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Spectroscopy of the hydrogen 1S-3S transition with chirped laser pulses
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We identify a systematic present in two-photon direct frequency comb spectroscopy (DFCS) which is a result
of chirped laser pulses and is a manifestation of the first-order Doppler effect. We carefully analyze this systematic
and propose methods for its mitigation within the context of our measurement of the hydrogen 1S-3S transition.
We also report on our determination of the absolute frequency of this transition, which is comparable to a previous
measurement using continuous-wave spectroscopy [O. Arnoult et al., Eur. Phys. J. D 60, 243 (2010)], but was
obtained with a different experimental method.
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I. INTRODUCTION

Hydrogen is the simplest stable atom and, as such, its
energy levels can be calculated with high precision [1]. Its
study is of fundamental importance in modern physics and has
been instrumental in the development of quantum mechanics
and quantum electrodynamics (QED). Currently, hydrogen
spectroscopy remains a stringent test of QED, and, with the
persisting discrepancies in the determinations of the proton
charge radius through comparisons of muonic hydrogen and
normal hydrogen [1–4], is not devoid of modern controversy.

While hydrogen is a near ideal system for testing bound-
state QED, there are two parameters which limit the theoretical
determination of its energy levels: the Rydberg constant and
the rms proton charge radius. However, by measuring several
transitions in hydrogen which depend differently on these
input parameters, the Rydberg constant and proton size can
be extracted [1,5,6]. The consistency of these measurements
is then effectively a test of QED. In addition, the proton size
has been determined with an experiment which is intrinsically
more sensitive: the measurement of the 2S-2P Lamb shift
in muonic hydrogen mentioned above [2,3]. Mysteriously,
these two determinations of the proton radius disagree by 4
combined standard deviations [4]. The CODATA value for the
proton charge radius takes into account both regular hydrogen
spectroscopy and electron-proton scattering measurements
and disagrees with the muonic hydrogen value by 7 com-
bined standard deviations [1]. Therefore, studies of muonic
hydrogen, rather than removing a burden from the hydrogen
spectroscopist, have provided a strong motivation for further
study and new experimental techniques.

In an attempt to produce experimental data relevant to
the proton radius puzzle, we have, along with the Biraben
group in Paris, pursued spectroscopy of the 1S-3S transition
of atomic hydrogen [7–9]. This transition is a good choice for
precision measurement because it is a ground-state transition
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with a relatively narrow natural linewidth of only 1 MHz
and, being a two-photon transition, is well suited to Doppler-
free spectroscopy. One disadvantage is that the excitation
requires 205-nm radiation, which is difficult to produce in
readily available nonlinear crystals. To increase the harmonic
efficiency, we use a pulsed laser with ∼2-ps pulse length. In
the frequency domain, this can be described as a comb of
frequency modes which can still be used for high-precision
spectroscopy. However, the frequency conversion steps nec-
essary to produce the 205-nm radiation proceed more easily
than with a continuous-wave (cw) source due to the higher
peak power of the pulsed source. Further, this measurement
is an implementation of direct frequency comb spectroscopy
(DFCS) in precision hydrogen spectroscopy.

The use of pulsed lasers for precision spectroscopy has
recently gained attention since many transitions of simple
atomic and ionic systems lie in difficult-to-reach spectral
regions. Pulsed lasers, combined with frequency comb tech-
niques (where the pulse-to-pulse coherence is utilized), offer
efficient nonlinear conversion, broad spectral coverage, and
seemingly limitless coherence times [10–14]. While 205-
nm radiation can be produced in the cw regime [15], the
spectroscopy of hydrogenlike ions will require wavelengths in
the VUV and XUV which will, by any reasonable forecast,
require pulsed radiation sources [13]. Therefore, we also
consider this experiment to be an excellent testing ground
for precision measurement using DFCS.

At first glance, one would expect two-photon DFCS using
counterpropagating laser pulse trains to be free from first-order
Doppler shifts—much like two-photon spectroscopy using
cw lasers. As discussed in [16], two-photon DFCS can be
understood by considering the pairwise addition of modes from
two counterpropagating frequency combs. All pairs of comb
modes whose frequencies add to the transition frequency will
coherently contribute to the excitation. The first-order Doppler
cancellation will not be perfect for two comb modes of unequal
frequencies. However, for every pair of modes which would
produce a positive frequency shift, there is a counterpart pair
of modes producing a negative shift such that a broadening
of the line but no systematic shift results [16]. Pulse chirp
does not shift the frequency of the individual comb modes
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FIG. 1. Diagram showing the pulse collision volume (PCV)
resulting from colliding pulse trains (frequency combs). Also shown
in the diagram are the lengths w and cτ along with a representative
atomic trajectory �r(t).

but only affects their relative phases, which may lead one to
assume that the pulse chirp would not produce any systematic
effects. However, the chirp also creates a spatial variation of
the phase along the direction of laser propagation that, when
coupled with the motion of the atoms, can lead to a systematic
effect which we term the chirp-induced first-order Doppler
shift (CIFODS). It is this effect that is the focus of this article.

We believe that DFCS will become an increasingly
important technique for future spectroscopy of simple atoms
and, therefore, we discuss possible routes for the further
mitigation of this systematic. This discussion is also timely
considering that several authors have recently discussed DFCS
with chirped pulses so that a Doppler-broadened background
can be suppressed [17,18].

II. THEORETICAL DESCRIPTION OF THE
CHIRP-INDUCED FIRST-ORDER DOPPLER SHIFT

Our experiment is performed with two counterpropagating
trains of pulses (frequency combs). We describe the pulse
trains traveling in the positive and negative z directions by

E± = A0

∑
n

e−(1+ib)(t−ntr±z/c)2/τ 2−ρ2/w2−iωct∓ikcz, (1)

where tr is the repetition period, τ is the pulse length, ωc is
the carrier frequency, kc = ωc/c, ρ is the radial position, z

is the position along the direction of beam propagation, and
w is the radial width of the laser beam (assumed to be
cylindrically symmetric). This form is valid in the weak-
focusing (plane-wave) approximation. We include possible
chirp of the pulses with the parameter b—note that the sign
of b does not change upon backreflection that reverses the
propagation direction. The Doppler-free two-photon signal
will occur only at the position where the pulses collide (see
Fig. 1), and the two-photon Rabi frequency [19] will be
proportional to the product of the counterpropagating pulse
trains given by

E+E− = A2
0

∑
n

e−2(1+ib)[(t−ntr )2+z2/c2]/τ 2−2ρ2/w2−2iωct . (2)

We consider only the pulse collision volume near z ≈ 0, where
we assume there is significant atom density. To take into
account the motion of the atoms in the z direction, we let
z(t) = z0 + vzt . If we ignore the second-order Doppler shift,
this leads to an instantaneous frequency shift in the reference

frame of the atom of
d

dt

(
−b

2z2(t)

c2τ 2

)
→ −b

4vzz(t)

c2τ 2
. (3)

We do not take into account the phase shift in Eq. (2) given by
−2b(t − ntr )2/τ 2, because it is identical for every pulse and
therefore does not shift the position of the comb modes [16].
The frequency shift shown in Eq. (3) is an odd function of
both the position, z(t), and the velocity, vz, where z = 0 is
defined as the center of the pulse collision volume. Therefore,
in a gas cell, where there is no preferential direction of atomic
motion, we expect that there are no systematic frequency shifts
from this effect due to symmetry. The shifts from individual
atomic trajectories would instead lead to a broadening of the
measured line. In an experiment utilizing a divergent atomic
beam, the situation is more complicated because the symmetry
is, in general, broken.

To gain additional insight into this problem, we consider
an atom in a well-defined trajectory, r(t) = (x0 + vxt,y0 +
vyt,z0 + vzt), as shown in Fig. 1. We then perform the Fourier
transform of Eq. (2). The overall expression is lengthy but the
result is a comb of frequencies centered about 2ωc and spaced
by fr = 1/tr . The individual comb modes are broadened due
to the finite interaction time as the atom traverses the pulse
collision volume. In addition, the comb modes are shifted in
frequency due to the CIFODS. This shift can be extracted and
is given by

δω = b
4vz

(
vxvzx0 + vyvzy0 − (

v2
x + v2

y

)
z0

)
v2

zw
2 + (

v2
x + v2

y

)
c2τ 2

. (4)

In contrast to Eq. (3), this expression takes into account the
total flight of the atom across the pulse collision volume. From
this we see that the existence of a systematic shift requires that
b, vz and either vx or vy must all be nonzero.

Equation (4) can be distilled into more manageable
expressions by examining representative trajectories. First,
we consider an atom which travels predominantly along the
propagation direction of the laser beam such that

�r(t) = (vxt + x0,0,vzt), (5)

where we assume that vz � vx . Although we have set vy and
y0 to zero, the problem is cylindrically symmetric about the z

axis so that this will result in a general expression. In addition,
we can set z0 = 0 because the choice of t = 0 is arbitrary and
assume that the lengths cτ and w are of the same order of mag-
nitude. In this case, the shift given by Eq. (4) is approximately

δω ≈ b
4vxx0

w2
. (6)

As a second representative case, we consider an atomic
trajectory where the atom is moving transverse to the laser
beam such that

�r(t) = (vxt,vyt + y0,vzt + z0), (7)

where now vx � vy,vz and we have set x0 = 0 by choosing
an appropriate t = 0. In that case the shift is

δω ≈ −b
4vzz0

c2τ 2
. (8)

Equations (6) and (8) are similar except that in Eq. (8), the
length of the pulse collision volume cτ functions as the beam
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FIG. 2. Experimental setup: A mode-locked 820-nm Ti:sapphire
laser is frequency quadrupled to 205 nm using two resonant doubling
stages. This radiation is then sent to an enhancement cavity where
spectroscopy of atomic hydrogen is performed. A delay stage external
to the spectroscopy cavity is used to create counterpropagating pulses
inside the cavity. pd: photodiode, fc: fiber coupler, λ/4: quarter-wave
plate, λ/2: half-wave plate.

radius w. In our case, these two lengths are of the same
order of magnitude and there is not a great advantage in one
experimental geometry over the other.

The expression given by Eq. (4) along with the approximate
expressions given by Eqs. (6) and (8) reveal effective strategies
for minimizing the chirp-induced systematic. Some obvious
choices are to minimize the pulse chirp or the velocity of the
atomic beam. However, Eq. (4) also indicates that increasing
the time of flight through the pulse collision volume (by
increasing w and cτ ) would also reduce the effect. If we
are in a regime where we can apply the approximations
given by Eq. (6), then the use of highly collimated atomic
beams traveling along the z axis could also be an effective
strategy. Similarly, for an atomic beam traveling normal to the
laser beam, Eq. (8) is applicable and indicates that increased
collimation of the atomic beam, which in this case corresponds
to a decrease in vz, would mitigate the systematic.

Equation (4) and the following discussion treats only a
single atomic trajectory. In many cases, one can simply average
this equation over the ensemble of atomic trajectories with
no great difficulty. However, in our current experimental
setup, our detector collects fluorescence from an area only
800 μm in diameter whereas cτ ≈ 500 μm. The detector is
therefore small enough that we will not necessarily collect
the fluorescence from each trajectory with equal probability.
Instead, we will sample a different ensemble of atomic
trajectories depending on its position. Due to this added
complication, it is more effective to analyze our experiment
using a numerical integration of the optical Bloch equations,
as discussed in Sec. IV. The small detector we are currently
using is ideal for the study of the chirp-induced systematic.
However, we believe that, for suppression of this systematic, a
larger detector will be beneficial as it will lead to a more even
sampling of the atomic trajectories and allow us to use Eq. (4)
and the approximations resulting from it.

III. EXPERIMENTAL SETUP

Our experimental setup is shown in Fig. 2 and is similar
to our previous experiment described in [8]. We produce

FIG. 3. Hydrogen nozzle and detector. Atomic hydrogen enters
the nozzle and exits along the laser beam path. Four aspheric lenses
(only two are shown in the figure) with focal lengths of 2.76 mm focus
the fluorescence onto multimode optical fibers (1-mm-diameter core,
0.48 NA). Copper grids coated in colloidal graphite surround the
pulse collision volume on four sides. By controlling the voltage on
two of these grids (Vx and Vy) along with the voltage applied to a
wire ring (Vz), we can adjust the electric field at the pulse collision
volume. Four multimode fibers also collect fluorescence on the back
side of the nozzle. In that location—away from the pulse collision
volume—only the Doppler-broadened signal is present, which is used
for normalization. This normalization is required due to fluctuating
laser power and atom density. Because there is no need to prevent dc
stark shifts on the normalization signal, we forego the electrodes.

a frequency comb at 205 nm by frequency quadrupling an
820-nm, ∼2-ps pulse length Ti:sapphire laser. We determine
the absolute frequency of the 820-nm laser by locking a single
comb mode to a cw external cavity diode laser (ECDL) also at
820 nm. The ECDL is itself locked to an ultrastable cavity and
its frequency is measured with a self-referenced frequency
comb. With this referencing scheme and by measuring the
repetition frequency of the ∼2-ps Ti:sapphire laser, the comb
mode positions of that laser are fully determined.

The frequency quadrupling takes place in two enhancement
cavities. The first utilizes a lithium triborate (LBO) nonlinear
crystal and the second, beta barium borate (BBO) crystal. The
laser produces a 78.8-MHz pulse train, but the first doubling
cavity also acts as a mode filtering cavity so that we obtain a
frequency comb with a 157.5-MHz repetition rate at 410 nm
and an average power of ∼350 mW. After the second doubling
cavity, we obtain ∼15 mW of 205-nm radiation, which is
sent to an enhancement cavity with a power buildup of ∼10
for spectroscopy. The mirrors of the enhancement cavity have
a radius of curvature of 500 mm, which produces a beam
radius of 90 μm at the center of the cavity. Before the
enhancement cavity, a polarization-dependent delay stage is
set to within 60 fs of exactly half the repetition period of
the frequency comb. This produces two pulses which collide
with each other twice every repetition period at the center
of the cavity. We use a quarter-wave plate before the cavity
so that the two counterpropagating pulses have σ+ and σ−
polarizations, respectively. This reduces the excitation of the
1S − 3D transitions with respect to the 1S-3S transitions [20]
(see Fig. 5). The enhanced 205-nm radiation travels through
an aluminum nozzle, as shown in Fig. 3, which we use to inject
atomic hydrogen along the laser beam path.
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FIG. 4. Diagram showing the relevant levels and two-photon
transitions in hydrogen. The hyperfine splitting of the 3D states is
unresolved due to the 10.3-MHz natural linewidth of the 3D states.
The 3P3/2 and 3D3/2 states are easily mixed with electric fields due
to their small energy difference.

After excitation to the 3S or 3D states, the atoms decay
to the 2P state, emitting a 656-nm photon. Our detection
scheme is shown in Fig. 3. As can be seen from the figure, we
collect fluorescence from two locations—the pulse collision
volume and also on the other side of the hydrogen nozzle,
roughly 2 cm away from the pulse collision volume. From
the pulse collision volume, we obtain signal where the first-
order Doppler broadening is greatly suppressed. At the other
location, only a Doppler-broadened signal is present and the
lines are broadened to ∼20 GHz. The comb spacing is only
157.5 MHz so that there is no dependence of the fluorescence
signal on the offset frequency of the frequency comb from
the Doppler-broadened signal. However, this signal provides
us with important information, since all fluctuations of the
two-photon signal due to atom number and laser power will
be present. We do a point-by-point normalization of our data
using the Doppler-broadened signal, which removes a large
amount of the technical noise.

The bandwidth of the frequency comb is ∼200 GHz,
whereas the splitting between the 3S and 3D transitions is
∼3 GHz (see Fig. 4) so that as the offset between the 820-nm
frequency comb and the ECDL is scanned, all two-photon
allowed transitions from the 1S state to the 3S and 3D states
are observed. When frequency doubling a frequency comb,
the offset frequency of the frequency comb is also doubled
whereas the repetition rate is not. Therefore to scan the
offset frequency of the 205-nm comb by one repetition rate
(157.5 MHz after the mode filtering of the first doubling stage)
requires that we scan the offset of the comb at 820 nm by only
39.4 MHz. As a result, all two-photon allowed transitions are
observed in this relatively small scan range. This behavior is
shown in Fig. 5.

The pattern shown in Fig. 5 is highly dependent on the
repetition rate of the frequency comb. The repetition rate of
157.5 MHz was chosen so that the 1S F = 1 to 3S F = 1
transition would be relatively isolated and, thus, well-suited for
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FIG. 5. Experimental fluorescence signal as the frequency offset
between one frequency comb mode of the Ti:sapphire laser and the
stabilized ECDL is scanned. (The solid line represents Lorentzian fits
for the individual lines.) The F quantum number labels correspond
to the 1S state. For the transitions to the 3S states, only �F = 0
transitions are allowed. The repetition rate of the laser was chosen so
that the 1S-3S F = 1 transition is well isolated.

precision measurement. That being said, the whole structure
shown in Fig. 5 is, in principle, usable for absolute frequency
determinations—albeit the modeling of the structure is very
involved. We also found that the relative heights of the
transitions gave sensitive information on stray electric fields.
This is because the 3D3/2 state is nearly degenerate with the
3P3/2 state and therefore very easily quenched with an electric
field [21]. A reduction of the fluorescence signal from the
3D3/2 state relative to the 3D5/2 indicated that stray electric
fields were present at the interaction volume.

We use room temperature hydrogen so that the average
speed of the atoms leaving the nozzle is ∼2700 m/s. The
pulse collision volume is only ∼500 μm long and 180 μm
in diameter so that the measured transitions are transit-time
broadened to ∼4.5 MHz. Also, the pulse collision volume
is reimaged in such a way that the effective diameter of
the detection region is only 800 μm. In this way we can
preferentially detect the fluorescence coming from atoms at
different points in their trajectories by adjusting the relative
position of the detector and pulse collision volume.

IV. RESULTS AND DISCUSSION

Measurements of the absolute frequency as a function of
detector position were performed on five separate days and are
shown in Fig. 6. There is a near linear relationship between
the measured transition frequency and the detector position.
The position z = 0 is defined as the center of the pulse
collision volume and is determined experimentally through
measurements of the on-resonance signal strength as a function
of position along the z axis. The slopes of these curves
correspond to the pulse chirp and depend on the measurement
day. We believe this day-to-day variation is due to alignment
changes of the laser and/or doubling and quadrupling stages.

We also simulated our experimental results through
numerical integration of the optical Bloch equations. We
performed the integration over the atomic trajectories and
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FIG. 6. Measured frequency f of the observed 1S-3S F = 1 line
center as a function of detector position. The observed resonance
was determined by fitting the experimental data with a Lorentzian
line shape. Data points of a certain color were all taken on the
same day and the change in slope from day to day is due to a
variation of the pulse chirp b. From our simulations, the observed
slopes correspond to a variation of b from ∼0.15 to ∼0.7. The wide
stripes represent pointwise 68% confidence bands for a simple linear
regression analysis of 1 day of data. The crossing of these confidence
bands gives a confidence region for the experimental coordinates of
the crossing point on the (z,f ) plane. The 68%, 95%, and 99.7%
confidence regions for this point are shown on the upper-right plot,
together with projections of the resulting likelihood function on the z

and f axes. Data points at large detector misalignment (>1 mm) lie
in a region where we do not expect a linear variation with detector
position and so these data points are excluded in the data analysis.

velocities through both a Monte Carlo method and by direct
Gaussian quadrature. The angles of the trajectories with the
beam axis are assumed to follow a cosine distribution for each
point of the nozzle orifice. The results for the Monte Carlo
method are shown in Fig. 7. We see from the simulations that

FIG. 7. Simulated frequency shifts using the Monte Carlo method
for different values of the chirp parameter b as a function of detector
offset from the center of the pulse collision volume (PCV). In addition
to the CIFODS, the simulations include the second-order Doppler
shift. The gray shaded region shows the relative position and size of
the pulse collision volume. The position where the curves intersect
is insensitive to the chirp parameter b, and the remaining frequency
shift is due to the second-order Doppler effect.

within a certain region near the pulse collision volume, there is
also a linear relationship between the transition frequency and
the detector position due to the CIFODS—this is in qualitative
agreement with our experimental results and is motivated
physically by Eq. (3).

As can be seen in Figs. 6 and 7, the curves for different
b values approximately cross at one point on the (z,f ) plane
where f is the center of the observed resonance determined by
a least-squares fitting procedure. At this point, the signal from
the atomic beam is sampled in such a way that the CIFODS
is minimized. To extract the position of the experimental
crossing point and its uncertainty we made two assumptions.
The first is that the chirp of the laser pulses does not vary
significantly during the measurement day. Second, if b is fixed,
then the function f (z,b) is assumed to be linear in z so that
f (z) = αz + β. This assumption is supported both by the data
and by simulations. For every measurement day i we found a
two-dimensional likelihood function ξi(z,f ) of the position of
the f (z) on (z,f ) plane using a linear regression routine. (See
the corresponding confidence bands in Fig. 6.) The product
of the likelihood functions ξ (z,f ) = ∏

ξi(z,f ) obtained for
different days gives a likelihood function of the crossing point
position on the (z,f ) plane. The maximum of the final ξ (z,f )
function is at the point zcross = 0.47(3) mm, and fcross =
2 922 742 936 629.6(8.4) kHz. The simulations show that
the chirp is almost perfectly compensated at zcross = 0.45(13)
mm, which is in good agreement with the experimental
results. Moreover, the two simulations (Monte Carlo and direct
Gaussian quadrature) produce the same value for fcross to
within 3 kHz. It may seem surprising that the intersection
point shown in Figs. 6 and 7 is away from the center of
the pulse collision volume. However, the atoms are traveling
predominantly along the z axis and the lifetime of the 3S

state is long enough (∼160 ns) that the position of maximum
fluorescence is offset significantly from the center of the pulse
collision volume as well. Therefore, offsetting the detector
slightly in the positive z direction actually results in a more
even sampling of the fluorescence from the different atomic
trajectories.

The simulated results in Fig. 7 assume that the pulse chirp
is quadratic, as defined in Eq. (1). However, it is probable
that the chirp is due to to self-phase modulation (SPM) in
the nonlinear crystals. This would impose a phase shift on an
individual pulse that is proportional to n2 e−2(t±z/c)2/τ 2

, where
n2 is the nonlinear index of refraction. While the leading term
in this phase shift will still result in a quadratic chirp (ignoring
an unimportant constant phase shift), it was not possible to give
a closed-form expression for the CIFODS as in Eq. (4) using
the full expression. To investigate the effects of SPM further,
we also simulated the experiment assuming the chirp arises
from SPM and we found in this case, zcross = 0.485(10) mm
and fcross is within 200 Hz of the previous result. However,
at detector positions far away from zcross , the simulations
assuming the chirp arises from SPM do not agree with the
simulations assuming quadratic pulse chirp and both show
nonlinear behavior. For this reason, we do not include the
experimental data points within this region in our data analysis.

With the experimentally determined value of fcross , we are
able to make an absolute frequency determination of the 1S-3S

transition because this value is, by definition, insensitive to the
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TABLE I. Corrections and uncertainties (�f ) for the hydrogen
1S-3S determination (kHz).

Item Frequency/correction �f

Crossing point 2 922 742 936 629.6 8.4
Second-order Doppler +73 13
Pressure shift +10.3 6.3
DC Stark effect 0 1.7
AC Stark effect –0.4 0.2
Zeeman effect 0 0.005
Line pulling [22] –2.0 1.0

Total f1S-3S(F = 1) 2 922 742 936 711 17

CIFODS. The corrections and uncertainties are summarized in
Table I. By far the largest systematic shift which must be taken
into account for such a measurement is due to the second-order
Doppler effect. We determine this correction and estimate
its uncertainty by varying model input parameters such as
atomic velocity distribution, atomic beam/detector geometry,
and laser pulse duration within limits given by the experimental
restrictions.

The pressure shift, which includes collisions of hydrogen
atoms with each other and with background gas, was the
second-largest systematic shift in this measurement. The shift
from hydrogen/hydrogen collisions can be calculated from the
measured flux of atomic hydrogen using a molecular gas flow
model and the known van der Waals potential [23]. For our flux
(around 1.1 × 1018 atoms/s) the correction is +8.3(6.2) kHz;
the uncertainty in this correction is set by the uncertainty of the
distance between the nozzle and pulse collision volume, as well
as the estimated value of the dissociation rate in our discharge.
Collisions with background gas depend on the pressure of
hydrogen in our apparatus, which was about 10−4 mbar. The
correction calculated from the pressure of background gas is
+2(1) kHz.

The dc Stark effect was potentially problematic because the
measurement is made close to the lenses of the detector which
are susceptible to patch charges. To mitigate this effect, the
lenses were coated with carbon nanotubes, which provided
a transparent and electrically conductive coating. Also, we
surrounded the interaction volume with electrodes as shown
in Fig. 3 and we zeroed the electric field by observing the line
shifts and varying the voltage on three of the electrodes. The
magnetic field was compensated to 20 mG using coils external

to the vacuum chamber to suppress Zeeman shifts. Since the
Landé g factors are the same for both the 1S and 3S states,
there is no first-order shift. The 5-Hz uncertainty shown in
Table I is due to the quadratic Zeeman shift which arises from
mixing of the hyperfine levels.

The line-pulling systematic listed in Table I is caused
by two effects—quantum interference due to off-resonant
fine-structure components (also referred to as cross-damping)
and the pulling from off-resonant laser comb modes. In a recent
paper, we provide a detailed discussion of cross-damping and
how it relates to this experiment [22]. This effect will cause
the nearby 3D lines to distort our line shape in a way which
depends on our laser excitation and detector geometry. The
second effect taken into account, pulling from off-resonant
comb modes, is largely canceled because there is a near
symmetric set of off-resonant comb components on either side
of the measured transition. Both effects are taken into account
in the simulations and contribute to the listed uncertainty.

Including all systematic shifts and uncertainties, we arrive
at a value for the 1S-3S F = 1 to F = 1 transition of
2 922 742 936 711(17) kHz, which is in excellent agreement
with, but slightly less accurate than, the previous measurement
using a cw laser [7]. Taking into account the hyperfine splitting
of the 1S and 3S states [24,25], we come to a value for
the 1S-3S centroid frequency of 2 922 743 278 659(17) kHz.
While this measurement is limited by residual Doppler shifts,
it was performed with a room temperature atomic beam. By
simply cooling the beam to cryogenic temperatures, we should
greatly mitigate systematic shifts arising from the velocity of
the atoms. As mentioned earlier, our small detector size was an
advantage for our study of the CIFODS. In the future a larger
detector and more even sampling of the atomic trajectories
would be preferable and allow us to use Eqs. (6) and (8) to
estimate the size of the effect. Also, detailed studies of the
source of the pulse chirp and methods to reduce and control
this parameter are currently underway.
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W. Hänsch, M. O. Scully, and G. S. Agarwal, Phys. Rev. A 73,
052501 (2006).

[20] G. Grynberg, F. Biraben, E. Giacobino, and B. Cagnac, J. Phys.
(Paris) 38, 629 (1977).

[21] H. A. Bethe and E. E. Salpeter, Quantum Mechanics of One and
Two-Electron Atoms (Dover, New York, 2008).

[22] D. C. Yost, A. Matveev, E. Peters, A. Beyer, T. W. Hänsch, and
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