result in marked peaks in the elastic
collision rate. More precisely, two molecular state crossings
do not give rise to detectable features in the numerical elastic
rate for the |1,1〉 + |9/2, − 5/2〉 channel (at 8.87 and at 24.80
G). For the |1,1〉 + |9/2, − 3/2〉 channel, five molecular state

crossings have no detectable effects on the numerical rate (at
11.35, 11.95, 32.00, 35.74, and 36.10 G). These features are,
however, clearly seen in the inelastic probabilities.

We now propose an assignment of p-wave resonances
in the MIT experiment. First of all, one may notice that
the experimental spectrum only entails a subset of the
predicted multiplets. Some features observed in the theoretical
model (for instance, the pair near 6.85 G or the one near
7.90 G) are strong but nearly overlapping, such that one can
reasonably assume that they have not been resolved in the
experiment. In such cases, for the assignment we only retain
the strongest of the two features in the theoretical spectrum.
Next, we affect the strongest elastic theoretical features to the
experimental positions under the condition that the resulting
splitting agrees with the experimental one. The procedure
is successful in all cases, with the exception of the low-B
spectrum in the |1,1〉 + |9/2 − 5/2〉 channel. Note, however,
that the error given by MIT is relatively large for the 9.60 G
resonance.

A few theoretically weak resonances do not have an exper-
imental counterpart, most likely because the corresponding
experimental signature has been missed. The quality of our
assignment, while still nonunivocal, strongly suggests that
the dominant anisotropic interaction arises from the electronic
spins [25].

B. Na39K

We continue our discussion with the most abundant
potassium isotope, 39K, a species for which cooling and
Bose-Einstein condensation has traditionally proved to be
difficult, yet finally achieved by different techniques [26,27].

TABLE IV. Same as Table II but for the isotopic pair Na39K. No experimental data are available for this system.

Na39K channel Bres (G) BZC (G) r res
eff (a0) sres abg(a0) ε (G−1) � (G)

|1,1〉 + |1,1〉 442.51 405.02 123.0 4.00 − 114.8 3.72×10−4 − 36.9
536.00 533.72 − 174.0 0.316 − 2.27

|1,1〉 + |1,0〉 35.16 11.51 62.3 1.18
356.21 355.45 −1.81×103 0.0520
498.23 466.24 118.0 3.35
606.51 603.13 − 88.2 0.430

|1,0〉 + |1,0〉 33.60 19.39 −1.60×103 0.0586 258.0 8.2
107.97 39.55 117.0 3.22 − 569.0 − 62.0
116.91 − 969.0 0.0912 − 10760 0.18

|1,1〉 + |1, − 1〉 116.98 −3.85×104 0.00264
422.51 421.86 −2.02×103 0.0469
566.06 539.80 111.0 2.74
688.63 685.97 − 170.0 0.320

|1, − 1〉 + |1,0〉 56.31 54.70 −3.04.0×104 0.00334

|1,0〉 + |1, − 1〉 158.18 141.0 14.1

|1,1〉 + |2, − 2〉 498.48 498.22 −4.93×103 0.0201
648.26 627.58 102.0 2.20

|1, − 1〉 + |1, − 1〉 2.01 75.71 142.0 15.2 − 183.7 1.86×10−2 63.2
241.40 107.0 2.47 − 62.6 53.0

|1,0〉 + |2, − 2〉 357.96 357.10 −9.66×103 0.0104
657.18 599.44 132.0 6.30
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FIG. 4. Scattering length a as a function of the magnetic field B

for Na|1,1〉 + 39K |1,1〉 s-wave collisions (top panel). Corresponding
molecular energy levels as a function of B are shown in the lower
panel. The density code denotes the average spin 〈�S2〉 of the molecule.

We provide results for a series of hyperfine states. Our data
can therefore be useful in order to interpret collision data
in a pure spin or in the case of partial polarization of the
sample. Toward that end, calculations of the s-wave scattering
length are performed for different values of the conserved
projection of the total angular momentum, M . Table IV
summarizes the s-wave resonances found for Na39K for a
magnetic field up to 1000 G. We report the positions of the
21 poles observed in the scattering length, Bres, as well as the
17 zero-crossing fields, BZC. Note that no zero-crossing exists
for Na |1,0〉 + 39K |1, − 1〉 collisions and that a single one
at BZC = 75.71 G is present for the Na |1, − 1〉 39K |1, − 1〉
channel. Since we include only s-waves, possible narrow spin-
spin resonances due, for instance, to s → d wave couplings
are not reproduced by the model. The incoming state for
the collision is systematically taken to be the lowest-energy
state with the given M at magnetic field intensity B. Note
that in general this state may decay by inelastic spin-spin
processes if � > 0 states were included in the basis. However,
these processes will tend to be slow except very close to
resonance, and they are neglected for computational simplicity.
Figures 4, 5, and 6 provide the scattering length as well as
the molecular energies for three of the nine studied channels.
Numerical data are available upon request.

As in the boson-fermion case we choose to parametrize
the field-dependent s-wave scattering length by the unique
expression Eq. (4) over a magnetic-field range of ±4� around
the resonance, and we compute the resonance length in order
to assess the resonance strength. For overlapping resonances,
a unique abg and ε values are given, whereas for isolated
resonances we give a local abg and ε when the latter is
nonvanishing. We achieve the sufficient required accuracy
(below 5%, as for the 40K isotope) for three of the nine
initial channels considered. Many combinations are found
to be not well described by Eq. (4), in particular in the
presence of energetically degenerate channels that give rise
to characteristic threshold singularities [28].
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FIG. 5. Same as Fig. 4 but for Na|1,0〉 + 39K |1,0〉 collisions.

Both open sres 
 1 and closed sres � 1 channel dominated
resonances are available in suitable hyperfine combinations.
A particularly interesting feature is the one near 442 G
for collisions in the absolute hyperfine ground state |fa =
1,ma = 1〉 + |fb = 1,mb = 1〉, which is strictly stable under
two-body inelastic collisions and open-channel dominated; see
also Fig. 4. Its large magnetic width |�| = 36.9 G should
allow one to tune a to desired values with high accuracy
and thus possibly to explore the quantum phases predicted in
free space and under optical-lattice confinement for a variety
of geometries [29–31]. Also note that for vanishing B, the
scattering length a is negative and very large in magnitude,
|a| > 5 × 103a0, a feature related to the presence of a virtual
state with positive energy. Variation with B of the position of
the virtual state results in the rapid variation of a with magnetic
field observed for small B.

The known FRs for Na + Na collisions in the ground state
are located at large fields B > 800 G [32] in a region where aKK

and aNaK present regular nonresonant behavior. (For reference,
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aKK � −35a0 and aNaK � −90a0.) Tuning of the interspecies
scattering length can be used to increase the cross section
for sympathetic cooling, for instance to cool 39K by thermal
contact with ultracold Na. A comparison of Fig. 4 of this
paper with Fig. 4 of Ref. [33] shows that at the field B =
395.2 G at which 39K has been condensed [34], the aNaK is
slightly negative. A double BEC of sodium and potassium will
thus be miscible and stable against collapse [35]. Moreover,
if the double condensate is adiabatically loaded in an optical
lattice, the attractive character of the NaK effective interaction
will favor the loading of Na and K pairs at the lattice cells.
This should be an advantageous starting point to associate
Feshbach molecules and thus implement STIRAP schemes to
form ultracold molecules in the absolute ground state.

Indeed, as compared to the boson-fermion case of Sec. III A,
one can verify from the 〈�S2〉 given by the color code in the
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(defined in the text) of the last-below-threshold � = 0 multichannel
wave function with M = 2 as a function of the magnetic field B for
the Na39K dimer.

TABLE V. Theoretical magnetic-field locations Bres of p-wave
FR for Na39K for projection of total angular momentum M in different
hyperfine atomic channels. Calculations are performed at a collision
energy of 1 μK.

Na39K channel M Bres (G)

|1,1〉 + |1,1〉 1 242.83
1 260.19
1 354.02
1 370.58
1 395.53
1 462.21
1 491.27
1 529.67

|1,1〉 + |1,1〉 2 242.68
2 353.95
2 370.82
2 438.27
2 461.84
2 491.68

|1,1〉 + |1,1〉 3 354.01
3 437.99
3 462.21

lower panel of Fig. 4 that the situation here is favorable, since
the molecule presents hyperfine-induced singlet-triplet mixing
even far from dissociation. Beyond the average spin character,
we also represent in Fig. 7 the details of the singlet and triplet
components of the coupled wave function, defined as 0 =
P̂0 and 1 = P̂1, with P̂0,1 the projectors on the S = 0 and
1 subspaces, respectively. Interestingly, the S = 0 amplitude
reaches its maximum right before the resonance, at B ≈ 400 G.
Most importantly, Fig. 7 shows that 0 maintains a short-range
character with maximum amplitude for R ≈ 40a0.

Such short-range character is confirmed quantitatively in
Fig. 8 by calculations of the average distances 〈R〉0,1 =
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FIG. 9. Elastic collision rate computed at a collision energy of
1μK as a function of the magnetic field B for Na|1,1〉 + 39K |1,1〉
p-wave collisions. The dots materialize the occurrence of maxima in
the rate for each projection M .
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〈0,1|R̂|0,1〉. Moreover, the partial norms |〈0,1|0,1〉|2

depicted in the figure show that the singlet admixture is
significant in the region of interest. Analyses of the electronic
excited-state structure of NaK and of the corresponding
Frank-Condon factor for transfer of the Feshbach molecule
to the excited state is beyond the scope of this work.
However, Ref. [14] finds relatively favorable Frank-Condon
factors in the case of Bose-Fermi Feshbach molecules, which
present a similar spatial extent to that of the present bosonic
ones but with a significantly smaller singlet component. We
expect, therefore, that suitable excited states can be found
to implement an efficient two-photon transfer in the present
case.

Let us now consider collisions for atoms in the first excited
hyperfine level |1,0〉 reproduced in Fig. 5. Similar to the case
of the absolute ground state, a large negative scattering length
rapidly varying with B is predicted at low magnetic fields. A
point of nonanalyticity is expected at a magnetic field B � 117

G as the |1,0〉 + |1,0〉 and |1,1〉 + |1, − 1〉 channels become
degenerate. It is interesting to observe here that the expected
cusp in the elastic-scattering matrix element is accompanied by
poles in a occurring right before (after) the degeneracy point in
the |1,0〉 + |1,0〉 (|1,1〉 + |1, − 1〉) channel, a peculiar effect
stemming from the interplay between channel degeneracy and
Feshbach physics; see Fig. 5 and Table IV.

The case of |1, − 1〉 + |1, − 1〉 collisions is shown in Fig. 6
and is particularly relevant for the applications since |1, − 1〉
is the lowest magnetically trappable atomic state of 39K and Na
at low B. Moreover, below 259 G the NaK |1, − 1〉 + |1, − 1〉
combination is stable under s-wave collisions since it is the
lowest hyperfine state with mf = −2. Note that due to the
presence of a Feshbach resonance at very low magnetic fields
B = 2 G, the scattering zero-field length is negative and very
large in magnitude (see the inset of Fig. 6). Bose-Einstein
condensation has been achieved in this hyperfine level using
magnetic tuning of a to suitable values [26,27]. Interestingly,

TABLE VI. Same as Table IV but for Na41K.

Na41K channel Bres (G) BZC(G) r res
eff (a0) sres abg(a0) ε (G−1) � (G)

|1,1〉 + |1,1〉 20.90 20.90 − 6.55×106 1.56×10−5 334.80 − 1.03×10−4 3.57×10−5

51.23 51.30 − 2.76×103 3.52×10−2 7.10×10−2

73.35 77.97 85.2 1.60 4.59
470.08 476.41 104. 2.25 6.32
531.59 532.16 − 458.0 1.68×10−1 5.63×10−1

( − 235.65) (6.89×101)

|1,1〉 + |1,0〉 33.26 33.26 − 6.18×105 1.66×10−4

35.53 35.53 − 3.70×107 2.76×10−6

66.48 66.61 − 1.58×103 5.93×10−2

87.53 90.94 58.1 1.12
165.58 165.60 − 4.72×104 2.16×10−3

453.37 453.37 − 1.03×105 9.88×10−4

499.41 506.39 108.0 2.50
566.30 567.17 − 244.0 2.60×10−1

|1,0〉 + |1,0〉 35.05 35.05 − 5.67×106 1.80×10−5 246.1 9.71×10−4 8.08×10−4

|1,1〉 + |1, − 1〉 63.46 63.48 − 2.87×104 3.55×10−3

72.53 72.53 − 8.85×105 1.16×10−4

106.20 107.69 − 77.5 4.51×10−1

183.36 183.36 − 1.25×107 8.17×10−6

370.11 370.11 − 1.20×106 8.51×10−5

481.53 481.53 − 1.34×104 7.62×10−4

531.87 539.42 111.0 2.70
604.62 605.36 − 309.0 2.23×10−1

|1,0〉 + |1, − 1〉 66.97 66.98 − 8.54×105 1.20×10−4

129.37 129.60 − 1.98×103 4.81×10−2

149.33 149.32 − 2.68×105 3.82×10−4

|1,1〉 + |2, − 2〉 156.22 156.22 − 1.16×106 8.84×10−5

209.92 209.93 − 5.51×104 1.85×10−3

391.25 391.25 − 1.26×106 8.13×10−5

512.63 512.63 − 3.84×105 2.66×10−4

567.79 575.74 113.0 2.82

|1, − 1〉 + |1, − 1〉 137.27 137.27 − 4.13×105 2.48×10−4 212.75 0 − 2.43×10−3

|1,0〉 + |2, − 2〉 146.65 146.65 − 9.73×105 1.05×10−4

245.19 252.66 91.4 1.77
500.76 500.82 − 9.51×103 1.06×10−2

601.15 606.56 92.9 1.81
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FIG. 10. Scattering length a as a function of the magnetic field
B for Na|1,1〉 + 41K |1,1〉 collisions (top panel) in the s wave.
Corresponding molecular energy levels as a function of B are shown
in the lower panel. The density code denotes the average spin 〈�S2〉 of
the molecule.

Fig. 5 of Ref. [33] shows that for a magnetic field between the
two homonuclear K resonances located in |1, − 1〉 at about
33 and 163 G, the aKK is positive, thus ensuring the stability
of a K condensate. In the same magnetic-field region, aNaK

varies from being large and positive to large and negative,
allowing one to explore the phase diagram of a quantum
degenerate NaK mixture as a function of the mutual interaction
strength.

To conclude our analysis for this isotope, we provide in
Table V the spectrum of p-wave resonances, limiting ourselves
to the absolute ground state. As in the case of the boson-
fermion mixtures [12], such resonances can be experimentally
observable even at ultracold temperatures. Figure 9 shows the
elastic collision rate for different M projections presenting
a rich spectrum with nearby peaks of multiplicities 3, 2,
and 1. Closer inspection shows that triply degenerate peaks
are the usual doublets [24], with the peaks arising from
spin-spin-induced mixing of mf = 2,m = ±1 states being
nearly degenerate and slightly shifted with respect to the mf =
2,m = 0 peak. Larger multiplicities such as those in Fig. 2 are
not observed here since p-wave resonances occur at larger
magnetic fields; see the discussion in Sec. III A. According to
the value of M in Fig. 9, doubly degenerate components arise
from coupling to states with mf = 1,m = 0,1 or to states with
mf = 3,m = −1,0. Finally, all singly degenerate levels in the
figure are due to coupling with mf = 0,m = 1.

C. Na41K

We now provide numerical data for the other bosonic pair
Na41K. Let us first recall that 41K has been brought to Bose-
Einstein condensation using Rb as a coolant, or more recently
by direct evaporation [36]. Resonances exist for collisions in
different hyperfine states with magnetic widths of several G;
see Table VI.

Such broad resonances are essentially open-channel dom-
inated, with a resonance strength of sres � 3. Several closed-
channel dominated features are also readily available in each
hyperfine channel we studied. A distinctive feature of Na41K
is the large and positive abg for all the hyperfine combinations.
The parametrization Eq. (4) for overlapping resonances is used
for the absolute ground state, where it is found to be accurate
only if an artificial pole is added in Eq. (4) at negative B. Such a
pole mimics the effect of a virtual state, i.e., a quasibound state
located at positive energy and that would give a resonance at
negative values of B. The position obtained through the fitting
procedure is given in Table VI in parentheses to distinguish
from physical poles of a. The corresponding scattering length
a is given in the top panel of Fig. 10.

Both 41K and Na homonuclear resonances in |1,1〉 + |1,1〉
are narrow and quite sparse. A combination of the present
and the magnetic spectra in Refs. [33] and [32] for K and
Na, respectively, shows that homonuclear and heteronuclear
resonances take place at well-separated locations. Note that the
large abg for NaK and the nonresonant values of order 50a0 for
both Na and 41K imply that two Bose-Einstein condensates will
tend to phase-separate. However, the heteronuclear resonances
can be used to reduce or even change the sign of aNaK so as to
favor miscibility and eventually the realization of overlapping
quantum gases of Na and K in free space or in optical
lattices.

Let us now discuss the magnetic association of Na and
K atoms when they are prepared in the respective ground
hyperfine levels. A calculation of the quantum average 〈�S〉2

depicted as density code in the lower panel of Fig. 10
readily shows that resonances arise from states with dominant
triplet character. Note that the large background scattering
length implies the existence of a molecular level close to
the dissociation threshold; see the lower panel of Fig. 10.
Let us consider performing magnetic association near the
two broadest FRs. Based on our data, three routes can be
envisioned, although they still present drawbacks.
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FIG. 11. The S = 0 (left panel) and S = 1 (right panel) electron
spin components using the same arbitrary units of Fig. 7 of the � = 0
multichannel wave function with M = 2 as a function of the magnetic
field B for the Na41K dimer. The molecule is created at 73.35 G and
the molecular state is followed diabatically with decreasing B.
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FIG. 12. Average distance 〈R〉 and partial singlet/triplet norms
(defined in the text) of the last-below-threshold � = 0 multichannel
wave function with M = 2 as a function of the magnetic field B for
the Na39K dimer. The molecular state is followed diabatically as for
Fig. 11.

If molecules are formed at the 73 G FR and molecular
curve crossings are swept through diabatically, one stays in the
“background” weakest bound molecular level. Unfortunately,
as shown in Figs. 11 and 12, the state has long-range character
with 〈R〉0,1 � 100a0.

Therefore, in spite of the sufficient singlet character
predicted in Fig. 12, poor overlap is expected with the excited
molecular states. Note that since quantum numbers of this
background state are essentially atomic ones or Hund’s case
(e), the projections 0 and 1 on the Hund’s case (b) spin-
coupled basis in Fig. 11 have virtually identical spatial profiles.

An alternative route consists in following adiabatically the
entrance state through the first avoided crossing near 50 G.
As shown in the lower panel of Fig. 10, this leads, however,
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FIG. 13. The S = 0 (left panel) and S = 1 (right panel) electron
spin components using the same arbitrary units of Fig. 7 of the � = 0
multichannel wave function with M = 2 as a function of the magnetic
field B for the Na41K dimer. The molecule is created at 470 G and
the molecular state is followed adiabatically with decreasing B.
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FIG. 14. Average distance 〈R〉 and partial singlet/triplet norms
(defined in the text) of the last-below-threshold � = 0 multichannel
wave function with M = 2 as a function of the magnetic field B for
the Na39K dimer. The molecular state is followed adiabatically as for
Fig. 13.

to the formation of a molecule with a relatively poor singlet
admixture.

If one uses the broad resonance at 470 G as an entrance
gate, a long magnetic-field sweep down to B ∼ 60 G would
be needed before a small 〈R〉0 is attained, as can be inferred
from Fig. 13 and the main panel of Fig. 14. However, the
inset in the latter figure indicates that molecule shrinking also

TABLE VII. Same as Table V but for Na41K.

Na41K channel M Bres (G)
|1,1〉 + |1,1〉 1 17.82

1 20.72
1 31.47
1 40.94
1 133.49
1 377.46
1 386.90
1 418.20
1 426.43
1 438.89
1 466.48
1 478.98
1 495.58

|1,1〉 + |1,1〉 2 17.79
2 20.47
2 41.89
2 377.84
2 417.19
2 427.37
2 453.54
2 465.11
2 480.30

|1,1〉 + |1,1〉 3 17.84
3 418.19
3 452.11
3 466.47
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FIG. 15. Elastic rate computed at a collision energy of 1 μK as
a function of the magnetic field B for Na|1,1〉 + 41K |1,1〉 p-wave
collisions. The color dots above each peak display the occurrence of
maxima in the rate for each projection M .

corresponds to a drop in the singlet character, thus requiring a
compromise. To draw firmer conclusions, a detailed analysis
of the excited states will be needed.

Finally, as illustrated in Fig. 15, our model predicts a
series of p-wave Feshbach resonances at both weak and strong

magnetic fields in the absolute ground state. Table VII confirms
as expected that multiplet splittings at small B are “anomalous”
in the same sense as for a boson-fermion pair, whereas as in
Na39K they follow standard patterns at large B. Experimental
observation of the corresponding magnetic spectra would
provide a valuable piece of information to confirm the accuracy
of our model for the � > 0 collision in this boson-boson
mixture.

IV. CONCLUSIONS

We have presented an extensive compendium of the ground-
state scattering properties of isotopic NaK mixtures in an
external magnetic field. Our results complement existing
theory and experimental data on the boson-fermion pair
Na40K. The Feshbach resonance locations and strengths we
predict for the boson-boson pairs should be of major interest
for experiments in which control of the atom-atom interaction
is a requirement. Our spin-resolved analysis of Feshbach
molecules also provides an important piece of information
for designing magnetoassociation and the two-photon transfer
scheme of Feshbach molecules to the absolute rovibrational
ground state.
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