
PHYSICAL REVIEW A 93, 042505 (2016)

Dipole-dipole resonance line shapes in a cold Rydberg gas
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We have explored the dipole-dipole mediated, resonant energy transfer reaction, 32p3/2 + 32p3/2 → 32s +
33s, in an ensemble of cold 85Rb Rydberg atoms. Stark tuning is employed to measure the population transfer
probability as a function of the total electronic energy difference between the initial and final atom-pair states
over a range of Rydberg densities, 2 × 108 � ρ � 3 × 109 cm−3. The observed line shapes provide information
on the role of beyond nearest-neighbor interactions, the range of Rydberg atom separations, and the electric
field inhomogeneity in the sample. The widths of the resonance line shapes increase approximately linearly with
the Rydberg density and are only a factor of 2 larger than expected for two-body, nearest-neighbor interactions
alone. These results are in agreement with the prediction [B. Sun and F. Robicheaux, Phys. Rev. A 78, 040701(R)
(2008)] that beyond nearest-neighbor exchange interactions should not influence the population transfer process
to the degree once thought. At low densities, Gaussian rather than Lorentzian line shapes are observed due to
electric field inhomogeneities, allowing us to set an upper limit for the field variation across the Rydberg sample.
At higher densities, non-Lorentzian, cusplike line shapes characterized by sharp central peaks and broad wings
reflect the random distribution of interatomic distances within the magneto-optical trap (MOT). These line shapes
are well reproduced by an analytic expression derived from a nearest-neighbor interaction model and may serve
as a useful fingerprint for characterizing the position correlation function for atoms within the MOT.
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I. INTRODUCTION

Because of their large transition dipole moments, Rydberg
atoms are greatly affected by weak electric fields, including
the multipole fields of neighboring atoms [1]. Accordingly,
interactions between Rydberg atoms can be quite strong,
coupling electronic and center-of-mass degrees of freedom at
large internuclear separations. Rydberg-Rydberg interactions
were originally studied in the context of collisions in thermal
samples [1]. More recently, however, attention has turned to
the exploration and control of the coherent couplings that
exist between Rydberg atoms in (nearly) frozen gases, where
the thermal kinetic energy of the atoms is less than their
mutual interaction energies [2–32]. Such interactions enable a
variety of few- and many-body quantum phenomena as well
as potential applications in quantum information [5,33–36].
Typically, dipole-dipole (DD) effects dominate the atom-atom
interaction when the spacing between the Rydberg atoms is
much larger than the radial extent of the electronic wave
function on individual atoms.

The degree to which the DD coupling between Rydberg
atoms influences their behavior depends sensitively on the
energy level structure of the individual atoms. Given their large
polarizabilities, it is straightforward to manipulate the inter-
actions between Rydberg atoms by applying static or pulsed
electric fields. Stark-tuned, (Förster) resonant energy transfer
(RET) reactions have been studied in both thermal [1,37,38]
and cold Rydberg gases [3,4,6,8,9,12–14,16,17,22,29,31], and
are perhaps the simplest example of electric-field controlled
DD interactions involving Rydberg atoms. As an example of a
RET process, consider two identical atoms A and B, separated
by a distance R and initially in the same Rydberg state |P 〉.
Direct electronic energy transfer from A to B can efficiently
occur, with little or no center-of-mass translational energy
exchange, if there exist two states, |S〉 and |S ′〉, with energies
ES,P � −ES ′,P relative to |P 〉. Assuming |S〉, |P 〉, and |S ′〉

are adjacent Rydberg levels with approximately the same
principal quantum number n, the transition matrix elements
μA = 〈S|rA|P 〉 and μB = 〈S ′|rB |P 〉 are large (scaling as

n2) and energy transfer from A to B is facilitated by a
DD-interaction Vdd ∼ μAμB/R3 (atomic units are used unless
otherwise noted) [1]. Here, rA and rB are the distances between
the electron and nucleus on atoms A and B, respectively. The
energy transfer results in the excitation of atom B from |P 〉
to |S ′〉 and simultaneous deexcitation of atom A from |P 〉
to |S〉. The process is resonant, and most efficient, when the
applied field is tuned to a value F = F0 where the detuning
δ = ES,P + ES ′,P = 0.

In the context of collisions it makes sense to discuss the DD
interaction between a pair of atoms in terms of RET between
the individual atoms. However, in a frozen gas, the DD
interaction between two atoms is more conveniently discussed
as a coherent coupling between molecular, or atom-pair states.
For the example in the preceding paragraph, the relevant
(uncoupled) pair states at large R are |P 〉|P 〉 and |S〉|S ′〉. At
smaller R, the coupled atoms are described by eigenstates
which are linear combinations of the two uncoupled pair
states. Through the DD interaction, the probability amplitude
initially in |P 〉|P 〉 can be coherently transferred to |S〉|S ′〉
(and back) at a rate, and with a maximum probability, that
depends on μA, μB , R, and δ. For samples involving more
than two atoms, the coupling between non-nearest-neighbor
atoms complicates the eigenstate composition and the
coherent population transfer processes. Indeed, measurements
of Rydberg population transfer probability, as a function of
the detuning δ from DD resonance, have provided evidence
that many-body interactions play an important role in the
coupled-atom dynamics in large ensembles [3,4]. Also, clear
changes in resonance “line shapes” have been observed as the
number of interacting atoms increases from 2 to several [22].

Using line shape measurements for the 32p3/232p3/2 ↔
32s33s DD resonance in Rb, we clarify the respective
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roles of nearest- and beyond nearest-neighbor interactions in
resonantly coupled systems, and show that the line shapes
contain information on the position correlation function of
Rydberg atoms in a cold random ensemble.

II. EXPERIMENTAL PROCEDURE

In the experiments, 85Rb atoms at ∼70 μK in a magneto-
optical trap (MOT) are photoexcited from the 5p3/2 upper trap
state directly to the 32p3/2 Rydberg state in the presence of
a weak electric field, F � 15 V/cm. The field mixes a small
amount of ns character into the p state to enable the excitation,
but detunes the atoms sufficiently far from DD resonance so
that, initially, there is negligible interaction between them.
The atoms are then exposed to a fast-rising “tuning” electric
field pulse. The tuning pulse alters the energy difference δ

between the 32p3/232p3/2 and 32s33s pair states, and projects
the initial 32p population onto the coupled pair states. The
system is allowed to evolve throughout the duration τ of the
tuning pulse. State-selective field ionization (SSFI) is then
employed to measure the population transferred to 32s33s

pairs as a function of the tuning field strength and Rydberg
density [1].

A 482 nm laser pulse directly excites atoms from the 5p3/2

trap state to the 32p3/2 Rydberg state. The experiments are
performed using either a “long,” narrow-band (∼1 MHz) or
“short,” broader-band (∼100 MHz) Rydberg excitation pulse.
For the long pulse, an acousto-optic modulator (AOM) chops
a 3 μs excitation pulse, with ∼1 μs rise and fall times,
from a narrow band (∼1 MHz) continuous wave diode laser.
Alternatively, a Pockels cell is employed to slice a short 10
ns pulse from the diode laser, and that pulse is amplified
in dye using the 10 ns, 355 nm third harmonic of a pulsed
Nd:yttrium-aluminum-garnet (YAG) laser. In both cases, the
482 nm beam is focused into the 0.4 mm diameter MOT using a
350 mm focal length lens, exciting a cylindrical atomic volume
with a diameter of ∼0.1 mm and a length of 0.4 mm.

The laser excitation, energy tuning, and field ionization
of the Rydberg atoms are facilitated by the application of
pulsed and static voltages to two pairs of thin, parallel, stainless
steel rods that are arranged around the cold atom cloud in
a rectangular array. The field produced by the rods at the
position of the MOT is proportional to the voltage difference
between rod pairs and is quite uniform, with a variation of
0.07% over the atom cloud. The voltage pulse which produces
the tuning field has fast (2 ns) rise and fall times and is produced
using an arbitrary wave-form generator (AWG) followed by a
DC-coupled, pulse amplifier.

At the end of the interaction period defined by the
tuning pulse, a high-voltage ramp applied to the field rods
ionizes Rydberg atoms in the interaction region, propelling
them toward a microchannel plate (MCP) detector. Different
Rydberg states ionize at different times during the ramp [1].
Therefore, in principle, populations in different states can be
distinguished in the time-dependent signal from the MCP
detector. In practice, to obtain better temporal separation
between the signals corresponding to the populations in
the initial (32p3/232p3/2) and final (32s33s) pair states, the
maximum ionization field is set just above the threshold for
ionizing 32p3/2. As a result, we do not ionize atoms in 32s,

and detect only half of the atoms (those in 33s) in each 32s33s

pair.
By recording the population transfer to 33s as a function of

the tuning field, we obtain the resonance line shape (see Fig. 1).
Line shapes are measured over a range of Rydberg densities,
2 × 108 < ρ < 3 × 109 cm−3. The density is varied by adjust-
ing the current applied to the getters that supply Rb to the MOT.
The density of atoms in the MOT is determined, to within 30%,
by combining measurements of the spatial dimensions of the
atom cloud size via direct imaging with a CCD camera with
measurements of the radiated fluorescence using an optical
power meter [39]. By saturating the Rydberg excitation using
a sufficiently high laser fluence, we ensure that approximately
one-third of the atoms in the excitation volume are excited to
Rydberg states. Data collected as a function of tuning pulse
duration τ at a fixed tuning field showed little or no change
in the population transfer for τ > 1 μs. Full line shapes were
measured over a range of densities for τ = 5 and 15 μs, with
no apparent differences in the observed resonance profiles.

In addition to the field produced by the rods, an additional
parallel “offset” field of 2.6 V/cm contributes to the net
electric field in the interaction region. The offset field is the
result of imperfect shielding of the MCP detector and is less
homogeneous than the rod field. As discussed in more detail
below, the measured line shapes can be used to characterize
the variation in this offset field over the atomic ensemble.

III. EXPERIMENTAL RESULTS

Figure 1 shows the population transferred to 33s as a
function of the strength of the applied tuning field at three
different densities. These line shape data exhibit several
notable features. First, the functional form of the resonance
lines change from something resembling a Gaussian at low
density to a cusp, characterized by a narrow central peak with
broad wings, at higher density. As described in detail in the
next section, the cusp line shape reflects the random variation
in the interatomic spacing R within the random ensemble.

Second, the maxima of the three line shapes appear at
(slightly) different applied tuning fields, at values closer to
10.1 V/cm than to the expected value, F0 = 12.7 V/cm, at
which the resonance condition, δ = 0, is fulfilled for atoms
initially in the 32p3/2 |mj | = 3/2 state. Here mj is the
projection of total electronic angular momentum on the z-axis.
As noted previously, the nominal 2.6 V/cm MCP offset field
adds to the applied field from the rods, shifting the apparent
resonance field. The variation in the peak position for different
data sets is not caused by the different densities at which the
data were taken, but is due rather to the inhomogeneity in the
offset field and slight differences in the position of the Rydberg
excitation laser within the MOT for different data runs. The
spatial variation in the offset field within the Rydberg excita-
tion beam is responsible for the Gaussian, inhomogeneously
broadened line shapes observed at low density.

Third, the widths of the line shapes grow linearly with
increasing density. Figure 2 shows the full width at half
maximum (FWHM), �, of the measured resonance profiles as
a function of Rydberg density. To convert the resonance widths
(which are measured in units of field) to units of energy, we
first measure the Stark shifts of the 32p3/2, 32s, and 33s states
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FIG. 1. 32p3/232p3/2 → 32s33s DD-resonance line shapes,
showing population transfer to 33s as a function of applied tuning
field at various Rydberg densities: ρ = 2 × 108 (filled triangles);
ρ = 1 × 109 (filled squares); and ρ = 3 × 109 cm−3 (crosses). The
measured signals are not individually normalized, so the relative
heights of the profiles reflects the difference in resonant transition
probability. The baseline, corresponding to zero population transfer,
is the same for the three data sets. The horizontal axis shows the
applied tuning field due to the rods. The resonance line centers are
shifted from the expected resonance condition, F0 = 12.7 V/cm, due
to the presence of the MCP offset field described in the text. The three
data sets are acquired with the excitation beam focused at (slightly)
different locations within the MOT. The relative shifts of the line
centers are due to the variation in the offset field within the FWHM
of the atom cloud. As described in the text, the inhomogeneity in the
offset field is also responsible for the Gaussian line shapes observed at
low Rydberg density. The solid (red) line through the lowest density
data is the best Gaussian fit of the inhomogeneously broadened line
shape. The solid (blue and green) lines through the higher density
data are fits to the cusp line shape expected for a random ensemble,
as described in the text. The small peaks indicated by arrows on
either side of the resonance data appear independent of density. The
two features on the high-field side of the resonance can be attributed
to the transfer of population to 31d (not resolved from 33s in the
ionization signal) due to 32p3/2 + 32p3/2 → 31d + 29k resonances,
where the 29k states are members of the manifold of n = 29 Stark
states that adiabatically connect to high-� states in zero field. The
specific resonance(s) responsible for the feature(s) on the low field
side of the primary resonance have not been identified.

as a function of applied field in the vicinity of the resonance.
We then use those spectroscopic data to compute the detuning
δ as a function of the applied field (see Fig. 3). We find
that near F0, δ varies approximately linearly with F with a
slope of 170 MHz/(V/cm). Note that since the tuning field,
not the excitation laser, determines the detuning of the atoms
from resonance, the laser bandwidth does not factor into the
measured resonance widths.
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FIG. 2. Resonance width as a function of Rydberg density.
Measured widths are shown as points (lower density axis) while the
solid line shows the calculated widths (upper density axis) assuming
only nearest-neighbor interactions and 15 MHz of inhomogeneous
broadening due to the offset field. The filled circles show data taken
with a long 3 μs excitation laser pulse, and the filled triangles show
data taken with a short 10 ns excitation pulse. No significant difference
in the profile widths for the long and short pulse excitations is expected
or observed.
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FIG. 3. Pair-energy detuning from resonance as a function of
applied electric field. The filled circles are experimentally determined
values of δ obtained from Stark shift measurements for the 32p3/2

|mj | = 3/2, 32s, and 33s levels as a function of the applied field.
At these low fields, the energies of all three levels shift quadratically
with the field. The solid line is a quadratic fit to the data. Near
resonance, the variation in δ is approximately linear with a slope of
170 MHz/(V/cm) (dashed line).
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IV. ANALYSIS AND DISCUSSION

The resonance line shapes carry information on the relative
strength of nearest- and beyond nearest-neighbor interactions,
the distribution of atom separations, and field inhomogeneities
in the Rydberg ensemble. In order to extract that information
we must identify how each of these influences the different
features in the observed profiles. To that end, we first consider
the form of the line shape associated with a pair of stationary
atoms with a well-defined separation, coupled via a (near)
resonant 32p32p ↔ 32s33s DD interaction. We diagonalize
the Hamiltonian in the presence of the DD interaction, restrict-
ing the pair-state basis to those levels which are degenerate at
resonance. This basis includes numerous states with different
azimuthal quantum numbers m for the individual atoms and
different values of total electronic angular momentum and its
projection on the internuclear axis [38,39]. However, ignoring
spin, there are only two interacting states and the problem
reduces to an equivalent two-level system, involving two pair
basis states, |1〉 and |2〉, with a DD coupling Vdd = 2μAμB√

3R3

between them. Here |1〉 is a linear combination of 32p32p

states, |2〉 is an equal admixture of 32s33s and 33s32s, and
μA and μB are defined as in the Introduction.

Diagonalizing the effective two-level Hamiltonian, one
obtains the eigenstates

|+〉 = cos θ |1〉 + sin θ |2〉,
(1)

|−〉 = − sin θ |1〉 + cos θ |2〉,
where tan 2θ = 2Vdd/δ. These eigenstates have energies E± =
(δ ± �)/2, where � =

√
δ2 + 4V 2

dd , and exhibit a standard
avoided level crossing as a function of δ, with an en-
ergy separation �E = E+ − E− = 2Vdd at δ = 0. At large
detunings from resonance, |+〉 and |−〉 have only p- and
s-character, respectively. Thus, the initial laser excitation,
which is performed in an electric field for which atom pairs are
far-detuned from the 32p32p ↔ 32s33s resonance, creates
only 32p atoms, thereby populating only |+〉. At t = 0, the
fast rising tuning-field pulse then projects the 32p32p atom
pairs into a coherent superposition of |+〉 and |−〉.

Initially, the time-dependent electronic wave function of
each atom pair has only 32p32p character. However, assuming
coherence is maintained, the pair state evolves as a wave
packet in the uncoupled basis, according to the two-level Rabi
formula:

	(t) = [cos (�t/2) − iη sin (�t/2)]|1〉 + iχ sin (�t/2)|2〉,
(2)

where � is the effective Rabi frequency, χ = 2Vdd/�, and
η = δ/� is a scaled detuning.

The principal signature of the evolution of this wave packet
is the coherent transfer of population from |1〉 to |2〉, i.e.,
from p- to s-character. According to Eq. (2), the probability
of finding an atom in the 33s state at a time t following the
start of the tuning pulse is, P0 = χ2 sin2 (�t/2). The temporal
modulations in P0, predicted for a single atom pair, can be
viewed as Rabi oscillations due to the coupling between the
pair states |1〉 and |2〉 or, alternatively, as a quantum beat
induced by the coherent excitation of the DD-dressed states

FIG. 4. Comparison of the cusp (solid line) and Lorentzian
(dashed line) line shapes expected for ensembles with random [see
Eq. (5)] and uniform [see Eq. (3)] atom separation, respectively.
The Lorentzian profile assumes the most probable value of R at the
Rydberg density used to compute the cusp. Note the cusp’s broad,
large amplitude wings and relatively narrow central peak.

|+〉 and |−〉. The amplitude of the Rabi oscillations, χ2, is a
Lorentzian function of the detuning δ centered at δ = 0 with a
FWHM, � = 4Vdd .

Experimentally, we measure the number of 33s atoms,
produced via DD resonance, from a random ensemble of 32p

atoms. Within the ensemble, there is a broad distribution of
atom separations and, therefore, a wide range of values for Vdd

and � for different atom pairs. As a result, a monotonic increase
and eventual saturation, but no Rabi oscillations, are actually
observed in the 33s population measured as a function of the
interaction time, τ . Accordingly, for sufficiently long τ , one
might expect the ensemble to exhibit a Lorentzian population
transfer line shape (see Fig. 4) that is approximately equal to
the time-averaged value of P0 for a single atom pair

P = 1

2
χ2 = 2V 2

dd

δ2 + 4V 2
dd

, (3)

with the values of χ and Vdd computed using R � (2πρ)−1/3,
the most probable nearest-neighbor separation in the ensemble.
Assuming only nearest-neighbor interactions, this approxima-
tion correctly predicts the FWHM of the resonance, �, but it
is a poor representation of the line shape overall.

To properly account for the variation in atom separations
throughout the excitation volume, we integrate Eq. (3) over
all R, weighting the contribution from each R by the nearest-
neighbor distribution for a random ensemble [40]

P (R) = 4πρR2e− 4
3 πρR3

. (4)
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The line shape resulting from the integration can be
expressed in terms of standard functions as

P = 1

2
a

{
Ci(a) sin a +

[
π

2
− Si(a)

]
cos a

}
, (5)

where a = 16πρμAμB/(3
√

3δ), Si(x) = ∫ x

0
sin u

u
du is the

sine integral, Ci(x) = γ + ln x + ∫ x

0
cos u−1

u
du is the cosine

integral, and γ � 0.577216 is Euler’s constant [41]. As shown
in Fig. 4, the line shape takes the form of a cusp which has
a narrower central peak and significantly broader wings as
compared to the Lorentzian profile computed at the same
Rydberg density, but using a uniform atom separation equal to
the most probable value of R. It is worth noting, however, that
the FWHM of the two line shapes

� � 16πρμAμB/
√

3 (6)

are identical, and as expected, are directly proportional to the
Rydberg density. For the 32p32p ↔ 32s33s resonance, we
compute μA = 〈32s|r|32p〉 = 964 and μB = 〈33s|r|32p〉 =
941, giving � = 26 MHz for ρ = 1 × 109 cm−3.

In Fig. 1, the solid curves drawn through the data collected
at ρ = 1 × 109 and ρ = 3 × 109 cm−3 are fits of Eq. (5) to
those line shapes. The fits capture the primary features of
the observed profiles when the weaker satellite resonances in
the data are ignored. At these densities, the “natural” width
due to the DD interaction is the dominant contributor to the
line shape, and inhomogeneous broadening due to the spatial
variation in the offset field has a negligible effect. The broad
wings of the line shapes distinguish them from the Lorentzians
expected for ensembles with well-defined atom separation.
Conversely, for ρ = 2 × 108 cm−3, the natural width is less
than the inhomogeneous width. As a result, in convolution,
the measured profile is well represented by a Gaussian with
negligible wings far from resonance.

The solid curve in Fig. 2 is the FWHM of a simulated
profile that is constructed by convoluting the cusp of Eq. (5),
whose natural width increases proportionally to the Rydberg
density, with a fixed-width (15 MHz) Gaussian. The Gaussian
is included to model the effects of inhomogeneous broadening
associated with the spatial variation in the applied electric
field, and its FWHM is chosen to be in accord with the
resonance widths measured at the lowest densities. In the
following, we argue that the principal source of the observed
inhomogeneous broadening is the gradient in the offset field
produced by the MCP. As noted previously, the variation
in the rod field over the interaction region is only 0.07%,
leading to a variation in δ of approximately 1 MHz for tuning
fields near the resonance condition. While there is a magnetic
field gradient in the interaction region due to the MOT coils,
the variation in δ due to Zeeman shifts is also ∼1 MHz.
Both of these inhomogeneities are essentially negligible when
taken in quadrature with the other sources of broadening
that lead to the combined 15 MHz inhomogeneous width
observed at very low density. Given the detuning slope of
170 MHz/(V/cm) near resonance, an offset field variation
of 0.085 V/cm accounts for the 15 MHz minimum width.
Interestingly, a very similar offset field variation, 0.081 V/cm,
when taken in quadrature with magnetic field inhomogeneity,
also explains the 4.2 MHz minimum width observed in

independent measurements of the 25s33s ↔ 24p34p reso-
nance, using the same apparatus and experimental geome-
try [29]. The latter resonance has considerably different tuning
properties, including a detuning slope of 51 MHz/(V/cm) and
resonant field of 3.4 V/cm, making it highly unlikely that the
agreement between the two field variation determinations is
coincidental.

The overlap of the simulated and measured line widths in
Fig. 2 is accomplished by doubling the natural width predicted
by Eq. (6) for the cusps used in the simulations. In the figure,
we represent that doubling by displaying the calculated and
measured widths on density scales that differ by approximately
a factor of 2. This illustrates that the discrepancy could be the
result of an underestimate of the measured Rydberg density.
That said, given the 30% estimated density uncertainty, it is
unlikely that the factor of 2 is due to the density calibration
alone.

Another potential source of broadening is relative atom
motion which is neglected in our model. For ρ = 2 ×
109 cm−3, the most probable atom separation is R ∼ 4 μm
and the rms relative velocity between two 70 μK atoms is
vrms = 0.2μm/μs. Depending on the direction of relative
motion, in a τ = 10 μs interval, the separation between typical
nearest neighbors changes by 10 to 50% due to their thermal
motion. Despite this motion, within the data spread shown
in Fig. 2, we find the same resonance widths for tuning
pulse durations of τ ∼ 5 and 15 μs. In addition, the few
sample measurements performed with τ = 1 μs pulses, for
which atom motion should be negligible, also fall within
the data range illustrated by Fig. 2. Those data do, however,
fall uniformly below the calculated curve. Thus, while atom
motion may contribute slightly to the resonance widths, it does
not play a substantial role in determining the width, or shape,
of the resonance profiles.

A likely contributor to the resonance width discrepancy
is the neglect of beyond nearest-neighbor interactions in our
model. That said, the magnitude of the discrepancy indicates
that these effects are probably not as large as previously
indicated. The first studies of RET in a cold Rydberg gas [3,4]
reported measured widths that were much (up to two orders of
magnitude) broader than expected for isolated pairs of atoms. It
was suggested that rapid diffusion of the population, away from
an interacting nearest-neighbor pair to other nearby atoms,
rapidly occurred via exchange or “hopping” interactions of
the form |P 〉|S〉 → |S〉|P 〉. Subsequent experiments verified
the excitation diffusion process [6,8] in the absence of other
strong interactions. However, more detailed simulations [2,17]
of tunable, resonant population transfer in a many-atom
system showed that the primary DD coupling between nearest
neighbors could suppress the diffusion process. As a result,
the inclusion of exchange interactions resulted in only a
modest (∼50% [2]) increase in the resonance width. The
amount of broadening that we observe, relative to our nearest-
neighbor model, agrees with that prediction [2]. Interestingly,
a similar level of resonance broadening (roughly a factor of
2 relative to the nearest-neighbor prediction) was recently
observed under similar conditions, but for a much weaker
DD resonance [29]. Thus, the suppression of excitation
diffusion appears to be a general feature of resonantly coupled
gases.
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V. CONCLUSION

We have measured, as a function of atom density, the
line shapes associated with 32p3/232p3/2 → 32s33s resonant
population transfer in a cold Rb Rydberg gas. The line shapes
are cusplike at high density, reflecting the random nearest-
neighbor separation in the MOT, and are well reproduced
by closed form expressions based on a two-body interaction
model. The resonance widths agree with the model up to a
factor of 2, confirming that beyond nearest-neighbor processes
such as excitation diffusion do not influence the population
transfer rate to the degree previously indicated. At low density

the change in the line shape from a cusp to Gaussian form
allows us to characterize the electric field inhomogeneity in the
interaction region. In the future, similar resonance line shape
analyses may make it possible to distinguish random from
uniform atom distributions, perhaps providing a method to
visualize changes in the position correlation function with the
application of controlled DD forces between atoms [15].
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